首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A crystalline complex of yeast tRNA(phe) and dirhodium tetraacetate (DRTA) was prepared and its X-ray structure determined. The bifunctional DRTA forms an intermolecular cross-link between the N(1) position of adenine A36 in the anticodon triplet and possibly a ribose hydroxyl group of residue A76 at the 3' terminus of a symmetry related tRNA molecule. The rhodium complex apparently shows a preference for binding to the N(1) position of adenine in a single strand region of the tRNA molecule.  相似文献   

2.
An X-ray diffraction study of a zinc(II) complex of tRNAPhe from yeast reveals the presence of five zin-binding sites on the tRNA molecule. Two of the cooperatively bound Mg2+ in the native tRNA structure are replaced by Zn2+. The remaining sites involve direct coordination of zinc to the N7 position of tRNA guanine bases, G15, G43 and G45. Thus, zinc displays a high specificity for binding to guanine bases in purine-purine sequences.  相似文献   

3.
Copper(II) complexes supported by bulky tridentate ligands L1H (N,N-bis(2-quinolylmethyl)-2-phenylethylamine) and L1Ph (N,N-bis(2-quinolylmethyl)-2,2-diphenylethylamine) have been prepared and their crystal structures as well as some physicochemical properties have been explored. Each complex exhibits a square pyramidal structure containing a coordinated solvent molecule at an equatorial position and a weakly coordinated counter anion (or water) at an axial position. The copper(II) complexes reacted readily with H2O2 at a low temperature to give mononuclear hydroperoxo copper(II) complexes. Kinetics and DFT studies have suggested that, in the initial stage of the reaction, deprotonated hydrogen peroxide attacks the cupric ion, presumably at the axial position, to give a hydroperoxo copper(II) complex retaining the coordinated solvent molecule (H R ·S). H R ·S then loses the solvent to give a tetragonal copper(II)-hydroperoxo complex (H R ), in which the –OOH group may occupy an equatorial position. The copper(II)–hydroperoxo complex H R exhibits a relatively high O–O bond stretching vibration at 900 cm−1 compared to other previously reported examples.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

4.
In most organisms, the widely conserved 1-methyl-adenosine58 (m1A58) tRNA modification is catalyzed by an S-adenosyl-L-methionine (SAM)-dependent, site-specific enzyme TrmI. In archaea, TrmI also methylates the adjacent adenine 57, m1A57 being an obligatory intermediate of 1-methyl-inosine57 formation. To study this multi-site specificity, we used three oligoribonucleotide substrates of Pyrococcus abyssi TrmI (PabTrmI) containing a fluorescent 2-aminopurine (2-AP) at the two target positions and followed the RNA binding kinetics and methylation reactions by stopped-flow and mass spectrometry. PabTrmI did not modify 2-AP but methylated the adjacent target adenine. 2-AP seriously impaired the methylation of A57 but not A58, confirming that PabTrmI methylates efficiently the first adenine of the A57A58A59 sequence. PabTrmI binding provoked a rapid increase of fluorescence, attributed to base unstacking in the environment of 2-AP. Then, a slow decrease was observed only with 2-AP at position 57 and SAM, suggesting that m1A58 formation triggers RNA release. A model of the protein–tRNA complex shows both target adenines in proximity of SAM and emphasizes no major tRNA conformational change except base flipping during the reaction. The solvent accessibility of the SAM pocket is not affected by the tRNA, thereby enabling S-adenosyl-L-homocysteine to be replaced by SAM without prior release of monomethylated tRNA.  相似文献   

5.
Abstract

Perturbation of the hydrogen bonds in the adenine…thymine base pair by Na+, Mg2+, Ca2+ and NH4 + cations has been investigated by means of ab initio SCF calculations with the STO-3G basis set. The geometry of adenine…thymine, as well as those of the perturbed pairs were optimized. Approach of any cation to thymine at 06 leads to destabilization of the adenine…thy mine pair; divalent cations (Mg2+, Ca2+) have a profound effect on the structure of the base pair. The approach of a cation to other available sites (thymine: O2, adenine N1 and N3) leads, on the other hand, to stabilization of the base pair. If a water molecule is placed between the cation and the base pair, the structure and stability of the base pair are changed only negligibly.  相似文献   

6.
Abstract

The anticodon of yeast tRNAAsp, GUC, presents the peculiarity to be self-complementary, with a slight mismatch at the uridine position. In the orthorhombic crystal lattice, tRNAAsp molecules are associated by anticodon-anticodon interactions through a two-fold symmetry axis. The anticodon triplets of symmetrically related molecules are base paired and stacked in a normal helical conformation. A stacking interaction between the anticodon loops of two two-fold related tRNA molecules also exists in the orthorhombic form of yeast tRNAPhe. In that case however the GAA anticodon cannot be base paired. Two characteristic differences can be correlated with the anticodon-anticodon association: the distribution of temperature factors as determined from the X-ray crystallographic refinements and the interaction between T and D loops. In tRNAAsp T and D loops present higher temperature factors than the anticodon loop, in marked contrast to the situation in tRNAPhe. This variation is a consequence of the anticodon-anticodon base pairing which rigidities the anticodon loop and stem. A transfer of flexibility to the corner of the tRNA molecule disrupts the G19-C56 tertiary interactions. Chemical mapping of the N3 position of cytosine 56 and analysis of self-splitting patterns of tRNAAsp substantiate such a correlation.  相似文献   

7.
Crosslinking of mRNA analog, dodecaribonucleotide pUUAGUAUUUAUU derivative carrying a perfluoroarylazido group at the guanine N7, was studied in model complexes with 80S ribosomes involving tRNA and in binary complex (i.e., in the absence of tRNA). It was shown that, irrespectively of complex formation conditions (13 mM Mg2+, or 4 mM Mg2+ in the presence of polyamines), the mRNA analog in binary complex with 80S ribosomes was crosslinked with sequence 1840–1849 of 18S rRNA, but in the complexes formed with participation of Phe-tRNAPhe (where the G residue carrying the arylazido group occupied position –3 to the first nucleotide of the UUU codon at the P site) the analog was crosslinked with nucleotide 1207. The presence and the nature of tRNA at the E site had no effect on the environment of position –3 of the mRNA analog. Efficient crosslinking of the mRNA analog with tRNA was observed in all studied types of complex. Modified codon GUA, when located at the E site, underwent crosslinking with both cognate valine tRNA and noncognate aspartate tRNA for which the extent of binding at the E site of 80S ribosomes was almost the same and depended little on Mg2+ concentration and the presence of polyamines.  相似文献   

8.
UsingS-adenosyl-L-[Me-14C] methionine, rat cerebral cortex methyltransferase activity was determined during the early postnatal period in the absence of addedEscherichia coli tRNA and in its presence. [Me-14C] tRNA was purified from both systems and its [Me-14C] base composition determined. The endogenous formation of [Me-14C] tRNA (homologous tRNA methylation) was totally abolished in the presence of 2.5 mM spermidine, whereasE. coli B tRNA methylation (heterologous methylation) was markedly stimulated. Only [Me-14C] 1-methyl guanine and [Me-14C]N 2-methyl guanine were formed by homologous methylation, there being an inverse shift in their relative proportions with age. Heterologous tRNA methylation led, additionally, to the formation of [Me-14C]N 2 2 -dimethyl guanine, 5-methyl cytosine, 1-methyl adenine, 5-methyl uracil, 2-methyl adenine, and 1-methyl hypoxanthine. A comparison of heterologous tRNA methylation between the whole brain cortex (containing nerve and glial cells) and bulk-isolated nerve cell bodies revealed markedly lower proportions of [Me-14C]N 2-methyl andN 2 2 -dimethyl guanine and significantly higher proportions of [Me-14C] 1-methyl adenine in the neurons. The present findings suggest (1) that homologous tRNA methylation may provide developing brain cells with continuously changing populations of tRNA and (2) that neurons are enriched in adenine residue-specific tRNA methyltransferases that are highly sensitive to spermidine.This research was supported by grant NS-06294 of the United States Public Health Service.  相似文献   

9.

The introduction of versatile functional groups, allyl and ester, at the C-1 position of the acyclic chain in acyclic adenine nucleosides was achieved for the first time directly by alkylation of adenine and N6-protected adenine. Thus, the C-1′-substituted N9-adenine acyclic nucleoside, adenine-9-yl-pent-4-enoic acid ethyl ester (11), was prepared by direct alkylation of adenine with 2-bromopent-4-enoic acid ethyl ester (6), while the corresponding N7-regioisomer, 2-[6, (dimethylaminomethyleneamino)-purin-7-yl]-pent-4-enoic acid ethyl ester (10), was obtained in one step by the coupling of N,N-dimethyl-N′- (9H-purin-6-yl)-formamidine (9) with 2-bromopent-4-enoic acid ethyl ester (6). The functional groups, ester and allyl, were converted to the desired hydroxymethyl and hydroxyethyl groups, and subsequently to phosphonomethyl derivatives and corresponding pyrophosphorylphosphonates.  相似文献   

10.
Abstract

Crystalline complexes of yeast tRNAphe and the oligopeptide antibiotics netropsin and distamycin A were prepared by diffusing drugs into crystals of tRNA. X-ray structure analyses of these complexes reveal a single common binding site for both drugs which is located in the major or deep groove of the tRNA T-stem. The netropsin-tRNA complex is stabilized by specific hydrogen bonds between the amide groups of the drug and the tRNA bases G51 0(6), U52 0(4) and G53 N(7) on one strand, and is further stabilized by electrostatic interactions between the positively charges guanidino side chain of the drug and the tRNA phosphate P53 on the same strand and the positively charged amidino propyl side chain and the phosphates P61, P62 and P63 on the opposite strand of the double helix. These results are in contrast to the implicated minor groove binding of these drugs to non-guanine sequences in DNA. The binding to the GUG sequence in tRNA implies that major groove binding to certain DNA sequences is possible.  相似文献   

11.
A bovine liver serine tRNA with a variety of unusual features has been sequenced and characterized. This tRNA is aminoacylated with serine, although it has a tryptophan anticodon CmCA. In ribosome binding assays, this tRNA (tRNACmCASer) binds to the termination codon UGA and shows little or no binding in response to a variety of other codons including those for tryptophan and serine. The unusual codon recognition properties of this molecule were confirmed in an in vitro assay where this tRNA suppressed UGA termination. This is the first naturally occurring eucaryotic suppressor tRNA to be so characterized. Other unusual features, possibly related to the ability of this tRNA to read UGA, are the presence of two extra nucleotides, compared to all other tRNAs, between the universal residues U at position 8 and A at position 14 and the presence of an extra unpaired nucleotide within the double-stranded loop IV stem. This tRNA is also the largest eucaryotic tRNA sequenced to date (90 nucleotides). Despite its size, however, it contains only six modified residues. tRNACmCASer shows extremely low homology to other mammalian serine (47–52% homology) or tryptophan (49% homology) tRNAs.  相似文献   

12.
Abstract

Poly(dA-dT) poly(dA-dT) structures in aqueous solutions with high NaCl concentrations and in the presence of Ni2+ ions have been studied with resonance Raman spectroscopy (RRS). In low water activity the effects of added 95 mM NiCl2 in solution stabilize the syn geometry of the purines and reorganize the water distribution via local interactions of Ni-water charged complexes with the adenine N7 position. It is shown that RRS provides good marker bands for a left-handed helix: i) a purine ring breathing mode around 630 cm″?1coupled to the deoxyribose vibration in the syn geometry, ii) a 1300-1340 cm?1 region characterizing local chemical interactions of the Ni2+ ions with the adenien N7 position, iii) lines at about 1483-and 1582 cm?1 correlated to the anti/syn reorientation of the adenine residues on B-Z structure transition, iv) marker bands of the thymidine carbonyl group couplings at 1680-and 1733 cm?1 due to the disposition of the thymidine residues in the Z helix specific geometry. Hence poly(dA-dT) poly(dA-dT) can adopt a Z form in solution. The Z form observed in alternate purine-pyrimidine sequences does not require G-C base pairs.  相似文献   

13.
We have used the temperature-jump relaxation technique to determine the kinetic and thermodynamic parameters for the association between the following tRNAs pairs having complementary anticodons: tRNA(Ser) with tRNA(Gly), tRNA(Cys) with tRNA(Ala) and tRNA(Trp) with tRNA(Pro). The anticodon sequence of E. coli tRNA(Ser), GGA, is complementary to the U*CC anticodon of E. coli tRNA(Gly(2] (where U* is a still unknown modified uridine base) and A37 is not modified in none of these two tRNAs. E. coli tRNA(Ala) has a VGC anticodon (V is 5-oxyacetic acid uridine) while tRNA(Cys) has the complementary GCA anticodon with a modified adenine on the 3' side, namely 2-methylthio N6-isopentenyl adenine (mS2i6A37) in E. Coli tRNA(Cys) and N6-isopentenyl adenine (i6A37) in yeast tRNA(Cys). The brewer yeast tRNA(Trp) (anticodon CmCA) differs from the wild type E. coli tRNA(Trp) (anticodon CCA) in several positions of the nucleotide sequence. Nevertheless, in the anticodon loop, only two interesting differences are present: A37 is not modified while C34 at the first anticodon position is modified into a ribose 2'-O methyl derivative (Cm). The corresponding complementary tRNA is E.coli tRNA(Pro) with the VGG anticodon. Our results indicate a dominant effect of the nature and sequence of the anticodon bases and their nearest neighbor in the anticodon loop (particularly at position 37 on the 3' side); no detectable influence of modifications in the other tRNA stems has been detected. We found a strong stabilizing effect of the methylthio group on i6A37 as compared to isopentenyl modification of the same residue. We have not been able so far to assess the effect of isopentenyl modification alone in comparison to unmodified A37. The results obtained with the complex yeast tRNA(Trp)-E.coli tRNA(Pro) also suggest that a modification of C34 to Cm34 does not significantly increase the stability of tRNA(Trp) association with its complementary anticodon in tRNA(Pro). The observations are discussed in the light of inter- and intra-strand stacking interactions among the anticodon triplets and with the purine base adjacent to them, and of possible biological implications.  相似文献   

14.
15.
The essential and universal N6-threonylcarbamoyladenosine (t6A) modification at position 37 of ANN-decoding tRNAs plays a pivotal role in translational fidelity through enhancement of the cognate codon recognition and stabilization of the codon–anticodon interaction. In Escherichia coli, the YgjD (TsaD), YeaZ (TsaB), YjeE (TsaE) and YrdC (TsaC) proteins are necessary and sufficient for the in vitro biosynthesis of t6A, using tRNA, ATP, L-threonine and bicarbonate as substrates. YrdC synthesizes the short-lived L-threonylcarbamoyladenylate (TCA), and YgjD, YeaZ and YjeE cooperate to transfer the L-threonylcarbamoyl-moiety from TCA onto adenosine at position 37 of substrate tRNA. We determined the crystal structure of the heterodimer YgjD–YeaZ at 2.3 Å, revealing the presence of an unexpected molecule of ADP bound at an atypical site situated at the YgjD–YeaZ interface. We further showed that the ATPase activity of YjeE is strongly activated by the YgjD–YeaZ heterodimer. We established by binding experiments and SAXS data analysis that YgjD–YeaZ and YjeE form a compact ternary complex only in presence of ATP. The formation of the ternary YgjD–YeaZ–YjeE complex is required for the in vitro biosynthesis of t6A but not its ATPase activity.  相似文献   

16.

Alkylation of adenine in solution and on solid phase was accelerated by phosphazene base P1-tBu compared to mineral bases. The reactions in solution afforded regioselectively the appropriate N9-alkylated adenines with high preparative yields while the reaction with polystyrene resin-bound N-bromoacetylated peptides gave three regioisomers (alkylated at the N9, N7, and N3 position of adenine) in a 4:2:1 molar ratio. Ten novel nonphosphate nucleotide analogues were tested in an ADP-induced platelet aggregation assay.  相似文献   

17.
Small-angle neutron scattering studies of Escherichia coli tyrosyl-tRNA synthetase indicate that in solution this enzyme is a dimer of Mr, 91 (±6) × 103 with a radius of gyration RG of 37.8 ± 1.1 Å.The increase in the scattering mass of the enzyme upon binding tRNATyr has been followed in 20 mm-imidazole · HCl (pH 7.6), 10 mm-MgCl2, 0.1 mm-EDTA, 10 mm-2-mercaptoethanol, 150 mm-KCl. A stoichiometry of one bound tRNA per dimeric enzyme molecule was found. The RG of the complex is equal to 41 ± 1 Å. Titration experiments in 74% 2H2O, close to the matching point of tRNA, show an RG of 38.5 ± 1 Å for the enzyme moiety in the complex. From these values, a minimum distance of 49 Å between the centre of mass of the bound tRNA and that of the enzyme was calculated.In low ionic strength conditions (20 mm-imidazole-HCl (pH 7.6), 10 mm-MgCl2, 0.1 mm-EDTA, 10 mm-2-mercaptoethanol) and at limiting tRNA concentrations with respect to the enzyme, titrations of the enzyme by tRNATyr are characterized by the appearance of aggregates, with a maximum scattered intensity at a stoichiometry of one tRNA per two enzyme molecules. At this point, the measured Mr and RG values are compatible with a compact 1:2, tRNA: enzyme complex. This complex forms with a remarkably high stability constant: (enzyme:tRNA:enzyme)/(enzyme:tRNA)(enzyme) of 0.1 to 0.3(× 106) m?1 (at 20 °C). Upon addition of more tRNA, the complex dissociates in favour of the 1:1, enzyme:tRNA complex, which has a higher stability constant (1 to 3 (× 106) m?1).  相似文献   

18.
Abstract

In spite of the significant role of iron ions-nucleotide complexes in living cells, these complexes have been studied only to a limited extent. Therefore, we fully characterized the ATP:Fe(II) complex including stoichiometry, geometry, stability constants, and dependence of Fe(II)-coordination on pH. A 1:1 stoichiometry was established for the ATP:Fe(II) complex based on volumetric titrations, UV and SEM/EDX measurements. The coordination sites of ferrous ions in the complex with ATP, established by 1H-, 31P-, and 15N-NMR, involve the adenine N7 as well as Pα, Pβ, and Pγ. Coordination sites remain the same within the pH range of 3.1–8.3. By applying fluorescence monitored Fe(II)-titration, we established a log K value of 5.13 for the Fe(ATP)2? complex, and 2.31 for the Fe(HATP)? complex. Ferrous complexes of ADP3? and AMP2? were less stable (log K 4.43 and 1.68, respectively). The proposed major structure for the Fe(ATP)2? complex is the ‘open’ structure. In the minor ‘closed’ structure N7 nitrogen is probably coordinated with Fe(II) through a bridging water molecule. The electronic and stereochemical requirements for Fe(II)-coordination with ATP4? were probed using a series of modified-phosphate or modified-adenine ATP analogues. We concluded that: Fe(II) coordinates solely with the phosphate-oxygen atom, and not with sulfur, amine, or borane in the cases of phosphate-modified analogues of ATP; a high electron density on N7 and an anti conformation of the adenine-nucleotide are required for enhanced stability of ATP analogues:Fe(II) complexes as compared to ATP complexes (up to more than 100-fold); there are no stereochemical preferences for Fe(II)-coordination with either Rp or Sp isomers of ATP-α-S or ATP-α-BH3 analogues.  相似文献   

19.
Acetone was found to form a dead-end ternary complex with horse liver alcohol dehydrogenase and oxidized nicotinamide adenine dinucleotide (NAD+) when the reactants were incubated for a long time at relatively high concentrations. The complex formation was demonstrated by measuring the increase in absorbance at 320 nm, the quenching of protein fluorescence, and the loss of enzyme activity. Since acetone is a substrate of liver alcohol dehydrogenase, and the presence of acetaldehyde or pyrazole prevents acetone from forming the dead-end complex with liver alcohol dehydrogenase and NAD+, the acetone molecule in the complex may be bound to the substrate binding site of liver alcohol dehydrogenase. The dissociation of the complex was demonstrated by prolonged dialysis or by addition of reduced nicotinamide adenine dinucleotide (NADH) and iso-butyramide. A modified nicotinamide adenine dinucleotide was obtained as a main product from the dead-end complex after dissociation of the complex or denaturation of the apoenzyme. The modified nicotinamide adenine dinucleotide was found to exhibit an absorption spectrum similar to that of NADH; however, it was not oxidizable by liver alcohol dehydrogenase in the presence of acetaldehyde and exhibited no fluorescence.  相似文献   

20.
Nucleotide sequence comparison of tRNAs aminoacylated by yeast phenylalanyl tRNA synthetase (PRS) have lead to the proposal that the specific nucleotides of the dihydrouridine (diHU) stem region and adenosine at the fourth position from the 3′ end are involved in the PRS recognition site. Kinetic analysis and enzymatic methylation have shown that the size of the diHU loop and the methylation of guanine at position 10 from the 5′ end both directly affect the PRS aminoacylation kinetics. E. coli tRNA1A1a, which is aminoacylated by PRS, should therefore have 1- the specific nucleotides of the diHU stem region and, 2- adenosine at position 4 from the 3′ end. The PRS aminoacylation kinetics of this tRNA indicates that this molecule 3- has a diHU loop of 8 nucleotides and 4- has an unmethylated guanine at position 10 from the 5′ end. We report here the complete sequence of E. coli tRNA1A1a and confirmation of each of these four predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号