首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A new method is presented for the synthesis of oligonucleotides containing 15N-enriched 5-fluorocytosine (FC). Due to the reduced pK of FC, the amino protons of an unpaired FC residue may be observed at lower values of solution pH. The labeled FC residue has been placed as a template base at a model DNA replication fork. The amino protons of the FC residue have been identified in isotope-edited NMR spectra. Data is presented for a template FC residue unpaired, paired with guanine, and mispaired with adenine. These studies demonstrate the utility of labeled FC in examining unusual DNA structures.  相似文献   

2.
Summary Two-dimensional (2D)1H NMR experiments using deuterium labeling have been carried out to investigate the solution structure of ribonuclease HI (RNase HI) fromEscherichia coli (E. coli), which consists of 155 amino acids. To simplify the1H NMR spectra, two fully deuterated enzymes bearing several prototed amino acids were prepared from an RNase HI overproducing strain ofE. coli grown in an almost fully deuterated medium. One enzyme was selectively labeled by protonated His, He. Val. and Leu. The other was labeled by only protonated His and Ile. The 2D1H NMR spectra of these deuterated R Nase H1 proteins, selectively labeled with protonated amino acids, were much more simple than those of the normally protonated enzyme. The simplified spectra allowed unambiguous assignments of the resonance peaks and connectivities in COSY and NOESY for the side-chain protons. The spin-lattice relaxation times of the side-chain protons of the buried His residue of the deuterated enzyme became remarkably longer than that of the protonated enzyme. In contrast, the relaxation times of the side-chain protons of exposed His residues remained essentially unchanged.  相似文献   

3.
Abstract

The amino protons of 15N-labeled deoxyoligonucleotides were studied as possible structural probes for NMR investigations of the interaction between DNA and regulatory proteins. To apply this strategy, 6-15NH2-2′ -deoxyadenoslne, 4-15NH -2′-deoxycytidine and 2-15NH -2′-deoxyguanosine were chemically synthesized. The labeled nucleosides were introduced into distinct positions of oligodeoxy-nucleotides by large-scale DNA synthesis. The behaviour of the 15N-coupled cytidine amino protons in a 18 base pair (bp) lac operator sequence were investigated using H-15N INDOR spectroscopy .  相似文献   

4.
Isotope labeling by residue type (LBRT) has long been an important tool for resonance assignments at the limit where other approaches, such as triple-resonance experiments or NOESY methods do not succeed in yielding complete assignments. While LBRT has become less important for small proteins it can be the method of last resort for completing assignments of the most challenging protein systems. Here we present an approach where LBRT is achieved by adding protonated 14N amino acids that are 13C labeled at the carbonyl position to a medium for uniform deuteration and 15N labeling. This has three important benefits over conventional 15N LBRT in a deuterated back ground: (1) selective TROSY-HNCO cross peaks can be observed with high sensitivity for amino-acid pairs connected by the labeling, and the amide proton of the residue following the 13C labeled amino acid is very sharp since its alpha position is deuterated, (2) the 13C label at the carbonyl position is less prone to scrambling than the 15N at the α-amino position, and (3) the peaks for the 1-13C labeled amino acids can be identified easily from the large intensity reduction in the 1H-15N TROSY-HSQC spectrum for some residues that do not significantly scramble nitrogens, such as alanine and tyrosine. This approach is cost effective and has been successfully applied to proteins larger than 40 kDa. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
BackgroundThe structure-function relationships for large protein complexes at the atomic level would be comprehensively understood, if hitherto unexplored aromatic ring NMR signals became accessible in addition to the currently used backbone amide and side-chain methyl signals.MethodsThe 82 kDa malate synthase G (MSG) proteins, selectively labeled with Trp and Phe bearing relaxation optimized isotope-labeled rings, were prepared to investigate the optimal conditions for obtaining the aromatic TROSY spectra.ResultsThe MSG proteins, selectively labeled with either [δ1132]-SAIL Trp or ζ-SAIL Phe, provided well-separated, narrow TROSY signals for the 12 Trp and 19 Phe residues in MSG. The signals were assigned sequence-specifically, using the set of single amino acid substitution mutants. The site-specific substitution of each Phe with Tyr or Leu induced substantial chemical shifts for the other aromatic ring signals, allowing us to identify the aromatic clusters in MSG, which were comparable to the structural domains proposed previously.ConclusionsWe demonstrated that the aromatic ring 13CH pairs without directly bonded 13C and adjacent 1H spins provide surprisingly narrow TROSY signals, if the rings are surrounded by fully deuterated amino acids. The observed signals can be readily assigned by either the single amino acid substitution or the NOEs between the aromatic and methyl protons, if the methyl assignments are available.General significanceThe method described here should be generally applicable for difficult targets, such as proteins in lipid bilayers or possibly in living cells, thus providing unprecedented opportunities to use these new probes in structural biology.  相似文献   

6.
Abstract

An examination of the 1H NMR assignments and exchange properties of the amino resonances of the self-complementary tetramer, d(CGCG) was undertaken with regard to buffer effects, transfer of saturation from the water resonance and temperature dependence of amino 1H line shape and chemical shift. The lack of buffer effect on visible exchangeable proton resonances is evidence for the stringent requirement for nucleo-base protonation at pH values below neutrality, which is greatly reduced in the helical state. For this reason, sharp resonances are observed for both Watson-Crick and non-Watson-Crick cytosine amino protons for base-paired regions. Considerations of monomeric exchange mechanisms for the cytosine and guanine amino protons formed the basis for successful assignment and isolation of their resonances in the helical state by presaturation of the water resonance at selected pH values. Preirradiation of the water resonance at pH <6 would isolate the guanine amino 1H resonances of any self-complementary oligonucleotide, to exploit its high sensitivity as a useful proble of helix ? coil premelting.  相似文献   

7.
The use of the Nuclear Overhauser Effect to determine backbone and side-chain conformations of oligopeptides is discussed. The distance between the Hα proton of a given residue and the amide proton of the following residue depends only on the dihedral angle ψ. A calibration curve is given for the determination of ψ from the Nuclear Overhauser Effect involving these protons. In amino acids with branched side chains, e.g., threonine, isoleucine, and valine, the Nuclear Overhauser Effect involving the Hβ proton and the amide proton in either the same or the following residue gives limited information about both χ1 and either or ψ. The Nuclear Overhauser Effect involving the Hα and Hγ protons in leucine gives information about χ1 and χ2.  相似文献   

8.
The recent introduction of the SEA-TROSY experiment (Pellecchia et al. (2001) J. Am. Chem. Soc., 123, 4633–4634) can alleviate the problem of resonance overlap in 15N/2H labeled proteins. This method selectively observes solvent exposed amide protons with a SEA element. However, SEA-TROSY spectra may be contaminated with exchange-relayed NOE contributions from fast exchanging hydroxyl or amine protons and longitudinal relaxation contributions. Furthermore, for non-deuterated proteins or protein-ligand complexes, SEA-TROSY spectra may contain NOE contributions from aliphatic protons. In this communication, a modified version of the SEA element, a Clean SEA element, is introduced to eliminate these artifacts.  相似文献   

9.
B N Rao  C A Bush 《Biopolymers》1987,26(8):1227-1244
The antifreeze glycopeptide (AFGP-8) from polar cod, B. saida, is a 14-amino acid polypeptide having alternating glycotripeptide sequences of Ala-[Gal(β1 → 3)GalNAc(β1 → O)]-Thr-Pro and Ala-[Gal(β1 → 3)GalNAc(β1 → O)]-Thr-Ala, with alanyl residues at amino and carboxy terminals. Conformational studies of AFGP-8 have been carried out by 1H-nmr and empirical energy calculations to investigate the difference in its antifreeze behavior from that of the more active high-molecular weight AFGP 1-4 of P. borchgrevinki. The 1H-nmr spectra, including the resonances of the exchangeable amide protons, were assigned by two-dimensional correlated spectroscopy (COSY), one-dimensional difference decoupling, and nuclear Overhauser effect (NOE) measurements. For the four threonyl residues, the amide proton coupling constants and the small coupling constants between Hα and Hβ indicate similar conformations, despite significant chemical shift differences. The strong NOE between the α protons and the amide protons of the residue following together with large temperature coefficients of chemical shifts, indicate an extended conformation not consisting of α-helix, turns or bends. Energy computations indicate several low-energy conformations consistent with the observed coupling constants for ?. Among these, a left-handed helical conformation with three repeating residues per turn has been proposed, which is in accordance with the observed NOE between the methyl group of the α-GalNAc and Ala Hβs. While the observed Overhauser effects in the threonyl side chain suggest a certain amount of conformational averaging, the effect involving the acetmido methyl of α-GalNAc and Hβs of Ala indicate that it as is a major conformer. In view of the close similarity between the conformations of AFGP-8 and the more active antifreeze polymer, AFGP 1-4, we propose that the difference in their activities is due to the length of the regular repeating structure with glycosylation at every third amino acid residue, and not due to any fundamental difference in their conformations.  相似文献   

10.
HIV-1 protease (PR) has been extensively studied due to its importance as a target in AIDS therapy. The enzyme can be obtained via expression of its cloned gene in an appropriate system, or via chemical synthesis. We required a reliable source of fluorine-labeled HIV-1 protease for NMR studies. As our attempts to incorporate a labeling step in overexpression experiments in E. coli failed, we turned to chemical synthesis. Herein is described the first chemical synthesis of an active, 99 amino acid residue HIV-1 encoded protease using Fmoc-chemistry on a total PEG-based resin (CM resin), and labeled with 19F at the Phe residue. Also reported here are NMR studies of the labeled synthetic protein with a synthetic dimerization inhibitor.  相似文献   

11.
Abstract

A synthetic half-operator DNA-duplex, d(GCTACTGTATGT), containing a portion of the proposed recognition sequence (CTGT) of serveral “SOS” genes, has been synthesized. The dodecamer has been characterized through 1H-NMR spectroscopy. Complete assignment of exchangeable hydrogen bonded imino protons has been acheived by applying 1D NOE techniques and an analysis of the temperature dependence of the chemical shifts. In order to determine the specific role of the CTGT consensus sequence in the overall recognition process, the oligonucleotide duplex has been titrated with the amino terminal DNA binding domain of the LexA repressor. The observation of substantial changes of 1H-NMR chemical shifts in the imino proton region upon interaction with the protein strongly suggests that the protein binds specifically to the operator DNA. The largest deviations of 1H-NMR chemical shifts upon protein binding have been observed for protons assigned to the CTGT segment, thus strongly suggesting a direct involvement of this sequence in the binding process. At high potassium chloride concentrations the 1H-NMR chemical shift deviations are reverted which is consistent with the known drop in the affinity constant of LexA for operator DNA at high salt concentrations.  相似文献   

12.
Abstract

Proton NMR line broadening methods were used to determine the rates of amino proton exchange for disordered 2′ - and 5′ - GMP dianions in aqueous solutions containing tetramethylammonium (TMA+) cations. Replacing TMA+ with Na+ does not substantially alter the exchange rates, provided that H-bonded, Na+-directed tetramer structures are absent. Activation enthalpies (kcal/mol) and entropies (eu) for 2′ - GMP are: ΔH# = 18.5 ± 1.3, ΔS# = 9.6 ± 4.2 for theTMA+ salt atpH 8.10, and ΔH# = 14.7 ± 2.6, ΔS# = -3.7 ± 8.0 for the Na+ salt at pH 8.11. Extrapolated values of pseudo first-order rate constants at 25° Care in the range of k = 1–10 sec?1. At suitable concentrations and temperatures, the Na+ salts of both 2′ - and 5′ - GMP formed stacked and unstacked tetramer units. Relative to the exchange kinetics observed for the disordered nucleotide, the exchange process in the tetramer units was catalyzed in half the amino protons and inhibited in the other half. The catalytic process (k < 103 sec?3) has been attributed to amino protons not involved in interbase H-bonding, where as the inhibited process (k > 10?1 sec?1) was assigned to those protons which do form such bonds. The structure-catalyzed process in both the stacked and unstacked tetramers was manifested by a loss of NMR amino proton intensity due to weighted time-averaging with the resonance for bulk water. A bridging water molecule between an amino proton and a phosphate on an adjacent nucleotide in the tetramer unit may provide a mechanistic pathway for the structure-catalyzed process.  相似文献   

13.
The conformations of angiotensin II and the antagonist [Sar1, Ile8]angiotensin II in dimethylsulfoxide have been examined by high resolution proton magnetic resonance spectroscopy at 400MHz. The chemical shifts for the aromatic protons of the phenylalanine residue in angiotensin II are consistent with shielding and restricted rotation for this side-chain. The chemical shifts for the histidine C2 and C4 protons in angiotensin II also indicate shielding, whereas these same protons in the antagonist [Sar1, Ile8]angiotensin II do not demonstrate this shielding influence. These findings suggest a stacking interaction for the histidine and phenylalanine side-chains in angiotensin II which is important for activating angiotensin receptors.  相似文献   

14.
David R. Koes  John K. Vries 《Proteins》2017,85(10):1944-1956
NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq, and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the 1H, 15N, and 13Ca atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in nonbonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of nonbonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields.  相似文献   

15.
Studies on monomeric cytosine were undertaken to establish a kinetic foundation for the progressive melting of DNA by the mutagen, methylmercury. The reversible displacement of protons by methylmercury at the amino group of cytosine is slow on the 1H-NMR time scale at 100 and 360 MHz. Exchange coupled resonances are produced, not only for all protons of the free- and mercurated amino species, but for the rotational isomers of the latter. These spectra provide for assignment of all exchange-coupled resonances, selection of resonances providing mercuration rates from line shape and measurement of pH-dependent reciprocal lifetimes of the free-amino species (≤6 s?1 at pH 3 and 15 s?1 at pH 4). Evidence is presented for the existence of an amino-mercurated species of cytidine thus far not reported (formation constant, 104.3).  相似文献   

16.
The high resolution 1H and 13C nuclear magnetic resonance (NMR) spectra of galactosylceramides containing n-fatty acids and α-hydroxy fatty acids were recorded in dimethylsulfoxide solution with and without addition of D2O. From the coupling constants of the sugar ring protons, a 4C1 conformation can be deduced. In contrast to the conformation in aqueous solution, the C6 hydroxymethylene group is freely rotating around the C6C5 bond. In the ceramide residue all signals produced by protons linked to carbons bearing electronegative substituents could be attributed. The large difference in coupling constants of the methylene protons of C1′ to the C2′ methine proton of the sphingosine indicates a restricted rotation around the C1′C2′ bond. The assignments of the hydroxy and amino protons follow from the decoupling of the corresponding methine protons.  相似文献   

17.
Summary A triple resonance HNC-TOCSY-CH experiment is described for correlating the guanosine imino proton and H8 resonances in 13C-/15N-labeled RNAs. Sequential assignment of the exchangeable imino protons in Watson-Crick base pairs is generally made independently of the assignment of the nonexchangeable base protons. This H(NC)-TOCSY-(C)H experiment makes it possible to unambiguously link the assignment of the guanosine H8 resonances with sequential assignment of the guanosine imino proton resonances. 2D H(NC)-TOCSY-(C)H spectra are presented for two isotopically labeled RNAs, a 30-nucleotide lead-dependent ribozyme known as the leadzyme, and a 48-nucleotide hammerhead ribozyme-RNA substrate complex. The results obtained on these two RNAs demonstrate that this HNC-TOCSY-CH experiment is an important tool for resonance assignment of isotopically labeled RNAs.  相似文献   

18.
The conformational proclivity of leucine and methionine enkephalinamides in deuterated dimethyl sulphoxide has been investigated using proton magnetic resonance at 500 MHz. The resonances from the spin system of the various amino acid residues have been assigned from the 2-dimensional correlated spectroscopy spectra. The temperature variation of the amide proton shifts indicates that none of the amide proton is intramolecularly hydrogen-bonded or solvent-shielded. The analysis of vicinal coupling constants,3JHN.C 2H,along with temperature coefficients and the absence of characteristic nuclear Overhauser effect cross peaks between the NH protons reveal that there is no evidence of the chain folding in these molecules. However, the observation of nuclear Overhauser effect cross peaks between the NH and the CαH of the preceding residue indicates preference for extended backbone conformation with preferred side chain orientations particularly of Tyr and Phe in both [Leu5]- and [Met5]-enkephalinamides.  相似文献   

19.
Abstract

Salicylic acid (SA) treatment reduces the damaging action by water deficit on growth and accelerates a restoration of growth processes. The aim of the present work was to study the physiological and biochemical alteration induced by SA in lemongrass plants under stress conditions. Therefore, a pot culture experiment was conducted to test whether SA application at concentration of (10?5 M) through foliar spray could protect lemongrass (Cymbopogon flexuosus Steud. Wats.) varieties (Neema and Krishna), subjected to drought stress on the basis of growth parameters and biochemical constituents, proline metabolism and quality attributes including citral content. The treatments were as follows: (i) 100% FC + 0 SA; (ii) 75% FC + 0 SA; (iii) 50% FC + 0 SA; (iv) 75% FC + 10?5 M SA; and (v) 50% FC + 10?5 M SA. The growth parameters were significantly reduced under the applied water stress levels; however, foliar application of salicylic acid (10?5 M) improved the growth parameters in stress-affected plants. The plants under water stress exhibited a significant increase in activities of nitrate reductase and carbonic anhydrase, and electrolyte leakage, proline content, free amino acid and in PEP carboxylase activity. Content and yield of essential oil also significantly decreased in plants that faced water stress. Thus, it was concluded that variety Neema is the more tolerant variety as compared to Krishna on the basis of content and oil yield and well adapted to drought stress conditions.  相似文献   

20.
The NADH:ubiquinone oxidoreductase couples the electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. It contains a 110 Å long helix running parallel to the membrane part of the complex. Deletion of the helix resulted in a reduced H+/e? stoichiometry indicating its direct involvement in proton translocation. Here, we show that the mutation of the conserved amino acid D563L, which is part of the horizontal helix of the Escherichia coli complex I, leads to a reduced H+/e? stoichiometry. It is discussed that this residue is involved in transferring protons to the membranous proton translocation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号