首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bacillus subtilis alpha-amylase structural gene (amyE) lacking its own signal peptide coding sequence was joined to the end of the Escherichia coli alkaline phosphatase (phoA) signal peptide coding sequence by using the technique of oligonucleotide-directed site-specific deletion. On induction of the phoA promoter, the B. subtilis alpha-amylase was expressed and almost all the activity was found in the periplasmic space of E. coli. The sequence of the five amino-terminal amino acids of the secreted polypeptide was Glu-Thr-Ala-Asn-Lys-, and thus the fused protein was correctly processed by the E. coli signal peptidase at the end of the phoA signal peptide.  相似文献   

2.
Synthesis of OmpA protein of Escherichia coli K12 in Bacillus subtilis   总被引:5,自引:0,他引:5  
We have inserted a C-terminally truncated gene of the major outer membrane protein OmpA of Escherichia coli downstream from the promoter and signal sequence of the secretory alpha-amylase of Bacillus amyloliquefaciens in a secretion vector of Bacillus subtilis. B. subtilis transformed with the hybrid plasmid synthesized a protein that was immunologically identified as OmpA. All the protein was present in the particulate fraction. The size of the protein compared to the peptide synthesized in vitro from the same template indicated that the alpha-amylase derived signal peptide was not removed; this was verified by N-terminal amino acid sequence determination. The lack of cleavage suggests that there was little or no translocation of OmpA protein across the cytoplasmic membrane. This is an unexpected difference compared with periplasmic proteins, which were both secreted and processed when fused to the same signal peptide. A requirement of a specific component for the export of outer membrane proteins is suggested.  相似文献   

3.
To study the effect of inserted peptides on the secretion and processing of exported proteins in Bacillus subtilis and Escherichia coli, pBR322-derived DNA fragments coding for small peptides were inserted between the DNA coding for the 31 amino acid B. subtilis alpha-amylase signal peptide and that coding for the mature part of the extracellular thermostable alpha-amylase of B. stearothermophilus. Most of the inserted peptides (21 to 65 amino acids) decreased the production of the enzyme in B. subtilis and E. coli, the effect of each peptide being similar in the two strains. In contrast, with one peptide (a 21 amino acid sequence encoded by the extra DNA in pTUBE638), the production of alpha-amylase was enhanced more than 1.7-fold in B. subtilis in comparison with that of the parent strain. The molecular masses of the thermostable alpha-amylases in the periplasm of the E. coli transformants varied for each peptide insert, whereas those in the culture supernatants of the B. subtilis transformants had molecular masses similar to that of the mature enzyme. Based on the NH2-terminal amino acid sequence of the hybrid protein from pTUBE638, it was shown that in E. coli, the NH2-terminally extended thermostable alpha-amylase was translocated and remained in the periplasm after the 31 amino acid signal sequence was removed. In the case of B. subtilis, after the removal of a 34-amino acid signal sequence, the hybrid protein was secreted and processed to the mature form.  相似文献   

4.
根据已知α-淀粉酶编码基因保守区核苷酸序列,通过PCR和反向PCR技术克隆出Bacillus licheniformisCICIM B0204α-淀粉酶编码基因amyL全长序列及其上下游序列。B.licheniformisCICIM B0204amyL由1539bp组成,其上游180bp为启动子序列,下游160bp为终止子序列;成熟肽由512个氨基酸残基组成,氨基端的29个氨基酸残基为α-淀粉酶的信号肽。通过基因及其氨基酸序列比对发现,amyL及其编码产物与芽孢杆菌来源的α-淀粉酶具有高度相似性。将amyL的结构基因在PT7介导下于大肠杆菌中诱导表达,获得具有α-淀粉酶活性的表达产物。将amyL的启动子序列和信号肽序列与B.licheniformisCICIM B2004的β-甘露聚糖酶结构基因进行读框内重组,在大肠杆菌中获得了β-甘露聚糖酶的分泌表达,重组大肠杆菌表达295U/mL的β-甘露聚糖酶酶活。  相似文献   

5.
6.
The nucleotide sequence of the alpha-amylase gene (amyA) from Clostridium thermosulfurogenes EM1 cloned in Escherichia coli was determined. The reading frame of the gene consisted of 2,121 bp. Comparison of the DNA sequence data with the amino acid sequence of the N terminus of the purified secreted protein of C. thermosulfurogenes EM1 suggested that the alpha-amylase is translated from mRNA as a secretory precursor with a signal peptide of 27 amino acid residues. The deduced amino acid sequence of the mature alpha-amylase contained 679 residues, resulting in a protein with a molecular mass of 75,112 Da. In E. coli the enzyme was transported to the periplasmic space and the signal peptide was cleaved at exactly the same site between two alanine residues. Comparison of the amino acid sequence of the C. thermosulfurogenes EM1 alpha-amylase with those from other bacterial and eucaryotic alpha-amylases showed several homologous regions, probably in the enzymatically functioning regions. The tentative Ca(2+)-binding site (consensus region I) of this Ca(2+)-independent enzyme showed only limited homology. The deduced amino acid sequence of a second obviously truncated open reading frame showed significant homology to the malG gene product of E. coli. Comparison of the alpha-amylase gene region of C. thermosulfurogenes EM1 (DSM3896) with the beta-amylase gene region of C. thermosulfurogenes (ATCC 33743) indicated that both genes have been exchanged with each other at identical sites in the chromosomes of these strains.  相似文献   

7.
The inability of Escherichia coli to secrete proteins in growth medium is one of the major drawbacks in its use in genetic engineering. A synthetic gene, homologous to the one coding for the kil peptide of pColE1, was made and cloned under the control of the lac promoter, in order to obtain the inducible secretion of homologous or heterologous proteins by E. coli. The efficiency of this synthetic gene to promote secretion was assayed by analysing the production and secretion of two proteins, the R-TEM1 beta-lactamase, and the alpha-amylase from Bacillus licheniformis. This latter protein was expressed in E. coli from its gene either on the same plasmid as the kil gene or on a different plasmid. The primary effect of the induction of the kil gene is the overproduction of the secreted proteins. When expressed at a high level, the kil gene promotes the overproduction of all periplasmic proteins and the total secretion in the culture medium of both the beta-lactamase or the alpha-amylase. This secretion is semi-selective for most periplasmic proteins are not secreted. The kil peptide induces the secretion of homologous or heterologous proteins in two steps, first acting on the cytoplasmic membrane, then permeabilizing the outer membrane. This system, which is now being assayed at the fermentor scale, is the first example of using a synthetic gene to engineer a new property into a bacterial strain.  相似文献   

8.
Bacillus spp. are Gram-positive bacteria that secrete a large number of extracellular proteins of industrial relevance. In this report, three Bacillus extracellular hydrolytic enzymes, i.e., alpha-amylase, mannanase and chitinase, were cloned and over-expressed in Gram-negative Escherichia coli. We found that both the native signal peptides and that of E. coli outer membrane protein, OmpA, could be used to direct the secretion of the recombinant enzymes. The expressed enzymes were observed as clearing zones on agar plates or in zymograms. Determination of enzyme activities in different cell compartments suggested that the ability of the enzymes to be secreted out into the culture medium depends on the time of induction, the type of the signal peptides and the molecular mass of the enzymes. After overnight induction, most of the enzyme activities (85-96%) could be harvested from the culture supernatant. Our results suggest that various signal peptides of Bacillus spp. can be recognized by the E. coli secretion machinery. It seems possible that other enzymes with similar signal peptide could be secreted equally well in E. coli expression systems. Thus, our finding should be able to apply for cloning and extracellular production of other Bacillus hydrolytic enzymes as well as other proteins.  相似文献   

9.
The nucleotide sequence of the alpha-amylase gene (amyA) from Clostridium thermosulfurogenes EM1 cloned in Escherichia coli was determined. The reading frame of the gene consisted of 2,121 bp. Comparison of the DNA sequence data with the amino acid sequence of the N terminus of the purified secreted protein of C. thermosulfurogenes EM1 suggested that the alpha-amylase is translated from mRNA as a secretory precursor with a signal peptide of 27 amino acid residues. The deduced amino acid sequence of the mature alpha-amylase contained 679 residues, resulting in a protein with a molecular mass of 75,112 Da. In E. coli the enzyme was transported to the periplasmic space and the signal peptide was cleaved at exactly the same site between two alanine residues. Comparison of the amino acid sequence of the C. thermosulfurogenes EM1 alpha-amylase with those from other bacterial and eucaryotic alpha-amylases showed several homologous regions, probably in the enzymatically functioning regions. The tentative Ca(2+)-binding site (consensus region I) of this Ca(2+)-independent enzyme showed only limited homology. The deduced amino acid sequence of a second obviously truncated open reading frame showed significant homology to the malG gene product of E. coli. Comparison of the alpha-amylase gene region of C. thermosulfurogenes EM1 (DSM3896) with the beta-amylase gene region of C. thermosulfurogenes (ATCC 33743) indicated that both genes have been exchanged with each other at identical sites in the chromosomes of these strains.  相似文献   

10.
The gene encoding the hyperthermophilic extracellular alpha-amylase from Pyrococcus furiosus was cloned by activity screening in Escherichia coli. The gene encoded a single 460-residue polypeptide chain. The polypeptide contained a 26-residue signal peptide, indicating that this Pyrococcus alpha-amylase was an extracellular enzyme. Unlike the P. furiosus intracellular alpha-amylase, this extracellular enzyme showed 45 to 56% similarity and 20 to 35% identity to other amylolytic enzymes of the alpha-amylase family and contained the four consensus regions characteristic of that enzyme family. The recombinant protein was a homodimer with a molecular weight of 100,000, as estimated by gel filtration. Both the dimer and monomer retained starch-degrading activity after extensive denaturation and migration on sodium dodecyl sulfate-polyacrylamide gels. The P. furiosus alpha-amylase was a liquefying enzyme with a specific activity of 3,900 U mg-1 at 98 degrees C. It was optimally active at 100 degrees C and pH 5.5 to 6.0 and did not require Ca2+ for activity or thermostability. With a half-life of 13 h at 98 degrees C, the P. furiosus enzyme was significantly more thermostable than the commercially available Bacillus licheniformis alpha-amylase (Taka-therm).  相似文献   

11.
Signal peptides that direct protein export in Bacillus subtilis are overall more hydrophobic than signal peptides in Escherichia coli. To study the importance of signal peptide hydrophobicity for protein export in both organisms, the alpha-amylase AmyQ was provided with leucine-rich (high hydrophobicity) or alanine-rich (low hydrophobicity) signal peptides. AmyQ export was most efficiently directed by the authentic signal peptide, both in E. coli and B. subtilis. The leucine-rich signal peptide directed AmyQ export less efficiently in both organisms, as judged from pulse-chase labelling experiments. Remarkably, the alanine-rich signal peptide was functional in protein translocation only in E. coli. Cross-linking of in vitro synthesized ribosome nascent chain complexes (RNCs) to cytoplasmic proteins showed that signal peptide hydrophobicity is a critical determinant for signal peptide binding to the Ffh component of the signal recognition particle (SRP) or to trigger factor, not only in E. coli, but also in B. subtilis. The results show that B. subtilis SRP can discriminate between signal peptides with relatively high hydrophobicities. Interestingly, the B. subtilis protein export machinery seems to be poorly adapted to handle alanine-rich signal peptides with a low hydrophobicity. Thus, signal peptide hydrophobicity appears to be more critical for the efficiency of early stages in protein export in B. subtilis than in E. coli.  相似文献   

12.
The gene coding for the heat-stable and pH-stable alpha-amylase of Bacillus licheniformis 584 (ATCC 27811) was cloned in Escherichia coli and the nucleotide sequence of a DNA fragment of 1,948 base pairs containing the entire amylase gene was determined. As inferred from the DNA sequence, the B. licheniformis alpha-amylase had a signal peptide of 29 amino acid residues and the mature enzyme comprised 483 amino acid residues, giving a molecular weight of 55,200. The amino acid sequence of B. licheniformis alpha-amylase showed 65.4% and 80.3% homology with those of heat-stable Bacillus stearothermophilus alpha-amylase and relatively heat-unstable Bacillus amyloliquefaciens alpha-amylase, respectively. Nevertheless, several regions of the alpha-amylases appeared to be clearly distinct from one another when their hydropathy profiles were compared.  相似文献   

13.
Previously we reported [Deane, S. M., Maharaj, R., Robb, F. T. & Woods, D. R. (1987) Journal of General Microbiology 133, 2295-2302] that the production of a Vibrio alginolyticus SDS-resistant alkaline serine protease (Pro A) cloned in Escherichia coli was characterized by a 12 h delay between the synthesis of an inactive precursor and secretion of active Pro A. Replacement of the V. alginolyticus promoter region by the alpha-amylase promoter region from Bacillus amyloliquefaciens resulted in the simultaneous synthesis and secretion of Pro A in E. coli. The V. alginolyticus pro A gene cloned on a shuttle vector did not produce active Pro A in Bacillus subtilis. Although Pro A has a typical Gram-positive signal sequence, it was not functional in B. subtilis. Replacement of the Pro A signal sequence with the alpha-amylase signal sequence resulted in the production of active Pro A in B. subtilis.  相似文献   

14.
A newly isolated strain, 38C-2-1, produced alkaline and thermotolerant alpha-amylases and was identified as Bacillus halodurans. The enzymes were purified to homogeneity and named alpha-amylase I and II. These showed molecular masses of 105 and 75 kDa respectively and showed maximal activities at 50-60 degrees C and pH 10-11, and 42 and 38% relative activities at 30 degrees C. These results indicate that the enzymes are thermotolerant. The enzyme activity was not inhibited by a surfactant or a bleaching reagent used in detergents. A gene encoding alpha-amylase I was cloned and named amyI. Production of AmyI with a signal peptide repressed the growth of an Escherichia coli transformant. When enzyme production was induced by the addition of isopropyl beta-D(-)-thiogalactopyranoside in the late exponential growth phase, the highest enzyme yield was observed. It was 45-fold that of the parent strain 38C-2-1.  相似文献   

15.
Subtilisin DFE is a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4. The promoter and signal peptide-coding sequence of alpha-amylase gene from B. amyloliquefaciens was cloned and fused to the sequence coding for pro-peptide and mature peptide of subtilisin DFE. This hybrid gene was inserted into the Escherichia coli/Bacillus subtilis shuttle plasmid vector, pSUGV4. Recombinant subtilisin DFE gene was successfully expressed in B. subtilis WB600 with a fibrinolytic activity of 200 urokinase units ml(-1).  相似文献   

16.
The raw potato-starch-digesting alpha-amylase gene of Bacillus circulans F-2 was cloned for the first time in Escherichia coli C600, using plasmid pYEJ001. The recombinant plasmid, named pYKA3, has a 5.4 kb insert from a chromosome of the donor bacterium. Subcloning of this amylase gene gave plasmid pHA300 which carried 3.15 kb of the inserted DNA. The transformed bacterium, E. coli C600 (pYKA3), produced the amylase in the periplasmic space, whereas it is secreted outside the cell in the donor bacterium. The cloned raw-starch-digesting alpha-amylase has a molecular weight of 93,000 on SDS-PAGE, and its action pattern was absolutely the same as that of the potent raw-starch-digestible amylase produced by B. circulans F-2. The periplasmic amylase produced by the transformed E. coli (pHA300) could digest raw starch granules such as potato, corn and barley raw starch granules, indicating that the raw-starch-digesting amylase is active in E. coli. Furthermore, this amylase crossreacted with the rabbit antiserum raised against the raw potato-digesting alpha-amylase of B. circulans F-2. From these results it was concluded that the cloned amylase is the same amylase protein as B. circulans F-2 amylase, which has a potent raw-starch digestibility. Thus, this paper is to our knowledge the first describing the molecular cloning of raw-starch-digesting alpha-amylase from Bacillus species and its successful expression in E. coli.  相似文献   

17.
Thermotoga maritima MSB8 has a chromosomal alpha-amylase gene, designated amyA, that is predicted to code for a 553-amino-acid preprotein with significant amino acid sequence similarity to the 4-alpha-glucanotransferase of the same strain and to alpha-amylase primary structures of other organisms. Upstream of the amylase gene, a divergently oriented open reading frame which can be translated into a polypeptide with similarity to the maltose-binding protein MalE of Escherichia coli was found. The T. maritima alpha-amylase appears to be the first known example of a lipoprotein alpha-amylase. This is in agreement with observations pointing to the membrane localization of this enzyme in T. maritima. Following the signal peptide, a 25-residue putative linker sequence rich in serine and threonine was found. The amylase gene was expressed in E. coli, and the recombinant enzyme was purified and characterized. The molecular mass of the recombinant enzyme was estimated at 61 kDa by denaturing gel electrophoresis (63 kDa by gel permeation chromatography). In a 10-min assay at the optimum pH of 7.0, the optimum temperature of amylase activity was 85 to 90 degrees C. Like the alpha-amylases of many other organisms, the activity of the T. maritima alpha-amylase was dependent on Ca2+. The final products of hydrolysis of soluble starch and amylose were mainly glucose and maltose. The extraordinarily high specific activity of the T. maritima alpha-amylase (about 5.6 x 10(3) U/mg of protein at 80 degrees C, pH 7, with amylose as the substrate) together with its extreme thermal stability makes this enzyme an interesting candidate for biotechnological applications in the starch processing industry.  相似文献   

18.
Bacillus subtilis and Bacillus brevis 47-5, carrying the Bacillus stearothermophilus alpha-amylase gene on pUB110 (pBAM101), synthesized the same alpha-amylase as the donor strain as determined by the enzyme's thermal stability and NH2-terminal amino acid sequence. Regardless of the host, the 34-amino acid signal peptide of the enzyme was processed at exactly the same site between two alanine residues. B. brevis 47-5(pBAM101) secreted the enzyme most efficiently of the hosts examined, 100, 15, and 5 times more than B. stearothermophilus, Escherichia coli HB101(pH1301), and B. subtilis 1A289(pBAM101), respectively. The efficient secretion of the enzyme in B. brevis 47-5(pBAM101) was suggested to be due to the unique properties of the cell wall of this organism.  相似文献   

19.
Protein export in Escherichia coli is mediated by translocase, a multisubunit membrane protein complex with SecA as the peripheral subunit and the SecY, SecE, and SecG proteins as the integral membrane domain. In the gram-positive bacterium Bacillus subtilis, SecA, SecY, and SecE have been identified through genetic analysis. Sequence comparison of the Bacillus chromosome identified a potential homologue of SecG, termed YvaL. A chromosomal disruption of the yvaL gene results in mild cold sensitivity and causes a beta-lactamase secretion defect. The cold sensitivity is exacerbated by overexpression of the secretory protein alpha-amylase, whereas growth and beta-lactamase secretion are restored by coexpression of yvaL or the E. coli secG gene. These results indicate that the yvaL gene codes for a protein that is functionally homologous to SecG.  相似文献   

20.
Replacement of the regulatory and secretory signals of the alpha-amylase gene (AMY) from Bacillus amylolique-faciens with the complete yeast pheromone alpha-factor prepro region (MF alpha 1p) resulted in increased levels of extracellular alpha-amylase production in Saccharomyces cerevisiae. However, the removal of the (Glu-Ala)2 peptide from the MF alpha 1 spacer region (Lys-Arg-Glu-Ala-Glu-Ala) yielded decreased levels of extracellular alpha-amylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号