首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
S Kochanek  D Renz    W Doerfler 《Nucleic acids research》1993,21(25):5843-5845
DNase I binds in the minor groove of DNA and is used as an enzymatic tool to investigate the interaction of proteins with DNA. Here we show that the major groove located 5-methyldeoxycytidine can enhance or inhibit the cleavage rates of DNA by DNase I. This effect may be caused in part by changes in DNA structure affecting the accessibility of the minor groove of DNA to DNase I.  相似文献   

3.
The 5-methyl group of thymidine residues protrudes into the major groove of double helical DNA. The structural influence of this exocyclic substituent has been examined using a PCR-made 160 bp fragment in which thymidine residues were replaced with uridine residues. We show that the dT-->dU substitution and the consequent deletion of the methyl group affects the cleavage of DNA by deoxyribonuclease I and micrococcal nuclease. Analysis of the DNase I cleavage sites, in terms of di and trinucleotides, indicates that homopolymeric tracts of d(AT) become significantly more susceptible to DNase I cleavage when uridine is substituted for thymidine residues. The results indicate that removal of the thymidine methyl groups from the major groove at AT tracts induces structural perturbations that transmit into the opposite minor groove, where they can be detected by endonuclease probing. In contrast, DNase I footprinting experiments with different mono and bis-intercalating drugs reveal that dT-->dU substitution does not markedly affect sequence-specific drug-DNA recognition in the minor or major groove of the double helix. The consequences of demethylation of thymidine residues are discussed in terms of changes in the minor groove width connected to variations in the flexibility of DNA and the intrinsic curvature associated with AT tracts. The study identifies the methyl group of thymine as an important molecular determinant controlling the width of the minor groove and/or the flexibility of the DNA.  相似文献   

4.
5.
Bovine pancreatic DNase I shows a strong preference for double-stranded substrates and cleaves DNA with strongly varying cutting rates suggesting that the enzyme recognises sequence-dependent structural variations of the DNA double helix. The complicated cleavage pattern indicates that several local as well as global helix parameters influences the cutting frequency of DNase I at a given bond. The high resolution crystal structures of two DNase I-DNA complexes showed that the enzyme binds tightly in the minor groove, and to the sugar-phosphate backbones of both strands, and thereby induces a widening of the minor groove and a bending towards the major grooves. In agreement with biochemical data this suggests that flexibility and minor groove geometry are major parameters determining the cutting rate of DNase I. Experimental observations showing that the sequence environmental of a dinucleotide step strongly affects its cleavage efficiency can be rationalized by that fact that six base pair are in contact with the enzyme. Mutational analysis based on the structural results has identified critical residues for DNA binding and cleavage and has lead to a proposal for the catalytic mechanism.  相似文献   

6.
For the most part metazoan genomes are highly methylated and harbor only small regions with low or absent methylation. In contrast, partially methylated domains (PMDs), recently discovered in a variety of cell lines and tissues, do not fit this paradigm as they show partial methylation for large portions (20%–40%) of the genome. While in PMDs methylation levels are reduced on average, we found that at single CpG resolution, they show extensive variability along the genome outside of CpG islands and DNase I hypersensitive sites (DHS). Methylation levels range from 0% to 100% in a roughly uniform fashion with only little similarity between neighboring CpGs. A comparison of various PMD-containing methylomes showed that these seemingly disordered states of methylation are strongly conserved across cell types for virtually every PMD. Comparative sequence analysis suggests that DNA sequence is a major determinant of these methylation states. This is further substantiated by a purely sequence based model which can predict 31% (R2) of the variation in methylation. The model revealed CpG density as the main driving feature promoting methylation, opposite to what has been shown for CpG islands, followed by various dinucleotides immediately flanking the CpG and a minor contribution from sequence preferences reflecting nucleosome positioning. Taken together we provide a reinterpretation for the nucleotide-specific methylation levels observed in PMDs, demonstrate their conservation across tissues and suggest that they are mainly determined by specific DNA sequence features.  相似文献   

7.
We present titrations of the human δβ-globin gene region with DNA minor groove binders netropsin, bisnetropsin, distamycin, chromomycin and four bis-quaternary ammonium compounds in the presence of calf thymus topoisomerase II and DNase I. With increasing ligand concentration, stimulation and inhibition of enzyme activity were detected and quantitatively evaluated. Additionally we show a second type of stimulation, the appearance of strong new topoisomerase II cleavage sites at high ligand concentrations. The specific binding sites of the minor groove binders of the DNA sequence and their microscopic binding constants were determined from DNase I footprints. A binding mechanism for minor groove binders is proposed in order to explain these results especially when ligand concentration is increased. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
A Yonezawa  J Kuwahara  N Fujii  Y Sugiura 《Biochemistry》1992,31(11):2998-3004
In view of the cationic amphipathic structure of tachyplesin I and antiparallel beta-sheet as a general DNA binding motif, DNA binding of the antimicrobial peptide has been examined. Several footprinting-like techniques using DNase I protection, dimethyl sulfate protection, and bleomycin- (BLM-) induced DNA cleavage were applied in this study. Some distinct footprints with DNase I are detected, and also the sequence-specific cleavage mode of the BLM-Fe(II) complex clearly is altered in the presence of tachyplesin I. In addition, methylation of the N-7 residue of guanine situated in the DNA major groove is not entirely inhibited (or activated) by tachyplesin I. The results suggest that tachyplesin I interacts with the minor groove of DNA duplex. Disappearance of the footprints by dithiothreitol-treated tachyplesin I and Ala-tachyplesin strongly suggests a significant contribution of secondary structure containing an antiparallel beta-sheet to the DNA binding of tachyplesin I. This is the first report on DNA interaction with a small peptide which contains a unique antiparallel beta-sheet structure. The mechanism for antimicrobial action of tachyplesin I has also been inferred.  相似文献   

9.
Here we report the methylation status of the chicken ovalbumin promoter. Genomic DNA of oviduct from immature chickens and laying hens was analyzed through bisulfite genomic sequencing. In the ovalbumin control locus up to the 6 kb upstream region, CpG sites were methylated in immature chickens, except for several sites, and almost all CpGs residing in DNase I hypersensitive sites I, II, and III, but not IV, were selectively unmethylated in ovalbumin expressing chickens. Chromatin immunoprecipitation assays showed that the ovalbumin control region was associated with acetylated histone H3 but not with dimethylated histone H3 at Lys 27. These results demonstrate that DNA demethylation was restricted to short DNA regions of DNase I hypersensitive sites, especially to those which participated in estrogen-responsiveness, even when cells expressed extremely high levels of ovalbumin and these sites were associated with acetylated histones.  相似文献   

10.
Here we report the methylation status of the chicken ovalbumin promoter. Genomic DNA of oviduct from immature chickens and laying hens was analyzed through bisulfite genomic sequencing. In the ovalbumin control locus up to the 6 kb upstream region, CpG sites were methylated in immature chickens, except for several sites, and almost all CpGs residing in DNase I hypersensitive sites I, II, and III, but not IV, were selectively unmethylated in ovalbumin expressing chickens. Chromatin immunoprecipitation assays showed that the ovalbumin control region was associated with acetylated histone H3 but not with dimethylated histone H3 at Lys 27. These results demonstrate that DNA demethylation was restricted to short DNA regions of DNase I hypersensitive sites, especially to those which participated in estrogen-responsiveness, even when cells expressed extremely high levels of ovalbumin and these sites were associated with acetylated histones.  相似文献   

11.
K R Fox 《Nucleic acids research》1992,20(24):6487-6493
The self complementary DNA dodecamers d(CGCGAATTCGCG), d(CGCGTTAACGCG), d(CGCGTATACGCG), d(CGCGATATCGCG), d(CGCAAATTTGCG), d(CGCTTTAAAGCG), d(CGCGGATCCGCG) and d(CGCGGTACCGCG) have been cloned into the Smal site of plasmid pUC19. Radiolabelled polylinker fragments containing these inserts have been digested with nucleases and chemical agents, probing the structure of the central AT base pairs. The sequences AATT and AAATTT are relatively resistant to digestion by DNase I, micrococcal nuclease and hydroxyl radicals, consistent with the suggestion that they possess a narrow minor groove. Nuclease digestion of TTAA is much more even, and comparable to that at mixed sequence DNA. TpA steps in ATAT, TATA and GTAC are cut less well by DNAse I than in TTAA. DNasel cleavage of surrounding bases, especially CpG is strongly influenced by the nature of the central sequence.  相似文献   

12.
13.
The conformation of the DNA helix is supposed to be a critical element in site-specific recognition by ligands both large and small. Groove width is one important measure of the conformation which varies with the local nucleotide composition, perhaps because of the presence of a purine 2-amino group on G.C base pairs. We have probed DNA with G-->inosine (I) and/or A-->diaminopurine (DAP) substitutions to see whether the location of the purine 2-amino group can indeed affect the minor groove width. At acid pH, the reactivity towards uranyl nitrate is modulated in substituted DNA quite differently from natural DNA, consistent with a marked narrowing of the minor groove at sites of G-->I substitution and widening at sites of A-->DAP replacement. The latter exerts the dominant effect. The expected changes in conformation are equally evident in the patterns of susceptibility to DNase I cleavage, but not to hydroxyl radical attack. Nuclease cleavage is maximal in normal and substituted DNA at regions of inferred moderate groove width which are generally little affected by the nucleotide substitutions. Consistent with models of sequence-dependent cutting by DNase I we find that the presence of a purine 2-amino group on the base pair three places upstream of the cutting site has a profound influence on the rate of reaction.  相似文献   

14.
Uranyl mediated photocleavage of double stranded DNA is proposed as a general probing for DNA helix conformation in terms of minor groove width/electronegative potential. Specifically, it is found that A/T-tracts known to constitute strong distamycin binding sites are preferentially photocleaved by uranyl in a way indicating strongest uranyl binding at the center of the minor groove of the AT-region. The A-tracts of kinetoplast DNA show the highest reactivity at the 3'-end of the tract--as opposed to cleavage by EDTA/Fell--in accordance with the minor groove being more narrow at this end. Finally, uranyl photocleavage of the internal control region (ICR) of the 5S-RNA gene yields a cleavage modulation pattern fully compatible with that obtained by DNase I which also--in a more complex way--senses DNA minor groove width.  相似文献   

15.
Cytosine residues at CpG dinucleotides can be methylated by endogenous methyltransferases in mammalian cells. The resulting 5-methylcytosine base may undergo spontaneous deamination to form thymine causing G/C to A/T transition mutations. Methylated CpGs also can form preferential targets for environmental mutagens and carcinogens. The Big Blue® transgenic mouse has been used to investigate tissue and organ specificity of mutations and to deduce mutational mechanisms in a mammal in vivo. The transgenic mouse contains approximately 40 concatenated lambda-like shuttle vectors, each of which contains one copy of an Escherichia coli lacI gene as a mutational target. lacI mutations in lambda transgenic mice are characterized by a high frequency of spontaneous mutations targeted to CpG dinucleotides suggesting an important contribution from methylation-mediated events. To study the methylation status of CpGs in the lacI gene, we have mapped the distribution of 5-methylcytosines along the DNA-binding domain and flanking sequences of the lacI gene of transgenic mice. We analyzed genomic DNA from various tissues including thymus, liver, testis, and DNA derived from two thymic lymphomas. The mouse genomic DNAs and methylated and unmethylated control DNAs were chemically cleaved, then the positions of 5-methylcytosines were mapped by ligation-mediated PCR which can be used to distinguish methylated from unmethylated cytosines. Our data show that most CpG dinucleotides in the DNA binding domain of the lacI gene are methylated to a high extent (>98%) in all tissues tested; only a few sites are partially (70–90%) methylated. We conclude that tissue-specific methylation is unlikely to contribute significantly to tissue-specific mutational patterns, and that the occurrence of common mutation sites at specific CpGs in the lacI gene is not related to selective methylation of only these sequences. The data confirm previous suggestions that the high frequency of CpG mutations in lacI transgenes is related to the presence of 5-methylcytosine bases.  相似文献   

16.
Deoxyribonuclease I (DNase I) footprinting methodology was used to analyze oligodeoxyribonucleotide duplexes containing unique and single, site-specific adducts of trinuclear bifunctional platinum compound, [{trans-PtCl(NH3)2}2 mu-trans-Pt(NH3)2{H2N(CH2)6NH2}2]4+ (BBR3464) and the results were compared with DNase I footprints of some adducts of conventional mononuclear cis-diamminedichloroplatinum(II) (cisplatin). These examinations took into account the fact that the local conformation of the DNA at the sites of the contacts of DNase I with DNA phosphates, such as the minor groove width and depth, sequence-dependent flexibility and bendability of the double helix, are important determinants of sequence-dependent binding to and cutting of DNA by DNase I. It was shown that various conformational perturbations induced by platinum binding in the major groove translated into the minor groove, allowing their detection by DNase I probing. The results also demonstrate the very high sensitivity of DNase I to DNA conformational alterations induced by platinum complexes so that the platinum adducts which induce specific local conformational alterations in DNA are differently recognized by DNase I.  相似文献   

17.
Abstract

CpG methylation determines a variety of biological functions of DNA. The methylation signal is interpreted by proteins containing a methyl-CpG binding domain (MBDs). Based on the NMR structure of MBD1 complexed with methylated DNA we analysed the recognition mode by means of molecular dynamics simulations.

As the protein is monomeric and recognizes a symmetrically methylated CpG step, the recognition mode is an asymmetric one. We find that the two methyl groups do not contribute equally to the binding energy. One methyl group is associated with the major part of the binding energy and the other one nearly does not contribute at all. The contribution of the two cytosine methyl groups to binding energy is calculated to be ?3.6 kcal/mol. This implies a contribution of greater than two orders of magnitude to the binding constant. The conserved amino acid Asp32 is known to be essential for DNA binding by MBD1, but so far no direct contact with DNA has been observed. We detected a direct DNA base contact to Asp32. This could be the main reason for the importance of this amino acid. MBD contacts DNA exclusively in the major groove, the minor groove is reserved for histone contacts. We found a deformation of the minor groove shape due to complexation by MBD1, which indicates an information transfer between the major and the minor groove.  相似文献   

18.
DNA methylation of CpGs located in two types of repetitive elements—LINE1 (L1) and Alu—is used to assess “global” changes in DNA methylation in studies of human disease and environmental exposure. L1 and Alu contribute close to 30% of all base pairs in the human genome and transposition of repetitive elements is repressed through DNA methylation. Few studies have investigated whether repetitive element DNA methylation is associated with DNA methylation at other genomic regions, or the biological and technical factors that influence potential associations. Here, we assess L1 and Alu DNA methylation by Pyrosequencing of consensus sequences and using subsets of probes included in the Illumina Infinium HumanMethylation27 BeadChip array. We show that evolutionary age and assay method affect the assessment of repetitive element DNA methylation. Additionally, we compare Pyrosequencing results for repetitive elements to average DNA methylation of CpG islands, as assessed by array probes classified into strong, weak and non-islands. We demonstrate that each of these dispersed sequences exhibits different patterns of tissue-specific DNA methylation. Correlation of DNA methylation suggests an association between L1 and weak CpG island DNA methylation in some of the tissues examined. We caution, however, that L1, Alu and CpG island DNA methylation are distinct measures of dispersed DNA methylation and one should not be used in lieu of another. Analysis of DNA methylation data is complex and assays may be influenced by environment and pathology in different or complementary ways.  相似文献   

19.
CpG methylation determines a variety of biological functions of DNA. The methylation signal is interpreted by proteins containing a methyl-CpG binding domain (MBDs). Based on the NMR structure of MBD1 complexed with methylated DNA we analysed the recognition mode by means of molecular dynamics simulations. As the protein is monomeric and recognizes a symmetrically methylated CpG step, the recognition mode is an asymmetric one. We find that the two methyl groups do not contribute equally to the binding energy. One methyl group is associated with the major part of the binding energy and the other one nearly does not contribute at all. The contribution of the two cytosine methyl groups to binding energy is calculated to be -3.6 kcal/mol. This implies a contribution of greater than two orders of magnitude to the binding constant. The conserved amino acid Asp32 is known to be essential for DNA binding by MBD1, but so far no direct contact with DNA has been observed. We detected a direct DNA base contact to Asp32. This could be the main reason for the importance of this amino acid. MBD contacts DNA exclusively in the major groove, the minor groove is reserved for histone contacts. We found a deformation of the minor groove shape due to complexation by MBD1, which indicates an information transfer between the major and the minor groove.  相似文献   

20.
X-ray structure of the DNase I-d(GGTATACC)2 complex at 2.3 A resolution.   总被引:4,自引:0,他引:4  
The crystal structure of a complex between DNase I and the self-complementary octamer duplex d(GGTATACC)2 has been solved using the molecular replacement method and refined to a crystallographic R-factor of 18.8% for all data between 6.0 and 2.3 A resolution. In contrast to the structure of the DNase I-d(GCGATCGC)2 complex solved previously, the DNA remains uncleaved in the crystal. The general architecture of the two complexes is highly similar. DNase I binds in the minor groove of a right-handed DNA duplex, and to the phosphate backbones on either side over five base-pairs, resulting in a widening of the minor groove and a concurrent bend of the DNA away from the bound enzyme. There is very little change in the structure of the DNase I on binding the substrate. Many other features of the interaction are conserved in the two complexes, in particular the stacking of a deoxyribose group of the DNA onto the side-chain of a tyrosine residue (Y76), which affects the DNA conformation and the binding of an arginine side-chain in the minor groove. Although the structures of the DNA molecules appear at first sight rather similar, detailed analysis reveals some differences that may explain the relative resistance of the d(GGTATACC)2 duplex to cleavage by DNase I: whilst some backbone parameters are characteristic of a B-conformation, the spatial orientation of the base-pairs in the d(GGTATACC)2 duplex is close to that generally observed in A-DNA. These results further support the hypothesis that the minor-groove width and depth and the intrinsic flexibility of DNA are the most important parameters affecting the interaction. The disposition of residues around the scissile phosphate group suggests that two histidine residues, H134 and H252, are involved in catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号