首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review focuses on the hydrodynamic and mass transfer characteristics of various three-phase, gaslift fluidized bioreactors. The factors affecting the mixing and volumetric mass transfer coefficient (k(L)a), such as liquid properties, solid particle properties, liquid circulation velocity, superficial gas velocity, bioreactor geometry, are reviewed and discussed. Measurement methods, modeling and empirical correlations are reviewed and compared. To the authors' knowledge, there is no 'generalized' correlation to calculate the volumetric mass transfer coefficient, instead, only 'type-specific' correlations are available in the literature. This is due to the difficulty in modeling the gaslift bioreactor, caused by the variation in geometry, fluid dynamics, and phase interactions. The most important design parameters reported in the literature are: gas hold-up, liquid circulation velocity, 'true' superficial gas velocity, mixing, shear rate, aeration rate and volumetric mass transfer coefficient, k(L)a.  相似文献   

2.
The hydrodynamic characteristics and the overall volumetric oxygen transfer coefficient of a new multi-environment bioreactor which is an integrated part of a wastewater treatment system, called BioCAST, were studied. This bioreactor contains several zones with different environmental conditions including aerobic, microaerophilic and anoxic, designed to increase the contaminant removal capacity of the treatment system. The multi-environment bioreactor is designed based on the concept of airlift reactors where liquid is circulated through the zones with different environmental conditions. The presence of openings between the aerobic zone and the adjacent oxygen-depleted microaerophilic zone changes the hydrodynamic properties of this bioreactor compared to the conventional airlift designs. The impact of operating and process parameters, notably the hydraulic retention time (HRT) and superficial gas velocity (U G), on the hydrodynamics and mass transfer characteristics of the system was examined. The results showed that liquid circulation velocity (V L), gas holdup (ε) and overall volumetric oxygen transfer coefficient ( $ k_{\text{L}} a_{\text{L}} $ ) increase with the increase of superficial gas velocity (U G), while the mean circulation time (t c) decreases with the increase of superficial gas velocity. The mean circulation time between the aerobic zone (riser) and microaerophilic zone (downcomer) is a stronger function of the superficial gas velocity for the smaller openings (1/2 in.) between the two zones, while for the larger opening (1 in.) the mean circulation time is almost independent of U G for U G ≥ 0.023 m/s. The smaller openings between the two zones provide higher mass transfer coefficient and better zone generation which will contribute to improved performance of the system during treatment operations.  相似文献   

3.
Summary In the presence of protein, Hansenula polymorpha cultivation medium exhibits a maximum volumetric mass transfer coefficient, kLa, as function of the employed antifoam agents (soy oil and Desmophen 3600). With diminishing superficial gas velocity this maximum disappeas.Symbols EG Relative gas holdup - kLa Volumetric mass transfer coefficient (s–1) - wSL Superficial liquid velocity (cm s–1) - wSG Superficial gas velocity (cm s–1)  相似文献   

4.
Gas–liquid mass transfer was investigated in an up-flow cocurrent packed-bed biofilm reactor. In aerobic processes gas–liquid mass transfer can be considered as a key operational parameter as well as in reactor scale-up. The present paper investigates the influence of the liquid phase mixing in the determination of the volumetric gas–liquid mass transfer coefficient (kLa) coefficient. Residence time distribution (RTD) experiments were performed in the reactor to determine the flow pattern of the liquid phase and to model mathematically the liquid phase mixing. The mathematical model derived from RTD experiments was used to evaluate the influence of the liquid mixing on the experimental estimation of the (kLa) in this reactor type. The methods used to estimate the kLa coefficient were: (i) dynamic gassing-out, (ii) sulphite method, and (iii) in-process estimation through biological conversion obtained in the reactor. The use of standard chemical engineering correlations to determine the kLa in this type of bioreactors is assessed. Experimental and modelling results show how relevant can be to take into consideration the liquid phase mixing in the calculations of the most-used methods for the estimation of kLa coefficient. kLa coefficient was found to be strongly heterogeneous along the reactor vertical axis. The value of the kLa coefficient for the packed-bed section ranged 0.01–0.12 s−1. A preliminary correlation was established for up-flow cocurrent packed-bed biofilm reactors as a function of gas superficial velocity.  相似文献   

5.
Although a lot of research has been done into modelling microbial processes, the applicability of these concepts to problems specific for bioreactor design and optimization of process conditions is limited. This is partly due to the tendency to separate the two essential factors of bioreactor modelling, i.e. physical transport processes and microbial kinetics. The deficiencies of these models become especially evident in industrial production processes where O2 supply is likely to become the limiting factor, e.g. production of gibberellic acid and other organic acids. Hydrodynamics, mass transfer and rheology of gibberellic acid production by Gibberella fujikuroi in an airlift bioreactor is presented in this work. Important hydrodynamic parameters such as gas holdup, liquid velocity in the riser and in the downcomer, and mixing time were determined and correlated with superficial gas velocity in the riser. Mass transfer was studied evaluating the volumetric mass transfer coefficient, which was determined as a function of superficial gas velocity in the riser and as a function of fermentation time. Culture medium rheology was studied through fermentation time and allowed to explain the volumetric mass transfer coefficient behaviour. Rheological behaviour was explained in terms of changes in the morphology of the fungus. Finally, rheological studies let us obtain correlations for gas holdup and volumetric mass transfer coefficient estimation using the superficial gas velocity in the riser and the culture medium apparent viscosity.  相似文献   

6.
A general relationship for prediction of the volumetric oxygen transfer coefficient (kLa) in a tower bioreactor utilizing immobilized Penicillium chrysogenum as function of air superficial velocity, suspension rheological parameters and liquid physical properties is proposed in this study. The relationship was applied to three different systems and a good agreement between the calculated values and the experimental data was obtained.  相似文献   

7.
《Process Biochemistry》1999,34(2):133-137
Gas holdups, dispersion height, volumetric mass transfer coefficients and kLa of water and a yeast fermentation broth were studied in a co-current downflow contacting reactor. kLa and gas holdup increased with increasing superficial gas velocity and there was a parallelism between kLa and gas holdup. The values of kLa gas holdup, and dispersion height measured in the air/fermentation broth system were all lower than those in air/water system.  相似文献   

8.
Mass transfer and liquid mixing in an airlift reactor with a net draft tube were experimentally investigated. Four different column diameters were considered. The mass transfer was measured using the volumetric gas-liquid mass transfer coefficient which was determined by the dynamic method. The mass transfer coefficients in the airlift reactors with different column diameters were not always higher than those in the bubble columns. The liquid mixing was measured using mixing time which was determined by a pulse technique. Under the same superficial gas velocity, the mixing times of the airlift reactors with a net draft tube were always less than those of the bubble columns.List of Symbols C mol·dm–3 bulk concentration of dissolved oxygen - C 0 mol·dm–3 initial concentration of dissolved oxygen - C e mol·dm–3 saturated concentration of dissolved oxygen - ¯C dimensionless dissolved oxygen concentration - D c cm diameter of column - D N cm diameter of the nozzle hole - D T cm diameter of the net draft tube - H L cm static liquid height - H T cm height of the net draft tube - k L a hr–1 volumetric mass transfer coefficient - L T cm length of the net draft tube - t M sec mixing time of the liquid phase - t 0 sec mixing time of the liquid phase in a bubble column - V L dm3 volume of the liquid phase - U g cm/s superficial air velocity  相似文献   

9.
Two gas spargers, a novel membrane-tube sparger and a perforated plate sparger, were compared in terms of hydrodynamics and mass transfer (or oxygen transfer) performance in an internal-loop airlift bioreactor. The overall gas holdup ε T, downcomer liquid velocity V d, and volumetric mass transfer coefficient K L a were examined depending on superficial gas velocity U G increased in Newtonian and non-Newtonian fluids for the both spargers. Compared with the perforated plate sparger, the bioreactor with the membrane-tube sparger increased the values of ε T by 4.9–48.8 % in air–water system when the U G was from 0.004 to 0.04 m/s, and by 65.1–512.6 % in air–CMC solution system. The V d value for the membrane-tube sparger was improved by 40.0–86.3 %. The value of K L a was increased by 52.8–84.4 % in air–water system, and by 63.3–836.3 % in air–CMC solution system. Empirical correlations of ε T, V d, and K L a were proposed, and well corresponding with the experimental data with the deviation of 10 %.  相似文献   

10.
Optimization of a bioreactor design can be an especially challenging process. For instance, testing different bioreactor vessel geometries and different impeller and sparger types, locations, and dimensions can lead to an exceedingly large number of configurations and necessary experiments. Computational fluid dynamics (CFD), therefore, has been widely used to model multiphase flow in stirred-tank bioreactors to minimize the number of optimization experiments. In this study, a multiphase CFD model with population balance equations are used to model gas–liquid mixing, as well as gas bubble distribution, in a 50 L single-use bioreactor vessel. The vessel is the larger chamber in an early prototype of a multichamber bioreactor for mammalian cell culture. The model results are validated with oxygen mass transfer coefficient (kLa) measurements within the prototype. The validated model is projected to predict the effect of using ring or pipe spargers of different sizes and the effect of varying the impeller diameter on kLa. The simulations show that ring spargers result in a superior kLa compared to pipe spargers, with an optimum sparger-to-impeller diameter ratio of 0.8. In addition, larger impellers are shown to improve kLa. A correlation of kLa is presented as a function of both the reactor geometry (i.e., sparger-to-impeller diameter ratio and impeller-to-vessel diameter ratio) and operating conditions (i.e., Reynolds number and gas flow rate). The resulting correlation can be used to predict kLa in a bioreactor and to optimize its design, geometry, and operating conditions.  相似文献   

11.
Conventional airlift reactors are not adequate to carry out variable volume processes since it is not possible to achieve a proper liquid circulation in these reactors until the liquid height is higher than that of the downcomer. To carry out processes of variable volume, the use of a split-cylinder airlift reactor is proposed, in the interior of which two multi-perforated vertical baffles are installed in order to provide several points of communication between the reactor riser and downcomer. This improves the liquid circulation and mixing at any liquid volume. In fed-batch cultures, it is important to know how liquid height affects the hydrodynamic characteristics and the volumetric oxygen transfer coefficient since this impacts on the kinetic behavior of any fermentation. Thus, in the present work, the effect of the liquid height on the mixing time, the overall gas hold-up, and the volumetric oxygen transfer coefficient of the proposed airlift reactor were determined. The mixing time was increased and the volumetric oxygen transfer coefficient decreased due to the increase of the liquid height in the reactor in all the superficial gas velocities tested, which corresponded to a pseudohomogeneous flow regime. The experimental values of the mixing time and the mass-transfer coefficient were properly described through correlations in which the UGR/HL ratio was used as the independent variable. Thus, this variable might be used to describe the hydrodynamic behavior and the oxygen transfer coefficient of airlift reactors when such reactors are used in processes where the liquid volume changes with time. However, these correlations are useful for the particular device and for the particular operating conditions at which they were obtained. These empirical correlations are useful to understand some factors that influence the mixing time and volumetric oxygen transfer coefficient, but such correlations do not have a sufficient predictive potential for a satisfactory reactor design. The overall gas hold-up values were not significantly affected when the liquid height was lower than the downcomer height. However, the values decreased abruptly when the reactor was operated with liquid heights over the downcomer height, especially at high superficial gas velocities.  相似文献   

12.
The effects of aliphatic hydrocarbons (n-hexadecane andn-dodecane) on the volumetric oxygen mass transfer coefficient (k L a) were studied in flat alveolar airlift reactor and continuous stirred tank reactors (CSTRs). In the flat alveolar airlift reactor, high aeration rates (>2 vvm) were required in order to obtain efficient organic-aqueous phase dispersion and reliablek L a measurements. Addition of 1% (v/v)n-hexadecane orn-dodecane increased thek l a 1.55-and 1.33-fold, respectively, compared to the control (superficial velocity: 25.8×10−3 m/s, sparger orifice diameter: 0.5 mm). Analysis of the gas-liquid interfacial areaa and the liquid film mass transfer coefficientk L suggests that the observedk L a increase was a function of the media's liquid film mass transfer. Addition of 1% (v/v)n-hexadecane orn-dodecane to analogous setups using CSTRs led to ak L a increase by a factor of 1.68 and 1.36, respectively (superficial velocity: 2.1×10−3 m/s, stirring rate: 250 rpm). These results propose that low-concentration addition of oxygen-vectors to aerobic microbial cultures has additional benefit relative to incubation in purely aqueous media.  相似文献   

13.
The impact of mass transfer on productivity can become a crucial aspect in the fermentative production of bulk chemicals. For highly aerobic bioprocesses the oxygen transfer rate (OTR) and productivity are coupled. The achievable space time yields can often be correlated to the mass transfer performance of the respective bioreactor. The oxygen mass transfer capability of a jet aerated loop reactor is discussed in terms of the volumetric oxygen mass transfer coefficient kLa [h?1] and the energetic oxygen transfer efficiency E [kgO2 kW?1 h?1]. The jet aerated loop reactor (JLR) is compared to the frequently deployed aerated stirred tank reactor. In jet aerated reactors high local power densities in the mixing zone allow higher mass transfer rates, compared to aerated stirred tank reactors. When both reactors are operated at identical volumetric power input and aeration rates, local kLa values up to 1.5 times higher are possible with the JLR. High dispersion efficiencies in the JLR can be maintained even if the nozzle is supplied with pressurized gas. For increased oxygen demands (above 120 mmol L?1 h?1) improved energetic oxygen transfer efficiencies of up to 100 % were found for a JLR compared to an aerated stirred tank reactor operating with Rushton turbines.  相似文献   

14.
Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air–water and air–CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas–liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas–liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U G) range of 0.0004–0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K La) by a factor of 1.2–1.9 compared to the flat sheet membrane.  相似文献   

15.
Gas holdup, mixing, liquid circulation and gas–liquid oxygen transfer were characterized in a large (∼1.5 m3) draft-tube airlift bioreactor agitated with Prochem® hydrofoil impellers placed in the draft-tube. Measurements were made in water and in cellulose fiber slurries that resembled broths of mycelial microfungi. Use of mechanical agitation generally enhanced mixing performance and the oxygen transfer capability relative to when mechanical agitation was not used; however, the oxygen transfer efficiency was reduced by mechanical agitation. The overall volumetric gas–liquid mass transfer coefficient declined with the increasing concentration of the cellulose fiber solids; however, the mixing time in these strongly shear thinning slurries was independent of the solids contents (0–4% w/v). Surface aeration never contributed more than 12% to the total mass transfer in air–water.  相似文献   

16.
Orbitally shaken cylindrical bioreactors [OrbShake bioreactors (OSRs)] without an impeller or sparger are increasingly being used for the suspension cultivation of mammalian cells. Among small volume OSRs, 50‐mL tubes with a ventilated cap (OSR50), originally derived from standard laboratory centrifuge tubes with a conical bottom, have found many applications including high‐throughput screening for the optimization of cell cultivation conditions. To better understand the fluid dynamics and gas transfer rates at the liquid surface in OSR50, we established a three‐dimensional simulation model of the unsteady liquid forms (waves) in this vessel. The studies verified that the operating conditions have a large effect on the interfacial surface. The volumetric mass transfer coefficient (kLa) was determined experimentally and from simulations under various working conditions. We also determined the liquid‐phase mass transfer coefficient (kL) and the specific interfacial area (a) under different conditions to demonstrate that the value of a affected the gas transfer rate more than did the value of kL. High oxygen transfer rates, sufficient for supporting the high‐density culture of mammalian cells, were found. Finally, the average axial velocity of the liquid was identified to be an important parameter for maintaining cells in suspension. Overall these studies provide valuable insights into the preferable operating conditions for the OSR50, such as those needed for cell cultures requiring high oxygen levels. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:192–200, 2017  相似文献   

17.
The influence of the rheology of some antibiotic biosynthesis liquids produced by Streptomyces aureofaciens, Nocardia mediterranei and Penicillium chrysogenum on the volumetric liquid phase oxygen transfer coefficient, kLa, and gas holdup, εG, together with the influence of superficial gas velocity, were studied in a bubble column bioreactor, using samples of fermentation liquids taken from industrial stirred tank fermenters, at 30-hour intervals during fermentation batch. The results were compared to those of previous studies from literature on non-Newtonian homogeneous fluids, such as CMC-Na, xanthan and starch solutions, respectively. In the heterogeneous broths, εG and kLa decreased with increasing apparent viscosity of the broth and increased with increasing superficial velocity. The experimental data were correlated using non-linear regression with correlation coefficients above 0.85.  相似文献   

18.

Background

Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation.

Results

A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures.

Conclusion

The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/? 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.
  相似文献   

19.
This paper reports on the results of liquid-phase mass transfer experiments carried-out in a bed of immobilized anaerobic sludge. The liquid superficial velocity (vs) was found to deeply affect the liquid-phase volumetric mass transfer coefficient (ksa) in the vs range of 0.007 to 0.075 cm.s–1. Moreover, ksa increased exponentially with vs in that range, due to the decrease of the external mass transfer resistance.  相似文献   

20.
Gas hold-up (ɛg), sauter mean bubble diameter (d32) and oxygen transfer coefficient (kLa) were evaluated at four different alkane concentrations (0.05, 0.1, 0.3 and 0.5 vol.%) in water over the range of superficial gas velocity (ug) of (1.18–23.52) × 10−3 m/s at 25 °C in a laboratory-scale bubble column bioreactor. Immiscible hydrocarbons (n-decane, n-tridecane and n-hexadecane) were utilized in the experiments as impurity. A type of anionic surfactant was also employed in order to investigate the effect of addition of surfactant to organic-aqueous systems on sauter mean bubble diameter, gas hold-up and oxygen transfer coefficient. Influence of addition of alkanes on oxygen transfer coefficient and gas hold-up, was shown to be dependent on the superficial gas velocity. At superficial gas velocity below 0.5 × 10−3 m/s, addition of alkane in air–water medium has low influence on oxygen transfer coefficient and also gas hold-up, whereas; at higher gas velocities slight addition of alkane increases oxygen transfer coefficient and also gas hold-up. Increase in concentration of alkane resulted in increase in oxygen transfer coefficient and gas hold-up and roughly decrease in sauter mean bubble diameter, which was attributed to an increase in the coalescence-inhibiting tendency in the presence of surface contaminant molecules. Bubbles tend to become smaller with decreasing surface tension of hydrocarbon, thus, oxygen transfer coefficient increases due to increasing of specific gas–liquid interfacial area (a). Empirical correlations were proposed for evaluating gas hold-up as a function of sauter mean bubble diameter, superficial gas velocity and interfacial surface tension as well as evaluating Sherwood number as a function of Schmidt, Reynolds and Bond numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号