首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have obtained and modeled the electrical characteristics of the plasma membrane of Chara internodal cells: intact, without turgor and perfused with and without ATP. The cells were voltage and space-clamped to obtain the I/V (current-voltage) and G/V (conductance-voltage) profiles of the cell membrane. The intact cells yielded similar I/V characteristics with resting p.d.s of −221 ± 12 mV (cytoplasmic clamp, 5 cells) and −217 ± 12 mV (vacuolar clamp, 5 cells). The cut unperfused cells were depolarized at −169 ± 12 mV (7 cells) compared to the vacuole-clamped intact cells. The cells perfused with ATP fell into three groups: hyperpolarized group with resting p.d. −175 ± 12 mV (4 cells) and I/V profile similar to the intact and cut unperfused cells; depolarized group with resting p.d. of −107 ± 12 mV (6 cells) and I/V profiles close to linear; and excited cells with profiles showing a negative conductance region and resting p.d. at −59 ± 12 mV (5 cells). The cells perfused with medium containing no ATP showed upwardly concave I/V characteristics and resting p.d. at −81 ± 12 mV (6 cells). The I/V curves were modeled employing the ``Two-state' model for the H+ pump (Hansen et al., 1981). The inward and outward rectifiers were fitted to exponential functions and combined with a linear background current. The excitation state in perfused cells was modeled by including an inward current, i excit, with p.d.-dependence described by a combination of hyperbolic tangent functions. An inward current, i no-ATP, with a smaller amplitude, but very similar p.d.-dependence was also included in the simulation of the I/V curves from cells without ATP. This approach avoided I/V curve subtraction. The modeling of the total I/V and G/V characteristics provided more information about the parameters of the ``Two-state' pump model, as well as more quantitative understanding of the interaction of the major transport systems in the plasmalemma in generation of the resting potential under a range of circumstances. ATP had little effect on nonpump currents except the excitation current; depolarization profoundly affected the pump characteristics. Received: 23 January/Revised: 10 October 1995  相似文献   

2.
3.
Voltage-activated Ca2+ currents, in zona fasciculata cells isolated from calf adrenal gland, were characterized using perforated patch-clamp recording. In control solution (Ca2+: 2.5 mm) a transient inward current was followed, in 40% of the cells, by a sustained one. In 20 mm Ba2+, 61% of the cells displayed an inward current, which consisted of transient and sustained components. The other cells produced either a sustained or a transient inward current. These different patterns were dependent upon time in culture. Current-voltage relationships show that both the transient and sustained components activated, peaked and reversed at similar potentials: −40, 0 and +60 mV, respectively. The two components, fully inactivated at −10 mV, were separated by double-pulse protocols from different holding potentials where the transient component could be inactivated or reactivated. The decaying phase of the sustained component was fitted by a double exponential (time constants: 1.9 and 20 sec at +10 mV); that of the transient component was fitted by a single exponential (time constant: 19 msec at +10 mV). Steady-state activation and inactivation curves of the two components were superimposed. Their half activation and inactivation potentials were similar, about −15 and −34 mV, respectively. The sustained component was larger in Ba2+ than in Sr2+ and Ca2+. Ni2+ (20 μm) selectively blocked the transient component while Cd2+ (10 μm) selectively blocked the sustained one. (±)Bay K 8644 (0.5 μm) increased the sustained component and nitrendipine (0.5–1 μm) blocked it selectively. The sustained component was inhibited by calciseptine (1 μm). Both components were unaffected by ω-conotoxin GVIA and MVIIC (0.5 μm). These results show that two distinct populations of Ca2+ channels coexist in this cell type. Although the voltage dependence of their activation and inactivation are comparable, these two components of the inward current are similar to T- and L-type currents described in other cells. Received: 12 July 1999/Revised: 5 October 1999  相似文献   

4.
Nonexcitable cells do not express voltage-activated Na+ channels. Instead, selective Na+ influx is accomplished through GTP-activated Na+ channels, the best characterized of which are found in renal epithelia. We have described recently a GTP-dependent Na+ current in rat basophilic leukemia (RBL) cells that differs from previous reported Na+ channels in several ways including selectivity, pharmacology and mechanism of activation. In this report, we have investigated the biophysical properties of the RBL cell Na+ current using the whole cell patch-clamp technique. Following activation by 250–500 μm GTPγS, hyperpolarizing steps to a fixed potential (−100 mV) from a holding potential of 0 mV evoked transient inward Na+ currents that declined during the pulse. If the holding potential was made more positive (range 0 to +100 mV), then the amplitude of the transient inward current evoked by the hyperpolarization increased steeply, demonstrating that the conductance of the channels was voltage-dependent. Using a paired pulse protocol (500 msec pulses to −100 mV from a holding potential of 0 mV), it was found that the peak amplitude of the current during the second pulse became larger as the interpulse potential became more positive. In addition, increasing the time at which the cells were held at positive potentials also resulted in larger currents, indicating a time-dependent conductance change. With symmetrical Na+ solutions, outward currents were recorded at positive potentials and these demonstrated both a time- and voltage-dependent increase in conductance. The results show that a nonvoltage activated Na+ channel in an electrically nonexcitable cell undergoes prominent voltage-dependent transitions. Possible mechanisms underlying this voltage dependency are discussed. Received: 12 March 1998/Revised: 5 June 1998  相似文献   

5.
Mechanosensitive channels appear ubiquitous but they have not been well characterized in cells directly responding to mechanical stimuli. Here, we identified tension-sensitive channel currents on the cell body of Chlamydomonas, a protist that shows a marked behavioral response to mechanical stimulation. When a negative pressure was applied to the cell body with a patch clamp electrode, single-ion-channel currents of 2.4 pA in amplitude were observed. The currents were inhibited by 10 μm gadolinium, a general blocker of mechanosensitive channels. The currents were most likely due to Ca2+ influxes because the current was absent in Ca2+-free solutions and the reversal potential was 98 mV positive to the resting potential. The distribution of channel-open times conformed to a single exponential component and that of closed times to two exponential components. This mechanosensitive channel was similar to the one found in the flagella in the following respects: both channels were inhibited by Gd3+ at 10 μm but not at 1 μm; both passed Ca2+ and Ba2+; their kinetic parameters for channel opening were similar. These observations raise the possibility that identical mechanosensitive channels may function both in the behavioral control through the mechanoreception by the flagella and in the regulation of cellular physiology in response to mechanical perturbation on the cell body. Received: 13 May 1998/Revised: 2 September 1998  相似文献   

6.
Polyamine-induced inward rectification of cyclic nucleotide-gated channels was studied in inside-out patches from rat olfactory neurons. The polyamines, spermine, spermidine and putrescine, induced an `instantaneous' voltage-dependent inhibition with K d values at 0 mV of 39, 121 μm and 2.7 mm, respectively. Hill coefficients for inhibition were significantly < 1, suggesting an allosteric inhibitory mechanism. The Woodhull model for voltage-dependent block predicted that all 3 polyamines bound to a site 1/3 of the electrical distance through the membrane from the internal side. Instantaneous inhibition was relieved at positive potentials, implying significant polyamine permeation. Spermine also induced exponential current relaxations to a `steady-state' impermeant level. This inhibition was also mediated by a binding site 1/3 of the electrical distance through the pore, but with a K d of 2.6 mm. Spermine inhibition was explained by postulating two spermine binding sites at a similar depth. Occupation of the first site occurs rapidly and with high affinity, but once a spermine molecule has bound, it inhibits spermine occupation of the second binding site via electrostatic repulsion. This repulsion is overcome at higher membrane potentials, but results in a lower apparent binding affinity for the second spermine molecule. The on-rate constant for the second spermine binding saturated at a low rate (∼200 sec−1 at +120 mV), providing further evidence for an allosteric mechanism. Polyamine-induced inward rectification was significant at physiological concentrations. Received: 17 February 1999/Revised: 27 April 1999  相似文献   

7.
Using the planar lipid bilayer technique we demonstrate that the lipodepsipeptide antibiotic, syringomycin E, forms voltage-sensitive ion channels of weak anion selectivity. The formation of channels in bilayers made from dioleoylglycerophosphatidylserine doped with syringomycin E at one side (1–40 μg/ml) was greatly affected by cis-positive voltage. A change of voltage from a positive to a negative value resulted in (i) an abrupt increase in the single channel conductance (the rate of increase was voltage dependent) simultaneous with (ii) a closing of these channels and an exponential decrease in macroscopic conductance over time. The strong voltage dependence of multichannel steady state conductance, the single channel conductance, the rate of opening of channels at positive voltages and closing them at negative voltages, as well as the observed abrupt increase of single channel conductance after voltage sign reversal suggest that the change of the transmembrane field induces a significant rearrangement of syringomycin E channels, including a change in the spacing of charged groups that function as voltage sensors. The conductance induced by syringomycin E increased with the sixth power of syringomycin E concentration suggesting that at least six monomers are required for channel formation. Received: 3 April 1995/Revised: 24 August 1995  相似文献   

8.
Twin-electrode voltage-clamp techniques were used to study the effect of calcium and calcium channel blockers on the transient outward current in isolated F76 and D1 neurones of Helix aspersa subesophageal ganglia in vitro (soma only preparation with no cell processes). On lowering extracellular Ca2+ concentration from 10 to 2 mm or removing extracellular calcium from the bathing medium, the threshold for this current shifted in a negative direction by 11.5 and 20 mV, respectively. On the other hand, increasing the extracellular Ca2+ concentration from 10 to 20 and to 40 mm shifted the steady-state inactivation curves in positive directions on the voltage axis by 7 and 15 mV, respectively. Upon application of calcium channel blockers, Co2+, La3+, Ni2+ and Cd2+, transient potassium current amplitude was reduced in a voltage-dependent manner, being more effective at voltages close to the threshold. The current was elicited even at a holding potential of −34 mV. The specific calcium channel blockers, amiloride and nifedipine did not shift the activation and steady-state inactivation curves and did not reduce the transient outward current amplitude. It was concluded that the transient outward current is not dependent on intracellular Ca2+ but that it is modulated by Ca2+ and di- and trivalent ions extracellularly. The effects of these ions are very unlikely to be due to a surface charge effect because the addition of La3+ (200 μm) completely reverses the shift in a hyperpolarizing direction when the extracellular Ca2+ concentration was reduced from 10 to 1 mm and additionally shifts the kinetics further still in a depolarizing direction. The responses seen here are consistent with a specific effect of di- and trivalent ions on the transient outward current channels leading to a modification of gating. Received: 30 March 1999/Revised: 5 October 1999  相似文献   

9.
The giant marine alga Valonia utricularis is a classical model system for studying the electrophysiology and water relations of plant cells by using microelectrode and pressure probe techniques. The recent finding that protoplasts can be prepared from the giant ``mother cells' (Wang, J., Sukhorukov, V.L., Djuzenova, C.S., Zimmermann, U., Müller, T., Fuhr, G., 1997, Protoplasma 196:123–134) allowed the use of the patch-clamp technique to examine ion channel activity in the plasmalemma of this species. Outside-out and cell-attached experiments displayed three different types of voltage-gated Cl channels (VAC1, VAC2, VAC3, Valonia Anion Channel 1,2,3), one voltage-gated K+ channel (VKC1, Valonia K + Channel 1) as well as stretch-activated channels. In symmetrical 150 mm Cl media, VAC1 was most frequently observed and had a single channel conductance of 36 ± 7 pS (n= 4) in the outside-out and 33 ± 5 pS (n= 10) in the cell-attached configuration. The reversal potential of the corresponding current-voltage curves was within 0 ± 4 mV (n= 4, outside-out) and 9 ± 7 mV (n= 10, cell-attached) close to the Nernst potential of Cl and shifted towards more negative values when cell-attached experiments were performed in asymmetrical 50:150 mm Cl media (bath/pipette; E Cl− −20 ± 7 mV (n= 4); Nernst potential −28 mV). Consistent with a selectivity for Cl, VAC1 was inhibited by 100 μM DIDS (4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid). VAC1 was activated by a hyperpolarization of the patch. Boltzmann fits of the channel activity under symmetrical 150 mm Cl conditions yielded a midpoint potential of −12 ± 5 mV (n= 4, outside-out) and −3 ± 6 mV (n= 9, cell-attached) and corresponding apparent minimum gating charges of 15 ± 3 (n= 4) and 18 ± 5 (n= 9). The midpoint potential shifted to more negative values in the presence of a Cl gradient. VAC2 was activated by voltages more negative than E Cl− and was always observed together with VAC1, but less frequently. It showed a ``flickering' gating. The single channel conductance was 99 ± 10 pS (n= 6). VAC3 was activated by membrane depolarization and frequently exhibited several subconductance states. The single channel conductance of the main conductance state was 36 ± 5 pS (n= 5). VKC1 was also activated by positive clamped voltages. Up to three conductance states occurred whereby the main conductance state had a single channel conductance of 124 ± 27 pS (n= 6). In the light of the above results it seems to be likely that VAC1 contributes mainly to the Cl conductance of the plasmalemma of the turgescent ``mother cells' and that this channel (as well as VAC2) can operate in the physiological membrane potential range. The physiological significance of VAC3 and VKC1 is unknown, but may be related (as the stretch-activated channels) to processes involved in turgor regulation. Received: 24 June 1999/Revised: 2 September 1999  相似文献   

10.
cDNA encoding the full-length hKv1.3 lymphocyte channel and a C-terminal truncated (Δ459-523) form that lacks the putative PKA Ser468 phosphorylation site were stably transfected in human embryonic kidney (HEK) 293 cells. Immunostaining of the transfected cells revealed a distribution at the plasma membrane that was uniform in the case of the full-length channel whereas clustering was observed in the case of the truncated channel. Some staining within the cell cytoplasm was found in both instances, suggesting an active process of biosynthesis. Analyses of the K+ current by the patch-clamp technique in the whole cell configuration showed that depolarizing steps to 40 mV from a holding potential (HP) of −80 mV elicited an outward current of 2 to 10 nA. The current threshold was positive to −40 mV and the current amplitude increased in a voltage-dependent manner. The parameters of activation were −5.7 and −9.9 mV (slope factor) and −35 mV (half activation, V 0.5) in the case of the full-length and truncated channels, respectively. The characteristics of the inactivation were 14.2 and 24.6 mV (slope factor) and −17.3 and −39.0 mV (V 0.5) for the full-length and truncated channels, respectively. The activation time constant of the full-length channel for potentials ranging from −30 to 40 mV decreased from 18 to 12 msec whereas the inactivation time constant decreased from 6600 msec at −30 mV to 1800 msec at 40 mV. The unit current amplitude measured in cells bathing in 140 mm KCl was 1.3 ± 0.1 pA at 40 mV, the unit conductance, 34.5 pS and the zero current voltage, 0 mV. Both forms of the channels were inhibited by TEA, 4-AP, Ni2+ and charybdotoxin. In contrast to the native (Jurkat) lymphocyte Kv1.3 channel that is fully inhibited by PKA and PKC, the addition of TPA resulted in 34.6 ± 7.3% and 38.7 ± 9.4% inhibition of the full-length and the truncated channels, respectively. 8-BrcAMP induced a 39.4 ± 5.4% inhibition of the full-length channel but had no effect (8.6 ± 8.3%) on the truncated channel. Cell dialysis with alkaline phosphatase had no effects, suggesting that the decreased sensitivity of the transfected channels to PKA and PKC was not due to an already phosphorylated channel. Patch extract experiments suggested that the hKv1.3 channel was partially sensitive to PKA and PKC. Cotransfecting the Kvβ1.2 subunit resulted in a decrease in the value of the time constant of inactivation of the full-length channel but did not modify its sensitivity to PKA and PKC. The cotransfected Kvβ2 subunit had no effects. Our results indicate that the hKv1.3 lymphocyte channel retains its electrophysiological characteristics when transfected in the Kvβ-negative HEK 293 cell line but its sensitivity to modulation by PKA and PKC is significantly reduced. Received: 18 June 1997/Revised: 7 October 1997  相似文献   

11.
These experiments were conducted to determine the membrane K+ currents and channels in human urinary bladder (HTB-9) carcinoma cells in vitro. K+ currents and channel activity were assessed by the whole-cell voltage clamp and by either inside-out or outside-out patch clamp recordings. Cell depolarization resulted in activation of a Ca2+-dependent outward K+ current, 0.57 ± 0.13 nS/pF at −70 mV holding potential and 3.10 ± 0.15 nS/pF at 30 mV holding potential. Corresponding patch clamp measurements demonstrated a Ca2+-activated, voltage-dependent K+ channel (KCa) of 214 ± 3.0 pS. Scorpion venom peptides, charybdotoxin (ChTx) and iberiotoxin (IbTx), inhibited both the activated current and the KCa activity. In addition, on-cell patch recordings demonstrated an inwardly rectifying K+ channel, 21 ± 1 pS at positive transmembrane potential (V m ) and 145 ± 13 pS at negative V m . Glibenclamide (50 μm), Ba2+ (1 mm) and quinine (100 μm) each inhibited the corresponding nonactivated, basal whole-cell current. Moreover, glibenclamide inhibited K+ channels in inside/out patches in a dose-dependent manner, and the IC50= 46 μm. The identity of this K+ channel with an ATP-sensitive K+ channel (KATP) was confirmed by its inhibition with ATP (2 mm) and by its activation with diazoxide (100 μm). We conclude that plasma membranes of HTB-9 cells contain the KCa and a lower conductance K+ channel with properties consistent with a sulfonylurea receptor-linked KATP. Received: 12 June 1997/Revised: 21 October 1997  相似文献   

12.
We observed intermediate conductance channels in approximately 20% of successful patch-clamp seals made on collecting tubules dissected from Ambystoma adapted to 50 mm potassium. These channels were rarely observed in collecting tubules taken from animals which were maintained in tap water. Potassium-adaptation either leads to an increase in the number of channels present or activates quiescent channels. In cell-attached patches the conductance averaged 30.3 ± 2.4 (9) pS. Since replacement of the chloride in the patch pipette with gluconate did not change the conductance, the channel carries cations, not anions. Notably, channel activity was observed at both positive and negative pipette voltages. When the pipette was voltage clamped at 0 mV or positive voltages, the current was directed inward, consistent with the movement of sodium into the cell. The pipette voltage at which the polarity of the current reversed (movement of potassium into the pipette) was −29.6 ± 6.5(9) mV. Open probability at 0 mV pipette voltage was 0.08 ± 0.03 and was unaffected when the apical membrane was exposed to either 2 × 10−6 or 2 × 10−5 m of amiloride. Exposure of the basolateral surface of the tubule to a saline containing 15 mm potassium caused a significant increase (P less than 0.001) in the open probability of these channels to 0.139 ± 0.002 without affecting the conductance of the apical channel. These data illustrate the presence of an intermediate conductance, poorly selective, amiloride-insensitive cation channel in native vertebrate collecting tubule. We postulate that, at least in amphibia, this channel may be used to secrete potassium. Received: 14 January 2000/Revised: 16 June 2000  相似文献   

13.
Voltage-clamp experiments were performed on single bovine adrenal fasciculata cells in short-term primary culture using either standard (broken membrane) or perforated whole-cell patch clamp recording. The membrane current measured with the perforated method was dominated by a very stable transient outward current. By contrast, the transient outward current recorded using the standard method was unstable. The reversal potential of the transient outward current varied linearly with the logarithm of [K+] e with a slope of 47 mV per decade. The onset of activation was sigmoidal and was fitted with a power function where n= 4. Time constants ranged from 1 to 4 msec with a maximum at −25 mV. The steady-state activation curve spanned the voltage range −50 to +80 mV without reaching a clear maximum. During a pulse, the current decayed in a biexponential manner. Time constants τ1 and τ2 were voltage-dependent and ranged from 50 to 200 msec respectively for a voltage step at +50 mV. The steady-state inactivation was dependent on the conditioning pulse duration. Using short conditioning pulses (1.2 sec), the curve which spanned the voltage range −40 to −20 mV, was 15 mV more positive than that obtained with longer conditioning pulses (60 sec). Time constants of this ``very slow inactivation' process (τvs) determined for voltage steps at −60 and −50 mV were 15 and 10 sec respectively. A ``facilitation process' of the peak current was observed when the duration or the amplitude of conditioning pulses were increased in the voltage range −100 to −50 mV. Recovery from inactivation followed a biexponential time course which seemed a mixture of both inactivation processes. In some experimental conditions, isolated cells were able to produce overshooting action potentials. These results are discussed in relation with the membrane electrogenesis of this cell type. Received: 14 November 1994/Revised: 24 October 1995  相似文献   

14.
The lipid bilayer technique is used to examine the biophysical properties of anion and cation channels frequently formed by platypus (Ornithorhynchus anatinus) venom (OaV). The OaV-formed anion channel in 250/50 mm KCl cis/trans has a maximum conductance of 857 ± 23 pS (n= 5) in 250/50 mm KCl cis/trans. The current-voltage relationship of this channel shows strong inward rectification. The channel activity undergoes time-dependent inactivation that can be removed by depolarizing voltage steps more positive than the reversal potential for chloride, E Cl , (+40 mV). The reversal potential of the OaV-formed slow current activity in 250/50 mm KCl cis/trans is close to the potassium equilibrium potential (E K ) of −40 mV. The conductance values for the slow channel are 22.5 ± 2.6 pS and 41.38 ± 4.2 pS in 250/50 and 750/50 mm cis/trans, respectively. The gating kinetics of the slow ion channels are voltage-dependent. The channel open probability (P o ) is between 0.1 and 0.8 at potentials between 0 and +140 mV. The channel frequency (F o ) increases with depolarizing voltages between 0 and +140 mV, whereas mean open time (T o ) and mean closed time (T c ) decrease. Ion substitution experiments of the cis solution show that the channel has conductance values of 21.47 ± 2.3 and 0.53 ± 0.1 pS in 250 mm KCl and choline Cl, respectively. The amplitude of the single channel current is dependent on [K+] cis and the current reversal potential (E rev ) responds to increases in [K+] cis by shifting to more negative voltages. The increase in current amplitude as a function of increasing [K+] cis can be best described by a third order polynomial fit. At +140 mV, the values of the maximal single channel conductance (γ max ) and the concentration for half maximal γ (K s ) are 38.6 pS and 380 mm and decline to 15.76 pS and 250 mm at 0 mV, respectively. The ion selectivity of the channel to K+, Na+, Cs+ and choline+ was determined in ion substitution experiments. The permeability values for P K+ :P Na+ :P Cs+ :P choline+ were 1:1:0.63:0.089, respectively. On the other hand, the activity of the slow channel was eliminated (Fig. 7B). The slow channel was reversibly inhibited by [TEA+] trans and the half-maximal inhibitory concentration (K i ) was ∼48 mm. Received: 26 April 1999/Revised: 19 July 1999  相似文献   

15.
Rodent lens connexin46 (rCx46) formed active voltage-dependent hemichannels when expressed in Xenopus oocytes. Time-dependent macroscopic currents were evoked upon depolarization. The observed two activation time constants were weakly voltage-dependent and in the order of hundreds of milliseconds and seconds, respectively. Occasionally, the macroscopic steady-state current and the corresponding current-voltage curve showed inactivation at high depolarizing voltages (>+50 mV). To account for the fast recovery from inactivation (<2 msec) favored by hyperpolarization, a four-state kinetic model (C 1 closed C 2 closed O open I inactivated ) is proposed. In the absence of inactivation, the macroscopic conductance decreased and inactivation became visible at voltages positive of +50 mV when the rCx46-expressing oocytes were treated with the protein-kinase-C-activators OAG or TPA, high external concentrations of Ca2+ or H+. However, the underlying mechanisms of OAG, H+ or Ca2+ action were different. While OAG did not alter the voltage-dependent activation of the rCx46-hemichannels, an increase in the external Ca2+ or H+ level shifted the voltage threshold for activation to more positive voltages. In contrast to Ca2+, protons were not effective in the physiological concentration range. We propose that under physiological conditions only external Ca2+ and intracellular PKC-dependent processes regulate rCx46 in the lens. Received: 30 March 1999/Revised: 18 September 1999  相似文献   

16.
Smooth muscle cells isolated from the secondary and tertiary branches of the rabbit mesenteric artery contain large Ca2+-dependent channels. In excised patches with symmetrical (140 mm) K+ solutions, these channels had an average slope conductance of 235 ± 3 pS, and reversed in direction at −6.1 ± 0.4 mV. The channel showed K+ selectivity and its open probability (P o ) was voltage-dependent. Iberiotoxin (50 nm) reversibly decreased P o , whereas tetraethylammonium (TEA, at 1 mm) reduced the unitary current amplitude. Apamin (200 nm) had no effect. The channel displayed sublevels around 1/3 and 1/2 of the mainstate level. The effect of [Ca2+] on P o was studied and data fitted to Boltzmann relationships. In 0.1, 0.3, 1.0 and 10 μm Ca2+, V 1/2 was 77.1 ± 5.3 (n= 18), 71.2 ± 4.8 (n= 16), 47.3 ± 10.1 (n= 11) and −14.9 ± 10.1 mV (n= 6), respectively. Values of k obtained in 1 and 10 μm [Ca2+] were significantly larger than that observed in 0.1 μm [Ca2+]. With 30 μm NS 1619 (a BKCa channel activator), V 1/2 values were shifted by 39 mV to the left (hyperpolarizing direction) and k values were not affected. TEA applied intracellularly, reduced the unitary current amplitude with a K d of 59 mm. In summary, BKCa channels show a particularly weak sensitivity to intracellular TEA and they also display large variation in V 1/2 and k. These findings suggest the possibility that different types (isoforms) of BKCa channels may exist in this vascular tissue. Received: 22 December 1997/Revised: 27 March 1998  相似文献   

17.
The underlying Boltzmann characteristics of motility-related gating currents of the outer hair cell (OHC) are predicted to generate distortion components in response to sinusoidal transmembrane voltages. We studied this distortion since it reflects the mechanical activity of the cell that may contribute to peripheral auditory system distortion. Distortion components in the OHC electrical response were analyzed using the whole-cell voltage clamp technique, under conditions where ionic conductances were blocked. Single or double-sinusoidal transmembrane voltage stimulation was delivered at various holding voltages, and distortion components of the current responses were detected by Fourier analysis. Current response magnitude and phase of each distortion component as a function of membrane potential were compared with characteristics of the voltage-dependent capacitance, obtained by voltage stair-step transient analysis or dual-frequency admittance analysis. The sum distortion was most prominent among the distortion components at all holding voltages. Notches in the sum (f1+f2), difference (f2−f1) and second harmonic (2f) components occur at the voltage where peak voltage-dependent capacitance resides (V pkCm ). Rapid phase reversals also occurred at V pkCm , but phase remained fairly stable at more depolarized and hyperpolarized potentials. Thus, it is possible to extract Boltzmann parameters of the motility-related charge movement from these distortion components. In fact, we have developed a technique to follow changes in the voltage dependence of OHC motility and charge movement by tracking the voltage at phase reversal of the f2−f1 product. When intracellular turgor pressure was changed, V pkCm and distortion notch voltages shifted in the same direction. These data have important implications for understanding cochlear nonlinearity, and more generally, indicate the usefulness of distortion analysis to study displacement currents. Received: 31 December 1998/Revised: 12 March 1999  相似文献   

18.
Xenopus oocytes were injected with total RNA from chicory leaf tissues and then examined by the voltage-clamp technique. A double-step voltage protocol was used, with an initial hyperpolarization step from the holding potential of −35 to −140 mV followed by a second depolarization step to +60 mV. Two different outward currents were observed, one noninactivating (I ni ), and one inactivating (I i ). Only the noninactivating outward current (I ni ) could be induced by depolarization from −35 to +60 mV. The mean amplitude of I ni was 2915 ± 848 nA (n= 11). This current, carried by chloride ions, declined nearly to the baseline in 153 ± 64 sec (n= 13), and was highly dependent on intracellular calcium. After the rundown of I ni , the same oocyte was depolarized from −140 to +60 mV. This protocol induced an inactivating outward current (I i ) with a mean amplitude of 4461 ± 1605 nA (n= 13). I i was also carried by chloride ions and dependent on extracellular calcium. I i was strongly inhibited by 100 μm extracellular La3+. These two types of chloride currents were also observed after IP3 injection in control oocytes. I ni and I i were not observed in noninjected oocytes or water-injected oocytes. We suggest that the expression of total chicory leaf tissue RNA in Xenopus oocytes reveals a calcium homeostasis mechanism responsible for calcium mobilization from internal stores and subsequent calcium entry. Received: 22 May 1998/Revised: 2 October 1998  相似文献   

19.
The voltage-gated potassium channel, Kv1.3, which is highly expressed in a number of immune cells, contains concensus sites for phosphorylation by protein kinase C (PKC). In lymphocytes, this channel is involved in proliferation—through effects on membrane potential, Ca2+ signalling, and interleukin-2 secretion—and in cytotoxic killing and volume regulation. Because PKC activation (as well as increased intracellular Ca2+) is required for T-cell proliferation, we have studied the regulation of Kv1.3 current by PKC in normal (nontransformed) human T lymphocytes. Adding intracellular ATP to support phosphorylation, shifted the voltage dependence of activation by +8 mV and inactivation by +17 mV, resulting in a 230% increase in the window current. Inhibiting ATP production and action with ``death brew' (2-deoxyglucose, adenylylimidodiphosphate, carbonyl cyanide-m-chlorophenyl hydrazone) reduced the K+ conductance (G K ) by 41 ± 2%. PKC activation by 4β-phorbol 12,13-dibutyrate, increased G K by 69 ± 6%, and caused a positive shift in activation (+9 mV) and inactivation (+9 mV), which resulted in a 270% increase in window current. Conversely, several PKC inhibitors reduced the current. Diffusion into the cell of inhibitory pseudosubstrate or substrate peptides reduced G K by 43 ± 5% and 38 ± 8%, respectively. The specific PKC inhibitor, calphostin C, potently inhibited Kv1.3 current in a dose- and light-dependent manner (IC50∼ 250 nm). We conclude that phosphorylation by PKC upregulates Kv1.3 channel activity in human lymphocytes and, as a result of shifts in voltage dependence, this enhancement is especially prevalent at physiologically relevant membrane potentials. This increased Kv1.3 current may help maintain a negative membrane potential and a high driving force for Ca2+ entry in the presence of activating stimuli. Received: 12 July 1996/Revised: 21 October 1996  相似文献   

20.
The location of reactive cysteine residues on the ryanodine receptor (RyR) calcium release channel was assessed from the changes in channel activity when oxidizing or reducing reagents were added to the luminal or cytoplasmic solution. Single sheep cardiac RyRs were incorporated into lipid bilayers with 10−7 m cytoplasmic Ca2+. The thiol specific-lipophilic-4,4′-dithiodipyridine (4,4′-DTDP, 1 mm), as well as the hydrophilic thimerosal (1 mm), activated and then inhibited RyRs from either the cis (cytoplasmic) or trans (luminal) solutions. Activation was associated with an increase in the (a) mean channel open time and (b) number of exponential components in the open time distribution from one (∼2 msec) to three (∼1 msec; ∼7 msec; ∼15 msec) in channels activated by trans 4,4′-DTDP or cis or trans thimerosal. A longer component (∼75 msec) appeared with cis 4,4′-DTDP. Activation by either oxidant was reversed by the thiol reducing agent, dithiothreitol. The results suggest that three classes of cysteines are available to 4,4′-DTDP or thimerosal, SHa or SHa* activating the channel and SHi closing the channel. SHa is either distributed over luminal and cytoplasmic RyR domains, or is located within the channel pore. SHi is also located within the transmembrane domain. SHa* is located on the cytoplasmic domain of the protein. Received: 17 March 1998/Revised: 26 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号