首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A series of potential energy calculations have been carried out to estimate base sequence dependent structural differences in B-DNA. Attention has been focused on the simplest dimeric fragments that can be used to build long chains, computing the energy as a function of the orientation and displacement of the 16 possible base pair combinations within the double helix. Calculations have been performed, for simplicity, on free base pairs rather than complete nucleotide units. Conformational preferences and relative flexibilities are reported for various combinations of the roll, tilt, twist, lateral displacement, and propeller twist of individual residues. The predictions are compared with relevant experimental measures of conformation and flexibility, where available. The energy surfaces are found to fit into two distinct categories, some dimer duplexes preferring to bend in a symmetric fashion and others in a skewed manner. The effects of common chemical substitutions (uracil for thymine, 5-methyl cytosine for cytosine, and hypoxanthine for guanine) on the preferred arrangements of neighboring residues are also examined, and the interactions of the sugar-phosphate backbone are included in selected cases. As a first approximation, long range interactions between more distant neighbors, which may affect the local chain configuration, are ignored. A rotational isomeric state scheme is developed to describe the average configurations of individual dimers and is used to develop a static picture of overall double helical structure. The ability of the energetic scheme to account for documented examples of intrinsic B-DNA curvature is presented, and some new predictions of sequence directed chain bending are offered.  相似文献   

2.
R C Maroun  W K Olson 《Biopolymers》1988,27(4):561-584
Matrix generator techniques have been adapted to account for precise structural features of the nucleotide repeating unit and to translate the primary sequence of DNA base pairs into three-dimensional structures. Chains have been constructed to reflect the local sequence-dependent differences of bending and twisting of adjacent residues and various overall chain properties, including the average unperturbed moments of the end-to-end vector r and the mean angular orientation (〈γ〉 between base pair normals, 〈?1〉 between long axes, and 〈?2〉 between short axes) of terminal chain residues, have been computed. The chain backbone is treated implicitly in terms of the spatial fluctuations of successive base pairs. Motions are limited to low-energy perturbations of the standard B-DNA helix. Approximate potential energy schemes are used to represent the rules governing the patterns of local base–base morphology and flexibility. Theoretical predictions are compared with experimental observations at both the local and the macro-molecular level. Initial applications are limited to the rodlike poly(dA) · poly(dT) and poly(dG) · poly(dC) helices. The former duplex is found to be more compressed and the latter more extended than random-sequence DNA of the same chain length. The flexibility of the duplexes as a whole is described in terms of the average higher moments of the displacement vector ρ = r - 〈r〉 and the likelihood of chain cyclization is estimated from the three-dimensional Hermite series expansions of the displacement tensors. Emphasis is placed on theoretical methodology and the practical relevance of the calculated chain moments to observed physical properties.  相似文献   

3.
R A Friedman  B Honig 《Biopolymers》1992,32(2):145-159
Base-stacking and phosphate-phosphate interactions in B-DNA are studied using the finite difference Poisson-Boltzmann equation. Interaction energies and dielectric constants are calculated and compared to the predictions of simple dielectric models. No extant simple dielectric model adequately describes phosphate-phosphate interactions. Electrostatic effects contribute negligibly to the sequence and conformational dependence of base-stacking interactions. Electrostatic base-stacking interactions can be adequately modeled using the Hingerty screening function. The repulsive and dispersive Lennard-Jones interactions dominate the dependence of the stacking interactions on roll, tilt, twist, and propellor. The Lennard-Jones stacking energy in ideal B-DNA is found to be essentially independent of sequence.  相似文献   

4.
Given a specified DNA sequence and starting with an idealized conformation for the double helix (A-DNA or B-DNA), the dependence of conformational energy on variations in the local geometry of the double helix can be examined by computer modeling. By averaging over all thermally accessible states, it is possible to determine 1) how the optimum local structure differs from the initial idealized conformation and 2) the energetic costs of small structural deformations. This paper describes such a study. Tables are presented for the prediction of helix twist angles and base pair roll angles for both A-DNA and B-DNA when the sequence has been specified. Local deviations of helix parameters from their average values can accumulate to produce a net curvature of the molecule, a curvature that can be sharp enough to be experimentally detectable. As an independent check on the method, the calculations provide predictions for the longitudinal compressibility (Young's modulus) and the average torsional stiffness, both of which are in good agreement with experimental values. In examining the role of sequence-dependent variations in helix structure for the recognition of specific sequences by proteins, we have calculated the energy needed to deform the self-complementary hexanucleotide d(CAATTG) to match the local geometry of d(GAATTC), which is the sequence recognized by the EcoRI restriction endonuclease. That energy would be sufficient to reduce the binding of the incorrect sequence to the protein by over 2 orders of magnitude relative to the correct sequence.  相似文献   

5.
The base-to-base virtual bond treatment of nucleic acids used in statistical mechanical calculations of polynucleotide chain properties has been refined by incorporating the six parameters that relate the positions and orientations of sequential rigid bodies. The scheme allows for the sequence-dependent bending, twisting, and displacement of base pairs as well as for asymmetry in the angular and translational fluctuations of individual residues. Expressions are developed for the generator matrices required for the computation, as a function of chain length, of various parameters measuring the overall mean extension and shape of the DNA. Quantities of interest include the end-to-end vector r , the square of the end-to-end distance r2, the square radius of gyration s2, the center-of-gravity vector g , the second moments of inertia S ×2, and the higher moments of r and g . The matrix expressions introduced in the 1960s by Flory and co-workers for the determination of configuration-dependent polymer chain averages are decomposed into their translational and orientational contributions so that the methods can be extended to the rigid body analysis of chemical moieties. The new expressions permit, for the first time, examination of the effects of sequence-dependent translations, such as the lateral sliding of residues in A- and B-helices and the vertical opening of base pairs in drug–DNA complexes, on the average extension and shape of the long flexible double helix. The approach is illustrated in the following paper using conformational energy estimates of the base sequence-dependent flexibility of successive B-DNA base pairs. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
7.
M Sip  A Schwartz  F Vovelle  M Ptak  M Leng 《Biochemistry》1992,31(9):2508-2513
A 22 base pair double-stranded oligonucleotide containing a unique interstrand adduct resulting from chelation of the two guanine residues within the central sequence d(TGCT/AGCA) by a cis-platinum residue has been studied by means of gel electrophoresis, chemical probes, and molecular mechanics. The anomalously slow electrophoretic mobility of the multimers of the platinated and ligated oligomers suggests that the platinated oligonucleotide is bent. The two cytosine residues (complementary to the platinated guanines) are hyperreactive to hydroxylamine, indicating a large exposure of the two bases to the solvent. The adduct does not induce a local denaturation within the flanking sequences since the adenine residues are not reactive with diethyl pyrocarbonate. This is confirmed by the nonreactivity of the complementary T residues with osmium tetraoxide. These results and the molecular mechanics modeling suggest that the interstrand adduct bends the double helix by approximately 55 degrees toward the major groove, that the double helix conserves its average twist angle, and that the distortion induced by the adduct is localized at the platinated sequence d(GC/CG).  相似文献   

8.
U Heinemann  C Alings    M Bansal 《The EMBO journal》1992,11(5):1931-1939
The self-complementary DNA fragment CCGGCGCCGG crystallizes in the rhombohedral space group R3 with unit cell parameters a = 54.07 A and c = 44.59 A. The structure has been determined by X-ray diffraction methods at 2.2 A resolution and refined to an R value of 16.7%. In the crystal, the decamer forms B-DNA double helices with characteristic groove dimensions: compared with B-DNA of random sequence, the minor groove is wide and deep and the major groove is rather shallow. Local base pair geometries and stacking patterns are within the range commonly observed in B-DNA crystal structures. The duplex bears no resemblance to A-form DNA as might have been expected for a sequence with only GC base pairs. The shallow major groove permits an unusual crystal packing pattern with several direct intermolecular hydrogen bonds between phosphate oxygens and cytosine amino groups. In addition, decameric duplexes form quasi-infinite double helices in the crystal by end-to-end stacking. The groove geometries and accessibilities of this molecule as observed in the crystal may be important for the mode of binding of both proteins and drug molecules to G/C stretches in DNA.  相似文献   

9.
Sugar phosphate backbone conformations are a structural element inextricably involved in a complete understanding of specific recognition nucleic acid ligand interactions, from early stage discrimination of the correct target to complexation per se, including any structural adaptation on binding. The collective results of high resolution DNA, RNA and protein/DNA crystal structures provide an opportunity for an improved and enhanced statistical analysis of standard and unusual sugar-phosphate backbone conformations together with corresponding dinucleotide sequence effects as a basis for further exploration of conformational effects on binding. In this study, we have analyzed the conformations of all relevant crystal structures in the nucleic acids data base, determined the frequency distribution of all possible epsilon, zeta, alpha, beta and gamma backbone angle arrangements within four nucleic acid categories (A-RNA and A-DNA, free and bound B-DNA) and explored the relationships between backbone angles, sugar puckers and selected helical parameters. The trends in the correlations are found to be similar regardless of the nucleic acid category. It is interesting that specific structural effects exhibited by the different unusual backbone sub-states are in some cases contravariant. Certain alpha/gamma changes are accompanied by C3' endo (north) sugars, small twist angles and positive values of base pair roll, and favor a displacement of nucleotide bases towards the minor groove compared to that of canonical B form structures. Unusual epsilon/zeta combinations occur with C2' (south) sugars, high twist angles, negative values of base pair roll, and base displacements towards the major groove. Furthermore, any unusual backbone correlates with a reduced dispersion of equilibrium structural parameters of the whole double helix, as evidenced by the reduced standard deviations of almost all conformational parameters. Finally, a strong sequence effect is displayed in the free oligomers, but reduced somewhat in the ligand bound forms. The most variable steps are GpA and CpA, and, to a lesser extent, their partners TpC and TpG. The results provide a basis for considering if the variable and non-variable steps within a biological active sequence precisely determine morphological structural features as the curvature direction, the groove depth, and the accessibility of base pair for non covalent associations.  相似文献   

10.
In this study we discuss stacking interactions in cytosine dimer in conformations appearing in B-DNA crystals. The variational–perturbational scheme was applied for decomposition of the intermolecular interaction energy at the MP2 level of theory. The significant influence of the mutual orientation of cytosine monomers was observed not only on the total intermolecular interaction energy but also on its components: Different components of intermolecular interaction energy depend in different manner on parameters describing mutual orientation of cytosine monomers.  相似文献   

11.
Changes in the free energy of mutual phosphate group interactions are calculated that accompany bending of the A-, B- and Z-DNA backbones in 0.7, 2.1 and 4.2 mol/l NaCl aqueous solutions. The bending is often found to be favoured in the direction of the double helix grooves; B-DNA prefers bending into the major groove while minor groove is the preferred bending direction of A-DNA in the presence of 0.7 mol/l NaCl. Interestingly, the preferences are reversed in 4.2 mol/l NaCl. Further stabilization of A-DNA and B-DNA backbones is achieved in some cases if bending is combined with suitable local double helix twist alterations. Bending tendencies of Z-DNA backbone are generally weaker and they decrease, in contrast to B-DNA and A-DNA, with the increasing ionic strength.  相似文献   

12.
W N Hunter  T Brown    O Kennard 《Nucleic acids research》1987,15(16):6589-6606
X-ray diffraction techniques have been used to characterise the crystal and molecular structure of the deoxyoligomer d(C-G-C-A-A-A-T-T-C-G-C-G) at 2.5A resolution. The final R factor is 0.19 with the location of 78 solvent molecules. The oligomer crystallises in a B-DNA type conformation with two strands coiled about each other to produce a duplex. This double helix consists of four A.T and six G.C Watson-Crick base pairs and two C.A mispairs. The mismatched base pairs adopt a "wobble" type structure with the cytosine displaced laterally into the major groove, the adenine into the minor groove. We have proposed that the two close contacts observed in the C.A pairing represent two hydrogen bonds one of which results from protonation of adenine. The mispairs are accommodated in the double helix with small adjustments in the conformation of the sugar-phosphate backbone. Details of the backbone conformation, base stacking interactions, thermal parameters and the hydration are now presented and compared with those of the native oligomer d(C-G-C-G-A-A-T-T-C-G-C-G) and with variations of this sequence containing G.T and G.A mispairs.  相似文献   

13.
14.
Base sequence and helix structure variation in B and A DNA   总被引:22,自引:0,他引:22  
The observed propeller twist in base-pairs of crystalline double-helical DNA oligomers improves the stacking overlap along each individual helix strand. But, as proposed by Calladine, it also leads to clash or steric hindrance between purines at adjacent base-pairs on opposite strands of the helix. This clash can be relieved by: (1) decreasing the local helix twist angle between base-pairs; (2) opening up the roll angle between base-pairs on the side on which the clash occurs; (3) separating purines by sliding base-pairs along their long axes so that the purines are partially pulled out of the stack (leading to equal but opposite alterations in main-chain torsion angle delta at the two ends of the base-pair); and (4) flattening the propeller twist of the offending base-pairs. Simple sum functions, sigma 1 through sigma 4, are defined, by which the expected local variation in helix twist, base roll angle, torsion angle delta and propeller twist may be calculated from base sequence. All four functions are quite successful in predicting the behavior of B DNA. Only the helix twist and base roll functions are applicable to A DNA, and the helix twist function begins to fail for an A helical RNA/DNA hybrid. Within these limits, the sequence-derived sum functions match the observed helix parameter variation quite closely, with correlation coefficients greater than 0.900 in nearly all cases. Implications of this sequence-derived helix parameter variation for repressor-operator interactions are considered.  相似文献   

15.
This study reports on ab initio calculations of adenine - cytosine complexes in two different context alignments appearing in B-DNA. The influence of adenine modification by hydroxyl radical on the stability of the complexes is also discussed. The analysis was performed on over 40 crystallographic structures for each of the sequence contexts. In most cases, modification of adenine by hydroxyl radical leads to less negative intermolecular interaction energies. The issue of the influence of alteration of structural base step parameters on the stability of modified and unmodified adenine - cytosine complexes is also addressed. Analysis of the dependence of intermolecular interaction energy on base step parameters reveals that for twist and shift modification of adenine by hydroxyl radical leads to quite different interaction energy profiles in comparison with unmodified complexes. In order to elucidate the physical origins of this phenomenon, i.e. to analyze how the modification of adenine by hydroxyl radical is reflected in the change of intermolecular interaction energy components, a variational-perturbational decomposition scheme was applied at the MP2/aug-cc-pVDZ level of theory.  相似文献   

16.
Cation-pi interactions between an aromatic ring and a positive charge located above it have proven to be important in protein structures and biomolecule associations. Here, the role of these interactions at the interface of protein-DNA complexes is investigated, by means of ab initio quantum mechanics energy calculations and X-ray structure analyses. Ab initio energy calculations indicate that Na ions and DNA bases can form stable cation-pi complexes, whose binding strength strongly depends on the type of base, on the position of the Na ion, and whether the base is isolated or included in a double-stranded B-DNA. A survey of protein-DNA complex structures using appropriate geometrical criteria revealed cation-pi interactions in 71% of the complexes. More than half of the cation-pi pairs involve arginine residues, about one-third asparagine or glutamine residues that only carry a partial charge, and one-seventh lysine residues. The most frequently observed pair, which is also the most stable as monitored by ab initio energy calculations, is arginine- guanine. Arginine-adenine interactions are also favorable in general, although to a lesser extent, whereas those with thymine and cytosine are not. Our calculations show that the major contribution to cation-pi interactions with DNA bases is of electrostatic nature. These interactions often occur concomitantly with hydrogen bonds with adjacent bases; their strength is estimated to be from three to four times lower than that of hydrogen bonds. Finally, the role of cation-pi interactions in the stability and specificity of protein-DNA complexes is discussed.  相似文献   

17.
Summary

Proline-rich peptides are known to adopt preferentially the extended polyproline II (PPII) helical conformation, which is involved in several protein-protein recognition events. By resorting to molecular modelling techniques, we wished to investigate the extent to which PPII helices could be used for the formation of isohelical peptide-DNA complexes leading to the selective recognition of the major groove of B-DNA. For that purpose, we have grafted to a cationic intercalator, 9-amino-acridine, an oligopeptide having the sequence: Pro-Arg-Pro-Pro-Arg-Pro-Pro-Arg-Pro-Pro-Asp-Pro-Pro. Each residue in the sequence was set in the D configuration, to prevent enzymatic hydrolysis, and each Arg residue was designed to target O6/N7 of a guanine base following the intercalation site. The Asp residue was designed to target a cytosine base, whilst simultaneously forming a bidentate complex with the Arg three residues upstream. Energy-minimization, using the JUMNA procedure, led to the following conclusions: 1) major groove binding is favoured over minor groove or exclusive binding to the phosphates by large energy differences, of over 50 and 90 kcal/mole, respectively; 2) the two best bound sequences are those having three successive guanine bases on the same DNA strand, immediately adjacent to the intercalation site. Sequence d(CGGGC G), encountered in the Primer Binding Site of the HIV retrovirus, thus ranks amongst the best-bound sequences; 3) replacement of an individual guanine amongst the three ones upstream of the intercalation site, by an adenine base, weakens by > 6 kcal/mole the binding energetics; 4) the conformational rigidity of the DNA-bound PPII helix should enable for a modulation of the base sequence selectivity, by appropriate replacements of the Arg and Asp residues. Thus sequence CGGCAAG, also encountered in the HIV genome, could be targeted by an oligopeptide having the sequence Pro-Arg-Pro-Pro-Asp-Pro-Pro- Asn-Pro-Pro-Asn-Pro-Pro-Arg-Ala.  相似文献   

18.
Three empirical potentials of the Lennard-Jones type taken from literature were used to calculate van der Waals contributions to the base-pair couples stacking energies in B-DNA and A-DNA type double helical conformations. The information obtained can be summarized as follows: (1) Purine-pyrimidine and purine-purine (pyrimidine-pyrimidine in the complementary strand) sequences preferred right-handed helical arrangement, whereas pyrimidine-purine sequences favoured left-handed (C-G) or unwound (T-A) stacking geometry; in the latter case this only held for B- but not A-DNA (the C-G sequence was not studied in A-DNA owing to difficulties (see below) with the G amino group in B-DNA); (2) Positive propeller twist of base-pairs was stable in both B- and A-DNA; the thymine methyl group promoted the propeller and this effect was strongest in the A-T step; (3) Tilt of base pairs occurred around zero in B-DNA and between 15-20 degrees C in A-DNA, in agreement with the experimental observations; (4) Vertical separation of base pairs was optimal within 0.33-0.34 nm for B-DNA and around 0.29 nm for A-DNA using the 9-6 potential. The 12-6 potential gave similar results with B-DNA as the 9-6 potential if, however, base pairs were separated by 0.35-0.36 nm; (5) The calculated effect of the guanine amino group was substantially stronger than expected on the basis of data derived from X-ray diffraction studies of oligonucleotide single crystals; (6) In comparison with the 9-6 potential, the 12-6 potential provided more strict energy minima. In summary, the empirical potentials reproduce, at least semiquantitatively, many but not all DNA properties; this should be taken into account whenever the potentials are used for prediction purposes.  相似文献   

19.
We have constructed the potential energy surfaces for all unique tetramers, hexamers and octamers in double helical DNA, as a function of the two principal degrees of freedom, slide and shift at the central step. From these potential energy maps, we have calculated a database of structural and flexibility properties for each of these sequences. These properties include: the values of each of the six step parameters (twist roll, tilt, rise, slide and shift), for each step of the sequence; flexibility measures for both decrease and increase in each property value from the minimum energy conformation for the central step; and the deviation from the path of a hypothetical straight octamer. In an analysis of structural change as a function of sequence length, we observe that almost all DNA tends to B-DNA and becomes less flexible. A more detailed analysis of octamer properties has allowed us to determine the structural preferences of particular sequence elements. GGC and GCC sequences tend to confer bistability, low stability and a predisposition to A-form DNA, whereas AA steps strongly prefer B-DNA and inhibit A-structures. There is no correlation between flexibility and intrinsic curvature, but bent DNA is less stable than straight. The most difficult deformation is undertwisting. The TA step stands out as the most flexible sequence element with respect to decreasing twist and increasing roll. However, as with the structural properties, this behavior is highly context-dependent and some TA steps are very straight.  相似文献   

20.
The influence of the highly fluorescent tricyclic cytosine base analogue (tC) on duplex DNA conformation is investigated. The duplex properties are characterized by absorbance and circular dichroism (CD) for all combinations of neighbouring bases to tC, and an NMR structure is determined for one tC-containing sequence. For the oligonucleotides with one tC incorporated instead of cytosine, the melting temperature is increased on average by 2.7°C above that for the unmodified ones. CD spectra are practically identical for modified and unmodified sequences, indicating an unperturbed B-DNA conformation. The NMR structure determination of the self-complementary sequence 5′-CTC(tC)ACGTGGAG shows a DNA conformation consistent with B-form for the whole duplex. The root-mean-square distance for the nucleotides of the eight central base pairs between the 10 structures with lowest CYANA target functions and a mean structure is 0.45 ± 0.17 Å. The NMR data confirm correct base pairing for tC by the observation of both intrastrand and interstrand imino proton NOEs. Altogether, this suggests that tC works well as a cytosine analogue, i.e. it is situated in the base stack, forming hydrogen bonds with G in the complementary strand, without distorting the DNA backbone conformation. This first example of an artificial, highly fluorescent DNA base that does not perturb the DNA conformation could have valuable applications for the study of the structure and dynamics of nucleic acid systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号