首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell structure, cell adhesion, and stalk formation have been examined by electron microscopy in the colonial flagellate, Cephalothamnium cyclopum. Each cell is obconical or spindle-shaped, pointed posteriorly and truncated anteriorly. The cell membrane is underlain by epiplasm 0.1 μm thick in the posterior region, but bands of microtubules support the anterior region which is differentiated into a flagellar pocket, oral apparatus and contractile vacuole. Each of 2 flagella, joined a short way above their bases by an interflagellar connective, has a paraxial rod and mastigonemes. One flagellum is free and is important in food gathering while the other is recurrent and lies in a shallow groove on the ventral cell surface but projects posteriorly into the stalk. The basal bodies of these flagella are bipartite structures connected by a pair of striated rootlets with accessory microtubular fibers. The oral apparatus consists of a funnel-shaped buccal cavity and cytostome. It is supported by helical and longitudinal microtubules and also has nearby striated and microtubular fibers. Possible roles of associated oral vesicles in relation to ingestion are discussed. A reticulate mitochondrion houses a massive kinetoplast which has a fibrillar substructure resembling that of dinoflagellate chromosomes. Adjacent flagellates adhere by laminate extensions of their posterior regions and attach by their recurrent flagella to a communally secreted stalk composed of finely fibrillar material. This study indicates that Cephalothamnium belongs in the order Kinetoplastida, and has many features in common with members of the family Bodonidae.  相似文献   

2.
Two strains of Trichomonas vaginalis, JH162A, with low pathogenicity, and Balt 44, with high pathogenicity, as well as one highly pathogenic strain, KV-1, of Tritrichomonas foetus were studied by freeze-fracture electron microscopy. The protoplasmic faces (PFs) of the cell membranes of all three strains of both species had similar numbers of intramembranous particles (IMPs); however, the particles in the external faces (EFs) of these membranes were least abundant in Trichomonas vaginalis strain Balt 44 and most numerous in those of strain JH162A of this species. In Tritrichomonas foetus strain KV-1 the number of IMPs in the EF was close to but somewhat lower than that in the mild strain of the human urogenital trichomonad. In both species, the anterior, but not the recurrent, flagella had rosette-like formations, consisting of ~9 to 12 IMPs on both the PFs and EFs. The numbers and distribution of the rosettes appeared to vary among different flagella and in different areas of individual flagella of a single organism belonging to either species. The freeze-fracture electron micrographs provided a more complete understanding of the fine structure of undulating membranes of Trichomonadinae, as represented by Trichomonas vaginalis, and of Tritrichomonadinae (the Tritrichomonas augusta-type), as exemplified by Tritrichomonas foetus, than was gained from previous transmission and scanning electron microscope studies. Typically three longitudinal rows of IMPs on the PF of the recurrent flagellum of Trichomonas vaginalis were noted in the area of attachment of this flagellum to the undulating membrane. The functional aspects of the various structures and differences between certain organelles revealed in the two trichomonad species by the freeze-fracture method are discussed.  相似文献   

3.
The morphology of Mastigamoeba aspera, a typical species of the genus Mastigamoeba Schulze, 1875, was studied at the optical and electron microscopy level. During movement, M. aspera has an oval or pyriformic shape, with the motile flagella being located at the anterior end of mononuclear forms. In the process of movement, the mastigamoeba surface forms numerous conical or finger-shaped hyaline pseudopodia, whereas thel caudal cell end is usually transformed into a bulboid uroid. In M. aspera micropopulations, there are noted both mononuclear cells with flagella and multinuclear flagella-free individuals. The M. aspera plasma membrane has at its outer surface a hypertrophied glycocalix layer inhabited by numerous rod-shaped bacteria-ectobionts. The M. aspera nucleus is of vesicular type, with a large central spherical nucleolus. The flagellar apparatus is closely connected morphologically with the M. aspera nucleus. The basal flagella part is represented by a single kinetosome, from which radial microtubules and a lateral rootlet pass out into the cytoplasm. At the base of the kinetosome, there is located a compact center of organization of microtubules (COMT), in which there are immersed bases of the nuclear cone microtubules participating in formation of karyomastigont. The structure of the flagella axoneme corresponds to the formula 9(2)+2. The main volume of the M. aspera cytoplasm is occupied with digestive vacuoles. In addition, the cells contain numerous light-reflecting granules, as well as glycogen granules. Mitochondria, dictyosomes of the Golgi apparatus, and microbodies in the M. aspera cell cytoplasm are not revealed.  相似文献   

4.
Two strains of Trichomonas vaginalis, JH162A , with low pathogenicity, and Balt 44, with high pathogenicity, as well as one highly pathogenic strain, KV-1, of Tritrichomonas foetus were studied by freeze-fracture electron microscopy. The protoplasmic faces ( PFs ) of the cell membranes of all three strains of both species had similar numbers of intramembranous particles (IMPs); however, the particles in the external faces (EFs) of these membranes were least abundant in Trichomonas vaginalis strain Balt 44 and most numerous in those of strain JH162A of this species. In Tritrichomonas foetus strain KV-1 the number of IMPs in the EF was close to but somewhat lower than that in the mild strain of the human urogenital trichomonad . In both species, the anterior, but not the recurrent, flagella had rosette-like formations, consisting of approximately 9 to 12 IMPs on both the PFs and EFs. The numbers and distribution of the rosettes appeared to vary among different flagella and in different areas of individual flagella of a single organism belonging to either species. The freeze-fracture electron micrographs provided a more complete understanding of the fine structure of undulating membranes of Trichomonadinae , as represented by Trichomonas vaginalis, and of Tritrichomonadinae (the Tritrichomonas augusta -type), as exemplified by Tritrichomonas foetus, than was gained from previous transmission and scanning electron microscope studies. Typically three longitudinal rows of IMPs on the PF of the recurrent flagellum of Trichomonas vaginalis were noted in the area of attachment of this flagellum to the undulating membrane. The functional aspects of the various structures and differences between certain organelles revealed in the two trichomonad species by the freeze-fracture method are discussed.  相似文献   

5.
ABSTRACT Specimens of Pelomyxa palustris from five collecting sites had numerous nonmotile flagella. The structures are called flagella because of morphological similarities to flagella and because P. palustris has affinities with amoeboid flagellates. Flagella were photographed on living cells and studied by transmission and scanning electron microscopy. From 64 to 742 flagella per cell were estimated from scanning electron microscopy of ten cells 204 to 1269 μm in length. The nonmotile flagella arise from basal granules which were, in one strain, surrounded by radiating electron-dense microtubules. This strain also had excess axonemal microtubules. Abundant cytoplasmic microtubules were arranged in several different patterns. In about half of the P. palustris cells in which nuclei were studied, microtubules were either apposed to the nuclear membrane in a parallel alignment (with some also radiating) or radiating from the nuclear membrane (with none parallel). Bacteria associated with nuclei were of three characteristic types: Gram-negative rods, Gram-positive rods, and large rods. All nuclei within a given trophozoite had similar perinuclear features. Recent proposals for separation of Pelomyxa to its own phylum (based on its proposed primitive, unique nature) can not be justified. Pelomyxa is a complex, highly specialized organism adapted to live in a specific fresh-water environment. Mastigamoebid amoeboid flagellates of the genera Mastigamoeba, Mastigella, Mastigina, and possibly Dinamoeba are placed with Pelomyxa within the order Pelobiontida Page, 1976, emend., containing two families. Pelomyxidae Schulze, 1877, and Mastigamoebidae Goldschmidt, 1907.  相似文献   

6.
cmu1-1 is a new mutation of Chlamydomonas reinhardtii that causes a change in cell shape due to an alteration of cytoplasmic microtubule organization. cmu1 mutant cells were first identified based on their altered cell shape. Unlike wild-type cells, which are ellipsoid, cmu1 cells tend to be either round or egg-shaped with the flagella extending from the narrow end of the cell. Electron microscopic comparison of mutant and wild-type cells indicated that microtubule distribution was altered in the mutant cells. Immunofluorescence microscopy using anti-beta-tubulin antibodies revealed that, in wild-type cells, microtubules arise from the anterior end of the cell in the region of the basal bodies, pass posteriorly subjacent to the plasma membrane, and terminate near the posterior end of the cell. In mutant cells, the microtubules also arise from the basal body region but then become disarrayed. They frequently curl back anteriorly or wrap around the equator of the cell; some microtubules also extend completely to the posterior end of the cell, then turn back toward the anterior end. No changes in the basal body region were detected by electron microscopy. Some cmu1 cells had multiple nuclei or an aberrant number of flagella, both of which may be due to defects in cell division, a process dependent upon microtubules. Thus, cmu1-1, which was generated by insertional mutagenesis and is tagged, appears to encode a protein that plays an essential role in the spatial organization of cytoplasmic microtubules involved in both interphase and mitotic functions.  相似文献   

7.
ABSTRACT

Spermatological characteristics of the troglotrematid digenean Nephrotrema truncatum, a parasite of the shrew Crocidura russula, have been investigated by means of transmission electron microscopy. The ultrastructural study reveals that the mature spermatozoon of N. truncatum exhibits many ultrastructural characters previously described in most gorgoderoideans. These are two axonemes of the 9+‘1‘ trepaxonematan pattern, four attachment zones, a lateral expansion, an external ornamentation of the plasma membrane associated with spine-like bodies and cortical microtubules, and in the posterior part of the anterior spermatozoon region, two bundles of parallel cortical microtubules with the maximum number located in the anterior part of the spermatozoon, a nucleus, two mitochondria, and granules of glycogen. The obtained results are compared with those of other digeneans, particularly the Gorgoderoidea. The sperm cells gorgoderoideans are of type IV, characterised by a 9+‘1‘ pattern of axonemes, the presence of an external ornamentation associated with cortical microtubules and located in the posterior area of the anterior extremity, the presence of two bundles of cortical microtubules, the maximum number of cortical microtubules located in the anterior region of the spermatozoon, and the presence of generally two mitochondria. However, dicrocoeliids and troglotrematids have spermatozoa with ornamentation of the plasma membrane and lateral expansions.  相似文献   

8.
Fine structure of gametocytes and oocyst formation of Sarcocystis sp. from Quiscalus quiscula Linnaeus grown in cultured embryonic bovine kidney cells was studied. Microgametocytes measured up to ~5 μm diameter. During nuclear division of the microgametocyte, dense plaques were found adjacent to the nucleus just beneath the pellicle; occasionally microtubules were present within these plaques. These microtubules subsequently formed 2 basal bodies with a bundle of 4 microtubules between them. Microgametocytes also contained numerous mitochondria, micropores, granules, vacuoles, and free ribosomes. Each microgamete was covered by a single membrane and consisted of 2 basal bodies, 2 flagella, a bundle of 4 microtubules, a perforatorium, a mitochondrion, and a long dense nucleus which extended anteriorly and posteriorly beyond the mitochondrion. The bundle of 4 microtubules is thought to be the rudiment of a 3rd flagellum. Macrogametes were covered by a double membrane pellicle, and contained a large nucleus (~2.5 μm), vacuoles, and a dilated nuclear envelope connected with the rough endoplasmic reticulum (ER). In young macrogametes (~4 μm), the ER was arranged in concentric rows in the cortical region, and several sizes of dense granules were found in the cytoplasm. However, in later stages (~8 μm) the ER was irregularly arranged and was dilated with numerous cisternae; only large dark granules remained and a few scattered polysaccharide granules were found. No Golgi apparatus or micropores were observed. After the disappearance of dark granules 5 concentric membranes appeared. Four of these fused to form an oocyst wall composed of a dense outer layer (~66 nm thick) and a thin inner layer (~7 nm). The 5th or innermost membrane surrounded the cytoplasmic mass which was covered by a 2-layered pellicle and contained a nucleus, small amounts of ER, large vacuoles, and mitochondria. The sexual stages described greatly resemble those of Eimeria and Toxoplasma.  相似文献   

9.
ABSTRACT. Tritrichomonas foetus is a flagellated protozoon found in urogenital tract of cattle. Its free movement in liquid medium is powered by the coordinated movement of three flagella projecting towards the anterior region of the cell, and one recurrent flagellum that forms a junction with the cell body and ends as a free projection in the posterior region of the cell. We have used video microscopy and digital image processing to analyze the relationships between the movements of these flagella. The anterior flagella beat in a ciliary type pattern displaying effective and recovery strokes, while the recurrent flagellum beats in a typical flagellar wave form. One of the three anterior flagella has a distinctive pattern of beating. It beats straight in its forward direction as opposed to the ample beats performed by the others. Frequency measurements obtained from cells swimming in a viscous medium shows that the beating frequency of the recurrent flagelium is approximate twice the frequency for the three anterior flagella. We also observed that the costa and the axostyle do not show any active motion. On the contrary, they form a cytoskeletal base for the anchoring and orientation of the flagella.  相似文献   

10.
M. Glyn  K. Gull 《Protoplasma》1990,158(3):130-141
Summary The transformation ofPhysarum polycephalum flagellates to myxamoebae is characterised by disappearance of the flagellum. This transition, from the flagellate to the myxamoeba was observed by phase contrast light microscopy and recorded by time lapse video photography to determine whether flagellates shed their flagella or they are absorbed within the cell. In addition, the kinetics of flagellum disappearance were also studied. Our observations indicate that the flagellum was absorbed within the cell; the process occurred within seconds. Flagellum resorbtion was preceded by typical morphological cell changes. The shape of the nucleus altered and its mobility within the cell decreased. It was not possible to observe the flagellum within the cell with phase contrast video recordings. Thin section electron microscopy was used to study this intracellular phenomenon. Several stages of flagellum dissolution could be identified within the cell. The two most important stages were: an axoneme surrounded by the flagellar membrane within a plasma membrane lined pocket or vacuole and the naked axoneme without its membrane, free within the cell cytoplasm. The existence of cytoplasmic microtubules prevented identification of any further dissolution stages of the flagellum. A group of microtubules adjacent to the flagellum but within the cytoplasm was observed in flagellates and also in those cells which possesed enveloped axonemes. The flagellum did not dissociate from the kinetosomes before resorbtion.Immunofluorescence studies with the 6-11-B-1 monoclonal antibody indicated that acetylated microtubules exist in myxamoebae after transformation from flagellates for up to 40 min. Acetylated tubulin is not limited to the centrioles in these cells.  相似文献   

11.
Electron microscopy was used to examine the flagellar apparatus of Herpetomonas ampelophilae from the gut and malpighian tubules of Drosophila melanogaster. The flagellates attach to the microvilli either by weaving their flagella between the microvilli or by engulfing several microvilli with an external flagellar membrane. The first type predominated in the gut while the second type was limited to the malpighian tubules. Desmosomes were not involved in either type of attachment. A subpellicular collar with emerging microtubules was found to be adjacent to the desmosome of the flagellar pocket of herpetomonads in the gut.  相似文献   

12.
This article presents the scanning and transmission electron microscopy of the spermatozoa and sperm packets of three inseminating species of the glandulocaudine tribe Xenurobryconini. All three species, Scopaeocharax rhinodus, Tyttocharax cochui, and T. tambopatensis produce unencapsulated sperm packets (= spermatozeugmata) of similar morphology. The external anterior surface of each spermatozeugma is comprised of elongate sperm heads arranged in parallel, and the posterior part is made up of tightly packed flagella. The interior of the anterior portion consists of alternating layers of sperm heads and flagella. The remarkable integrity of each packet appears to be maintained through an electron-dense secretion seen among all parts of the cells. Spermatozeugma formation takes place within the spermatocysts at the end of spermiogenesis and at spermiation fully formed packets are released. Morphology of the mature spermatozoa was similar in all three species. Each nucleus is elongate, flattened along most of its length, and tapers at either end. The two centrioles are nearly parallel to one another and are located just anterior to the nucleus. Elongate mitochondria are located along the nucleus. The single flagellum, which lacks axonemal fins, is initially contained within a short cytoplasmic collar. Accessory microtubules run parallel to the long axis of the nucleus just beneath the plasma membrane. During spermiogenesis, no nuclear rotation occurs and the cytoplasmic canal containing the flagellum elongates along with the nucleus. However, prior to spermiation all but the anterior portion of the collar degenerates. The sperm modifications observed in these species are discussed as adaptations to the unique reproductive habit of insemination.  相似文献   

13.
Transmission electron microscopy of pre-release and post-release biflagellate gametes of Cephaleuros virescens has produced comparative data on these cells and on the detailed absolute arrangement of the flagellar apparatus. In all major respects including the presence of two multilayered structures (MLS's) the closely compacted, non-motile but mature pre-release gametes are similar to the mature, free swimming post-release gametes. The elongated shape of the free-swimming gametes differs from the more compact form of the pre-release gametes, but does not reflect a major difference in the arrangement of internal components. The flagella are bilaterally keeled and each keel contains a cylindrical element. Each flagellar base is encircled by a densely staining collar of modified plasmalemma at the point of entry into the apical papilla. The equal anterior flagella enter the papilla from opposite sides; their basal bodies are parallel and overlapping. Each terminates in a densely staining terminal cap. No capping plate is present. Each basal body is associated both with a three-layered MLS, the anterior layer of which becomes a lateral microtubular spline of 2 to 8 microtubules, and with an additional medial compound root of two layers of microtubules (2 over 4 or 5). Both the compound microtubule root and the spline may acquire additional microtubules as they extend distally in close proximity to mitochondria and the plasmalemma. No striated roots, or rhizoplasts, have been observed. Two densely staining plaques are associated with the plasma membrane at specific anterior sites and may be comparable to the presumptive mating structures seen in other green algal motile cells. The reversed bilateral symmetry of the cells produces two possible arrangements of the flagellar apparatus, namely, a 11/5 (or left-handed) arrangement or a 1/7 (or right-handed) arrangement. Only 11/5 cells have been found. Despite the presence of distinct multilayered structures, some aspects of the gametes of Cephaleuros quite closely resemble the cruciate motile cells of algae now regarded by some authors as typical of Ulvophyceae, sensu Stewart and Mattox.  相似文献   

14.
The flagellar apparatus of Microthamnion kuet-zingianum Naegeli differs from, that of Chlamydomonas reinhardtii Dangeard in that the zoospores can autonomously orient their basal bodies for different types of swimming behavior, including forward, and backward progression with, stationary intervals. Reorientation of the basal regions of the flagella and of the basal bodies were documented by cinefilms and by stroboscopic and electron micrographs. Even when the flagella. were sheared off, the remaining stubs (containing the basal bodies) were capable of being reoriented, by the organism. Thus the mechanism of basal body reorientation cannot reside in the 9 + 2 flagellar shaft. Rather, the reorienting process involves a shortening or lengthening of the distal fiber and of the plasma membrane region overlying an anterior papilla. In their helical and spiral motions, the zoospores trace complicated, but surprisingly regular curves. Such motion might result from the inherent 3-dimensional structure and beat of the flagella. The eyespot has an invariable, highly asymmetric location within the cell in direct proximity with a specific microtubular band (MTE), but nevertheless may occur in either the anterior or posterior region of the chloroplast. Further, multiple eyespots may occur along the same side of MTE. This observation is consistent with the discovery (in Fucus sperm) that microtubules serve to align individual eyespot granules in eyespot-ontogeny. By this means the position of the eyespot within a cell could well be determined.  相似文献   

15.
THE EFFECTS OF COLCHICINE ON SPERMATOGENESIS IN NITELLA   总被引:1,自引:1,他引:0       下载免费PDF全文
Treatment of Nitella antheridia with colchicine results in various sperm abnormalities, depending upon duration of exposure and subsequent recovery. Early effects of treatment include disappearance of spindle fibers and a cessation of ordered cell wall formation in dividing cells. Sperm released from antheridia treated for 24 hr and allowed to recover for 4–5 days possess branched flagella. After a recovery period of 6–10 days the sperm appear normal; however, following longer recovery periods, the sperm exhibit variations in size and number of flagella. Branched flagella contain a variety of microtubule patterns ranging from branches containing a single microtubule to flagella with an excess of microtubules. Spermatids which differentiate in the presence of colchicine lack flagella and a microtubular sheath. Nuclear contents undergo condensation stages; however, the nucleus as a whole does not undergo the orderly elongation and coiling characteristic of untreated Nitella spermatids. Long-term colchicine treatment followed by a recovery period produces atypical microtubules and microtubular aggregations in the spermatid. The results indicate that colchicine affects not only polymerization of microtubule subunits but also factors responsible for their ordered spatial relationships in the cell. The presence of microtubules is a prerequisite for normal morphological changes during spermiogenesis.  相似文献   

16.
The chlorococcalean algae Dictyochloris fragrans and Bracteacoccus sp. produce naked zoospores with two unequal flagella and parallel basal bodies. Ultrastructural features of the flagellar apparatus of these zoospores are basically identical and include a banded distal fiber, two proximal fibers, and four cruciately arranged microtubular rootlets with only one microtubule in each dexter rootlet. In D. fragrans, each proximal fiber is composed of two subfibers, one striated and one nonstriated, and each sinister rootlet is composed of five microtubules (4/1), decreasing to four away from the basal bodies. In Bracteacoccus sp., each proximal fiber is a single unit, the sinister rootlets are four (3/1) or rarely five (4/1) microtubules, and each basal body is associated with an unusual curved structure. The basic features of the flagellar apparatus of the zoospores of these two algae resemble those of Heterochlamydomonas rather than most other chlorococcalean algae that have equal length flagella, basal bodies in the V-shape arrangement, and clockwise absolute orientation. It is proposed that these algae with unequal flagella and parallel basal bodies have a shared common ancestry within the green algae.  相似文献   

17.
Tetramitus exhibits independent ameboid and flagellate stages of remarkable morphological dichotomy. Transformation of the ameba involves the formation of four kinetosomes and their flagella. The arrangement of these kinetosomes and associated whorls of microtubules extending under the pellicle establishes the asymmetric flagellate form. While no recognizable kinetosomal precursors have been seen in amebae, and there is no suggestion of self-replication in dividing flagellates, developmental stages of kinetosomes have been identified. These are occasionally seen in association with the nucleus or with dense bodies which lie either inside of or close to the proximal end of the prokinetosome. Outgrowth of flagella involves formation of an axoneme and a membrane. From the distal tip of the kinetosome microtubules grow into a short bud, which soon forms an expanded balloon containing a reticulum of finely beaded filaments. The free ends of the microtubules appear unraveled; they are seen first as single elements, then as doublets, and finally are arranged into a cylinder. Growth in length is accompanied by a reduction in the diameter of the balloon. The concept that the formation of the kinetic apparatus might involve a nuclear contribution, followed by a spontaneous assembly of microtubules, is suggested.  相似文献   

18.
Ecologically successful algae that colonize natural and artificial substrates in the marine environment have distinct strategies for opportunistic dispersal and settlement. The objective of this research was to visualize molecular architecture of zoospores from Enteromorpha (=Ulva) flexuosa (Wulfen) J. Agardh and Ulva fasciata Delile that coexist but alternate in dominance on an intertidal bench. Multiple fluorescent lectins were used to stabilize and probe for diverse zoospore glycoconjugates (GC) that could be involved in cell and substrate interactions. Results from epifluorescence microscopy showed distinct cellular and extracellular polymeric substance (EPS) domains of GC relative to settlement morphologies. Glycoconjugates were similar for both species with (1) α‐d mannose and/or glucose moieties localized on flagella, the anterior domes and anterior regions, the plasma membranes, and EPS; (2) α‐fucose localized on flagella and anterior regions; (3) N or α,ß‐N acetylglucosamine localized on flagella, the anterior regions, and EPS; and (4) varied N‐acetylgalactosamine and/or galactose moieties localized on each domain for both species excluding the plasma membranes. Some differences in lectin binding were observed for each species at the flagella, the anterior domes, and the plasma membranes. Glycoconjugate distributions shifted with morphological changes that followed initial adhesion. TEM of E. flexuosa zoospore stages following carbohydrate‐stabilizing fixations and gold‐conjugated lectin probes resolved GC with α‐d mannose and/or glucose, and/or N‐acetylglucosamine at the plasma membrane, ER and diverse vesicles of the anterior pole, EPS, and discontinuous regions or knobs associated with flagellar surfaces. The distinct distribution and diversity of zoospore GC may be central to recognition and attachment on diverse substrata by these algae.  相似文献   

19.
ABSTRACT. Freeze-fracture techniques reveal differences in fine structure between the anterior three flagella of Tritrichomonas foetus and its recurrent flagellum. The anterior flagella have rosettes of 9–12 intramembranous particles on both the P and E faces. The recurrent flagellum lacks rosettes but has ribbon-like arrays of particles along the length of the flagellum, which may be involved in the flagellum's attachment to the cell body. This flagellum is attached to the membrane of the cell body along a distinct groove that contains few discernible particles. Some large intramembranous particles are visible on the P face of the cell body membrane at the point where the flagellum emerges from the cell body. The randomly distributed particles on the P and E faces of the plasma membrane have a particle density of 919/μm2 and 468/μm2 respectively, and there are areas on both faces that are devoid of particles. Freeze-fracture techniques also reveal numerous fenestrations in the membrane of the Golgi complex and about 24 pores per μm2 in the nuclear. membrane.  相似文献   

20.
The polyene antibiotic, filipin, was used as a probe for the detection of sterols in the freeze-fractured plasma membrane and the flagellar membranes of the pathogenic protozoa, Tritrichomonas foetus. A homogeneous distribution of filipin-sterol complexes was seen throughout the plasma membrane, and the membrane of the three anterior and the one recurrent flagella. No or very few filipin-sterol complexes were observed in some specialized regions such as the base of the flagella (necklace), the portion of the recurrent flagellum, and that part of the cell body to which the flagellum was attached. The density of filipin-sterol complexes varied from one cell to the other. In some cells, about 205 complexes/μm2 were seen. A larger number of filipin-sterol complexes were observed on both faces of the membrane of cytoplasmic structures, probably corresponding to vacuoles. No complexes were seen in the nuclear membrane and in the membrane of the endoplasmic reticulum. Very few or no complexes were observed in the membrane of the hydrogenosomes. Treatment of living cells with filipin induced aggregation of filipin-sterol complexes at some points of the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号