首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of molecular modelling, electrostatic interactions are shown to play an important role in the sequence-dependent structure of triple helices formed by a homopyrimidine oligonucleotide bound to a homopurine. homopyrimidine sequence on DNA. This is caused by the presence of positive charges due to the protonation of cytosines in the Hoogsteen-bonded strand, required in order to form C.GxC+ triplets. Energetic and conformational characteristics of triple helices with different sequences are analyzed and discussed. The effects of duplex mismatches on the triple helix stability are investigated via thermal dissociation using UV absorption.  相似文献   

2.
Homopyrimidine oligodeoxynucleotides recognize the major groove of the DNA double helix at homopurine.homopyrimidine sequences by forming local triple helices. The oligonucleotide is bound parallel to the homopurine strand of the duplex. This binding can be revealed by a footprinting technique using copper-phenanthroline as a cleaving reagent. Oligonucleotide binding in the major groove prevents cleavage by copper-phenanthroline. The cleavage patterns on opposite strands of the duplex at the boundaries of the triple helix are asymmetric. They are shifted to the 3'-side, indicating that the copper-phenanthroline chelate binds in the minor groove of the duplex structure. Binding of the chelate at the junction between the triple and the double helix is not perturbed on the 5'-side of the bound homopyrimidine oligonucleotide. In contrast, a strong enhancement of cleavage is observed on the purine-containing strand at the triplex-duplex junction on the 3'-side of the homopyrimidine oligonucleotide.  相似文献   

3.
Pyrimidine oligoribonucleotides bind to the major groove of double-helical DNA at homopurine.homopyrimidine sequences. They recognize Watson-Crick base pairs by forming T.A x U and C.G x C base triplets via Hoogsteen hydrogen bonding. The stability of these triple helices is much higher than that of triple helices formed by oligodeoxyribonucleotides as shown by an increase of the temperature at which half-dissociation of the third strand occurs. When the 2'-hydroxyl group of ribose moieties is replaced by 2'-O-methyl substituent, triple helix stability is further increased.  相似文献   

4.
Oligodeoxynucleotides containing G and T can bind to homopurine.homopyrimidine sequences on double-stranded DNA by forming C.G x G and T.A x T base triplets. The orientation of the third strand in such triple helices depends on the number of GpT and TpG steps. Therefore a single oligonucleotide can be designed to bind to two consecutive homopurine.homopyrimidine sequences where the two homopurine stretches alternate on the two strands of DNA. The oligonucleotide switches from one homopurine strand to the other at the junction between the two sequences. This result shows that it is possible to extend the range of DNA sequences that can be recognized by a single oligonucleotide.  相似文献   

5.
There is a 36 bp tract of extreme homopurine/homopyrimidine (PuPy) asymmetry in the maize Adh1 gene promoter (from –44 to –79) that is S1-hypersensitive in plasmids under supercoil tension. Oligodeoxynucleotides corresponding to the PuPy tract were designed to examine the secondary structure of the region and address the possible role of the tract in gene regulation. On the basis of oligodeoxynucleotide band-shift and DNase I footprinting analyses, it was concluded that the homopyrimidine oligodeoxynucleotide can form a triple helix with the duplex PuPy tract in vitro. Transient assays in protoplasts, suspension cells, and seedling roots show that the homopyrimidine oligodeoxynucleotide is also capable of repressing Adh1-GUS gene expression during co-transformation, presumably by the formation of a triple helix with the PuPy tract in vivo. The complementary homopurine oligodeoxynucleotide would not form a triple helix in vitro, nor would it repress Adh1-GUS in vivo. We propose that triple helix formation is a potential regulatory phenomenon in vivo, and that an intraregion triple helix could occur within the Adh1 promoter via the formation of H-DNA.  相似文献   

6.
Abstract

Amsacrine-4-carboxamide-oligonucleotide conjugates were synthesized and studied for their capacity to form DNA triple helices and to alter human topoisomerase II binding and cleavage properties. The intercalating agent was attached to the 3′- or the 5′-end of a 24 nt triple helix-forming oligonucleotide via linkers of different lengths. The stability of these DNA triple helices was investigated by gel retardation and melting temperature studies using a synthetic 70 bp DNA duplex target. The effect of the conjugates on DNA cleavage by topoisomerase II was evaluated using the 70 bp duplex and a 311 bp restriction fragment containing the same triple helix site. The conjugate with the amsacrine derivative linked to the 3′ end of the TFO via a hexaethylene glycol linker modulates the extent of DNA cleavage by topoisomerase II at specific sites.  相似文献   

7.
Towards mixed sequence recognition by triple helix formation   总被引:8,自引:0,他引:8       下载免费PDF全文
The formation of intermolecular DNA triple helices offers the possibility of designing compounds with extensive sequence recognition properties which may be useful as antigene agents or tools in molecular biology. One major limitation of this approach is that these structures are generally restricted to homo-purine. homopyrimidine target sites. This review describes the strategies that have been employed to overcome this drawback and outlines the potential for triplex formation at mixed sequence DNA targets.  相似文献   

8.
The aims of the present theoretical study of the conformations of [alpha]-oligodeoxynucleotides forming triple helices with DNA duplexes are to understand the structural and energetic factors involved in [alpha]-triple helix formation by means of energy minimization, and to explain the experimentally observed dependence of strand orientation on the nucleotide sequence. It is found that the energetically preferred orientation of the [alpha]-oligonucleotide with respect to the homopurine strand depends on the sequence of the homopurine.homopyrimidine tracts. This is a consequence of the structural heteromorphism of base triplets in the intrinsically more stable reverse Hoogsteen hydrogen bonding configuration. Practical rules are proposed for determining the orientation of the nuclease-resistant [alpha]-oligodeoxynucleotide strand which will form the most stable triple helix.  相似文献   

9.
Abstract

A detailed molecular mechanical study has been made on the complexes of netropsin with the double stranded oligonucleotide (dA)12.(dT)12 and with the triple helix (dA)12.(dT)12.(dT)12. The complexes were built using computer graphics and energy refined using JUMNA program. In agreement with circular dichroïsm experiments we have shown that 3 netropsins can bind the minor grooves of the triple helix and of the double helix. The groove geometry in the duplex and in the triplex is very similar. However a detailed analysis of the energetic terms shows, in agreement with thermal denaturation studies, that the affinity of netropsin toward the double helices is larger than towards triple helices.  相似文献   

10.
Abstract

Peptide nucleic acid (PNA) is an oligonucleotide mimic in which the backbone of DNA has been replaced by a pseudopeptide. We here show that there are distinct variations as to how PNA oligomers interact with double-stranded DNA depending on choice of nucleobases. Thymine-rich homopyrimidine PNA oligomers recognise double-stranded polynucleotides by forming PNA2-DNA triplexes with the DNA purine strand. By contrast, cytosine-rich homopyrimidine PNAs add to double-stranded polynucleotides as Hoogsteen strands, forming PNA-DNA2 triplexes, while homopurine, or alternating thymine-guanine, PNA oligomers invade DNA to form PNA-DNA duplexes.  相似文献   

11.
Conformational energy computations were carried out on the packing of two identical collagenlike poly(tripeptide) triple helices in order to determine the energetics of favorable packing arrangements as a function of composition and chain length. The triple helices considered were [CH3CO-(Gly-Pro-Pro)nt-NHCH3]3 and [CH3CO-(Gly-Pro-Ala)nt-NHCH3]3, with nt = 3, 4, and 5. The packing arrangements were characterized in terms of their intermolecular energies and orientation angles Ω0 of the axes of the two triple helices. For short triple helices (nt = 3 or 4), many low-energy orientations, with a wide range of values of Ω0, can occur. When the triple helices are longer (nt = 5), the only low-energy packing arrangements of two poly(Gly-Pro-Pro) triple helices are those with a nearly parallel orientation of the two helix axes, with Ω0 ≈ ?10°. This result accounts for the observed parallel (rather than antiparallel) arrangement of collagen molecules in microfibril assembly and stands in contrast to the preferred antiparallel arrangement of a pair of α-helices. Since the preference for a parallel arrangement of these collagenlike triple helices is less pronounced in the case of poly(Gly-Pro-Ala), it appears that this preference is a consequence of the frequent presence of imino acids in position Y of the Gly-X-Y repeating triplet. In poly(Gly-Pro-Ala), most of the low-energy packing arrangements are parallel, but a few arrangements with low energies and high values of |Ω0| occur. These packing arrangements have a high energy, however, when Pro is substituted for Ala, and thus they are not accessible for collagen with natural amino (imino) acid sequences. The computations reported here account for some of the characteristic features of collagen packing in terms of the local interaction energies of a pair of triple helices.  相似文献   

12.
Abstract

Plasmid pEJ4, which is a derivative of pUC19 containing an insert with 60-bp-long · homopurine homopyrimidine tract from sea urchin P. miliaris histone gene spacer, was studied by chemical probes of the DNA structure osmium tetroxide and glyoxal. The former probe reacts with pyrimidine bases, while the latter forms a stable product only with guanine residues. These probes can thus be applied as specific probes for the homopyrimidine and homopurine strands, respectively.

At pH 6.0 the site-specific modification of the homopurine · homopyrimidine tract by both probes was observed at native superhelical density of the plasmid. In the linear plasmid under the same conditions this modification was absent; it appeared, however, at more acid pH values. In supercoiled DNA the hypersensitivity of the homopurine homopyrimidine tract to osmium tetroxide did not substantially change when pH was decreased from 6.0 to 4.0. Changes in NaCl concentration at pH 4.5 did not influence the hypersensitivity to osmium tetroxide; at pH 6.0 this hypersensitivity decreased with increasing NaCl concentration. These results thus show that the chemical probes recognize an unusual protonated structure containing unpaired bases or non-Watson-Crick base pairs. At pH 5.6 the site-specific modification occurred at or near to the middle of the homopurine · homopyrimidine tract, suggesting that a hairpin may be involved in the unusual structure under the given conditions. From the models suggested so far for the unusual structure of homopurine · homopyrimidine tracts our results fit best the protonated triplex H form suggest by V.I. Lyamichev, S.M. Mirkin and M.D. Frank-Kamenetskii, J. Biomol. Struct. Dyn. 3, 667 (1986).  相似文献   

13.
The simple repeating homopurine/homopyrimidine sequences dispersed throughout many eukaryotic genomes are known to form triple helical structures comprising three-stranded and single-stranded DNA. Several lines of evidence suggest that these structures influence DNA replication in cells. Homopurine/homopyrimidine sequences cloned into simian virus 40 (SV40) or SV40 origin-containing plasmids caused a reduced rate of DNA synthesis due to the pausing of replication forks. More prominent arrests were observed in in vitro experiments using single-stranded and double-stranded DNA with triplex-forming sequences. Nucleotides unable to form triplexes when present in the template DNA or when incorporated into the nascent strand prevented termination. Similarly, mutations destroying the triplex potential did not cause arrest while compensatory mutations restoring triplex potential restored it. These and other observations from a number of laboratories indicating that homopurine/homopyrimidine sequences act as arrest signals in vitro and as pause sites in vivo during replication fork movement suggest that these naturally occurring sequences play a regulatory role in DNA replication and gene amplification.  相似文献   

14.
Triplex-forming oligonucleotides (TFOs) are good candidates to be used as site-specific DNA-binding agents. Two obstacles encountered with TFOs are susceptibility to nuclease activity and a requirement for magnesium for triplex formation. Morpholino oligonucleotides were shown in one study to form triplexes in the absence of magnesium. In the current study, we have compared phosphodiester and morpholino oligonucleotides targeting a homopurine–homopyrimidine region in the human HER2/neu promoter. Using gel mobility shift analysis, our data demonstrate that triplex formation by phosphodiester oligonucleotides at the HER-2/neu promoter target is possible with pyrimidine-parallel, purine-antiparallel and mixed sequence (GT)-antiparallel motifs. Only the pyrimidine-parallel motif morpholino TFO was capable of efficient triple helix formation, which required low pH. Triplex formation with the morpholino TFO was efficient in low or no magnesium. The pyrimidine motif TFOs with either a phosphodiester or morpholino backbone were able to form triple helices in the presence of potassium ions, but required low pH. We have rationalized the experimental observations with detailed molecular modeling studies. These data demonstrate the potential for the development of TFOs based on the morpholino backbone modification and demonstrate that the pyrimidine motif is the preferred motif for triple helix formation by morpholino oligonucleotides.  相似文献   

15.
Abstract

A set of 21 oligodeoxynucleotides were designed to fold into intramolecular triple helices of the pyrimidine motif under appropriate conditions. UV melting experiments on the triplexes which only differ in the number and distribution of third strand cytosines reveal the influence of sequence and pH on triplex stability and can be summarized as follows: (1) increasing the cytosine content in the third strand results in a higher thermal stability of the triplex at acidic pH but lowers the triplex to duplex melting temperature at neutral pH; (2) cytosines at terminal positions destabilize the triple helical structure as compared to non-terminal positions; (3) contiguous cytosines lead to a pH dependent destabilization of the triplex, the destabilizing effect being more pronounced at higher pH. Analysis of these effects in terms of the various interactions within a triple helical complex indicate that the sequence-dependent stabilities are largely determined by the extent of protonation for individual third strand cytosines.  相似文献   

16.
Abstract

Pyrimidine α-ODNs containing 5-Me-α-dC(N-4-spermine) at the 5′-end or in the sequence were synthesized. The corresponding αββ triple helices were strongly stabilized by Mg2+ cations. Unlike in β-series these triplexes were not stabilized at pH 7.  相似文献   

17.
Abstract

The nucleoproteic filaments of RecA polymerized on single stranded DNA are able to integrate double stranded DNA in a coaxial arrangement (with DNA stretched by a factor 1.5), to recognize homologous sequences in the duplex and to perform strand exchange between the single stranded and double stranded molecules. While experimental results favor the hypothesis of an invasion of the minor groove of the duplex by the single strand, parallel minor groove triple helices have never been isolated or even modeled, the minor groove offering little space for a third strand to interact. Based on an internal coordinate modeling study, we show here that such a structure is perfectly conceivable when the two interacting oligomers are stretched by a factor 1.5, in order to open the minor groove of the duplex. The model helix presents characteristics that coincide with known experimental data on unwinding, base pair inclination and inter-proton distances. Moreover, we show that extension and unwinding stabilize the triple helix. New patterns of triplet interaction via the minor groove are presented.  相似文献   

18.
Here we present the principle of fluorescence in situ hybridization (FISH) with combinatorial oligonucleotide (COMBO) probes as a new approach for the specific labeling of genomic sites. COMBO-FISH takes advantage of homopurine/homopyrimidine oligonucleotides that form triple helices with intact duplex genomic DNA, without the need for prior denaturation of the target sequence that is usually applied for probe binding in standard FISH protocols. An analysis of human genome databases has shown that homopurine/homopyrimidine sequences longer than 14 bp are nearly homogeneously distributed over the genome, and they represent from 1% to 2% of the entire genome. Because the observation volume in a confocal laser-scanning microscope equipped with a high numerical aperture lens typically corresponds to an approximate 250-kb chromatin domain in a normal mammalian cell nucleus, this volume should contain 150-200 homopurine/homopyrimidine stretches. Using DNA database information, one can configure a set of distinct, uniformly labeled oligonucleotide probes from these stretches that is expected to exclusively co-localize within a 250-kb chromatin domain. Due to the diffraction-limited resolution of a microscope, the fluorescence signals of the configured oligonucleotide probe set merge into a typical, nearly homogenous FISH spot. Using a set of 32 homopyrimidine probes, we performed experiments in the Abelson murine leukemia region of human chromosome 9 as some of the very first proofs-of-principle of COMBO-FISH. Although the experimental protocol currently contains several steps that are incompatible with living cell conditions, the theoretical approach may be the first methodological advance toward the long-term but still elusive goal of carrying out specific FISH in high-resolution fluorescence microscopy of vital cells.  相似文献   

19.
The specificity of a homopyrimidine oligonucleotide binding to a homopurine-homopyrimidine sequence on double-stranded DNA was investigated by both molecular modeling and thermal dissociation experiments. The presence of a single mismatched triplet at the center of the triplex was shown to destabilize the triple helix, leading to a lower melting temperature and a less favorable energy of interaction. A terminal mismatch was less destabilizing than a central mismatch. The extent of destabilization was shown to be dependent on the nature of the mismatch. Both single base-pair substitution and deletion in the duplex DNA target were investigated. When a homopurine stretch was interrupted by one thymine, guanine was the least destabilizing base on the third strand. However, G in the third strand did not discriminate between a C.G and an A.T base pair. If the stretch of purines was interrupted by a cytosine, the presence of pyrimidines (C or T) in the third strand yielded a less destabilizing effect than purines. This study shows that oligonucleotides forming triple helices can discriminate between duplex DNA sequences that differ by one base pair. It provides a basis for the choice of antigene oligonucleotide sequences targeted to selected sequences on duplex DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号