首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
使用实时荧光定量PCR技术对HearNPV在生长对数期和平台期HzAM1细胞的复制差异进行分析。结果表明,HzAM1细胞生长对数期的倍增时间为22 h,生长对数期的细胞以S期细胞为主(48.6%),而平台期细胞中以G2/M期细胞为主(72.6%)。在这两种不同状态的细胞中,病毒的复制主要在感染后60 h内完成,在感染后14~20 h,病毒复制倍增时间分别为1.8 h和1.9 h,几乎没有差别。但是感染生长对数期细胞时,吸附侵入细胞内的BV数量、BV释放的数量、最终的病毒产量以及病毒表达的蛋白产量明显高于被病毒感染的生长平台期细胞。如生长对数期细胞内复制合成的病毒DNA总量的25%装配形成BV病毒粒子出芽释放到细胞外,而对于平台期细胞,病毒DNA仅有13%装配形成BV病毒粒子出芽释放到细胞外。病毒感染两种生长状态的细胞,病毒DNA均从感染后7~8 h开始复制,没有明显差别;而生长对数期细胞从被感染后18~20 h释放子代病毒BV,生长平台期细胞则在感染后22~25 h开始释放病毒BV。在感染后30~60 h,在生长对数期被感染的细胞释放BV的速度约为483 copies/cell/h,而平台期细胞约为100 copies/cell/h。最初吸附侵入到生长对数期细胞内的BV粒子数量明显多于侵入到生长平台期细胞内的BV数量。实验证实,生长对数期与平台期的细胞膜的流动性有很大差别,推测健康细胞表面有活性的病毒受体数量可能决定了侵入细胞内的BV的数量。  相似文献   

2.
Melanin content and hydroperoxide metabolism in human melanoma cells   总被引:2,自引:0,他引:2  
Human melanoma cells were grown to exponential and stationary phases showing melanin contents of 4.2 +/- 0.3 and 11.3 +/- 0.6 micrograms/10(6) cells, respectively. The cells were separated in four subpopulations by a Percoll gradient; the subpopulation of density 1.07 (g/ml) was the most enriched in pigmented cells and produced 28 and 58% of the cells in exponential and stationary phases, respectively. Melanoma cells had similar superoxide dismutase and glutathione peroxidase activities in exponential and stationary phases. Moreover melanoma cells exhibited a higher catalase activity in the stationary phase: whole homogenate and cytosol activities were 7.0 +/- 0.3 and 10.8 +/- 0.6 U/mg protein, whereas in exponential phase the activities were 4.9 +/- 0.1 and 7.6 +/- 0.3 U/mg protein for whole homogenate and cytosol, respectively. The intracellular H2O2 steady-state concentration was 3.3 +/- 0.2 and 2.1 +/- 0.2 microM H2O2 for exponential and stationary phases, respectively. The spontaneous chemiluminescence of the two culture phases was 169 +/- 27 cps/10(6) cells (exponential) and 78 +/- 24 cps/10(6) cells (stationary). The cytotoxicity of H2O2 generated extracellularly by glucose oxidase was determined after 60 min of exposure. IC50 values for exponential and stationary cell cultures were 0.9 and 2.4 mU/ml of glucose oxidase, respectively. The increased catalase activities in the stationary phase as compared with the exponential phase are consistent with the decreased intracellular H2O2, with the decreased spontaneous chemiluminescence, and with the increased resistance to exogenous H2O2.  相似文献   

3.
Regulation of catalase synthesis in Salmonella typhimurium.   总被引:17,自引:3,他引:14       下载免费PDF全文
The specific activity of catalase in Salmonella typhimurium and other enteric bacteria decreased during the logarithmic phase of growth and increased at the onset and during the stationary phase. The increase in catalase synthesis at the end of the exponential phase in S. typhimurium cells coincided with the lowest pH value reached by the culture. Maintenance of the pH at a constant neutral value did not alter the typical pattern of synthesis in contradiction of the results previously reported (McCarthy and Hinshelwood. 1959). A sudden decrease in the pH value of an S. typhimurium culture during exponential growth by addition of HC1 did not cause an alteration in the catalase synthesis pattern. Addition of hydrogen peroxide to S. typhimurium cultures within the range 1 muM TO 2MM during the exponential growth phase stimulated catalase synthesis. The extent of catalase synthesis depended on the concentration of hydrogen peroxide; the maximum stimulation was observed at 80 muM. Increased catalase synthesis was not detected for 10 to 15 min after hydrogen peroxide addition. Hydrogen peroxide was produced by S. typhimurium cultures during the exponential and stationary growth phases. However, no direct relationship between hydrogen peroxide accumulation and synthesis of catalase was observed.  相似文献   

4.
In Silene vulgaris (M.) G. cell culture three growth phases were distinguished, namely, a lag phase, an exponential phase and a stationary phase. Pectin termed silenan and an acidic arabinogalactan were isolated as cell wall polysaccharides of S. vulgaris callus at the different growth phases during culture. Production of silenan as the galacturonan (or rhamnogalacturonan) core was observed at the beginning of the exponential phase and at the stationary phase of the callus growth. Arabinogalactan, containing the galacturonic acid residues, is formed at the exponential phase followed by attachment to the core of silenan in the middle of the exponential phase. The arabinogalactan constituent of silenan appeared to be destroyed gradually at the stationary growth phase. The monosaccharide compositions of silenan and arabinogalactan were determined at various phases of the callus growth. Silenan was found to be formed in maximum amounts at the exponential phase of the cell growth. Insignificant alterations of the yields of acidic arabinogalactan were found during culture while total productivity per litre of medium and rate of production per day of arabinogalactan were found to be maximal at the exponential phase of growth.  相似文献   

5.
Vibrio strain 14 supports phage alpha 3a growth in standing stationary phase cells but not in shaking (aerated) stationary phase cells. In exponential cells, protein was turned over at 1.8% h-1, and the rate was increased by starvation or inhibition of protein synthesis. In shaking stationary phase cells the rate of protein turnover was low (1.0% h-1) for proteins synthesised during growth but high (20% h-1) for recently synthesised proteins. In contrast recently synthesised proteins in standing stationary phase cells were stable over 60 min and proteins synthesised during growth were turned over at 2.9% h-1. ppGpp and pppGpp were detected in exponential cells, but were not detected in stationary phase cells.  相似文献   

6.
Agrobacterium tumefaciens possesses two catalases, a bifunctional catalase-peroxidase, KatA and a homologue of a growth phase regulated monofunctional catalase, CatE. In stationary phase cultures and in cultures entering stationary phase, total catalase activity increased 2-fold while peroxidase activity declined. katA and catE were found to be independently regulated in a growth phase dependent manner. KatA levels were highest during exponential phase and declined as cells entered stationary phase, while CatE was detectable at early exponential phase and increased during stationary phase. Only small increases in H2O2 resistance levels were detected as cells entering stationary phase. The katA mutant was more sensitive to H2O2 than the parental strain during both exponential and stationary phase. Inactivation of catE alone did not significantly change the level of H2O2 resistance. However, the katA catE double mutant was more sensitive to H2O2 during both exponential and stationary phase than either of the single catalase mutants. The data indicated that KatA plays the primary role and CatE acts synergistically in protecting A. tumefaciens from H2O2 toxicity during all phases of growth. Catalase-peroxidase activity (KatA) was required for full H2O2 resistance. The expression patterns of the two catalases in A. tumefaciens reflect their physiological roles in the protection against H2O2 toxicity, which are different from other bacteria.  相似文献   

7.
8.
Phytases catalyze the release of phosphate from phytate (myo-inositol hexakisphosphate) to inositol polyphosphates. Raoultella terrigena comb.nov. phytase activity is known to increase markedly after cells reach the stationary phase. In this study, phytase activity measurements made on single batch cultures indicated that specific enzyme activity was subject to catabolite repression. Cyclic AMP (cAMP) showed a positive effect in expression during exponential growth and a negative effect during stationary phase. RpoS exhibited the opposite effect during both growth phases; the induction to stationary phase decreased twofold in the rpoS::Tn10 mutant, but the effect of RpoS was not clearly determined. Two phy::MudI1734 mutants, MW49 and MW52, were isolated. These formed small colonies in comparison with the MW25 parent strain when plated on Luria-Bertani (LB) or LB supplemented with glucose. They did not grow in minimal media or under anaerobiosis, but did grow aerobically on LB and LB glucose at a lower rate than did MW25. The beta-galactosidase activity level in these mutants increased three to four fold during stationary growth in LB glucose and during anaerobiosis. Addition of cAMP during the exponential growth of MW52 on LB glucose provoked a decrease in beta-galactosidase activity during the stationary phase, confirming its negative effect on phytase expression during stationary growth.  相似文献   

9.
Levels of the polyamines spermidine and putrescine and the major intracellular thiols glutathione (GSH), glutathionylspermidine (GSH-SPD) and dihydrotrypanothione [bis-(glutathionyl)spermidine); T[SH]2] were measured by high performance liquid chromatography throughout the growth cycle of the insect trypanosomatid Crithidia fasciculata. The amount of total spermidine, putrescine and glutathione (free and conjugated to spermidine) was found to be elevated during growth. Of the total spermidine, 30 to 50% was found conjugated to glutathione during the exponential growth phase, increasing to 60 to 70% at stationary phase. T[SH]2 was the principal intracellular thiol during exponential growth (12.1 to 17.4 nmol per 10(8) cells), whereas GSH-SPD was the major thiol in stationary phase (26.2 nmol per 10(8) cells). GSH levels changed little during the growth cycle and represented a constant proportion (10 to 12%) of the total intracellular glutathione. On dilution of stationary phase cells into fresh medium, a rapid decrease in GSH-SPD levels was observed to be associated with synthesis of T[SH]2. This process reached 90% completion by 15 min, with steady state achieved by 120 min. As the total spermidine and glutathione pools did not increase during this interval, it could be calculated that this rapid redistribution of metabolites resulted in the release of 13 nmol per 10(8) cells unconjugated spermidine without de novo synthesis. This mechanism for rapidly elevating the intracellular concentration of free spermidine may be advantageous to this organism in rapidly adapting to favourable growth conditions.  相似文献   

10.
The G2 index of the yeast Cryptococcus neoformans determined by laser scanning cytometer was 2-3 times higher than the budding index during transition to the stationary phase of the culture, indicating that buds emerged in the G2 phase of the cell cycle. To clarify whether buds also emerge in G2 during exponential growth of the culture, DNA content for each cell was measured with a fluorescence microscope equipped with a photomultiplier. The DNA content of cells having tiny buds varied rather widely, depending on growth phases and strains used. Typically, buds of C. neoformans emerged soon after initiation of DNA synthesis in the early exponential phase. However, bud emergence was delayed to G2 during transition to the stationary phase, and in the early stationary phase budding scarcely occurred, although roughly half of the cells completed DNA synthesis. Thus, the timing of budding in C. neoformans was actually shifted to later cell cycle points with progression of the growth phase of the culture.  相似文献   

11.
Human pancreatic cells of the Capan-1 cell line differentiate in culture. During the exponential growth phase, the cells are undifferentiated, only becoming differentiated during the stationary phase. The formation of domes in this phase is related to the exchange of water and electrolytes. The present study was designed to characterize the localization and expression of alkaline phosphatases (AP) in Capan-1 cells during growth in culture. Biochemical, cytoenzymatic and immunocytochemical methods were employed combined with light and electron microscopic examination. AP essentially of the placental type were expressed progressively during the exponential growth phase, and were seen to be distributed over the surface of the Capan-1 cells. In the stationary phase, the AP became localized on the surface of microvilli. The precipitates of the enzyme reaction highlighted regular four-bodied structures. Biochemical assays showed a progressive increase in activity of this enzyme in cells during both the exponential and stationary growth phases. However, in the stationary phase between days 7 and 8, there was a fall in enzyme activity, with a corresponding increase in this activity in the culture medium. Cytological examination indicated that this fall could be accounted for by loss of AP-positive membranes by vesiculization of apical microvilli and release of microvesicles into the culture medium. Immunoblots showed that Capan-1 cells expressed two types of AP, a placental type (70 kDa) and to a lesser extent a liver type (80 kDa). Expression of the placental type was attributed to a neoplastic derepression of the coding gene, while the liver type was assumed to be a normal gene expression of human duct cells. The placental type AP might thus serve as a marker of transformation, and the liver type as a marker of differentiation.  相似文献   

12.
Extracellular brefeldin A was detected in 4 % glucose-peptone-mineral salts cultures ofCurvularia lunata at the start of the exponential growth phase. Some fluctuations in brefeldin A levels occurred during the exponential growth phase followed by a significant reduction in level at the stationary growth phase. Broth glucose levels decreased according to a sigmoid relationship with time whereas broth pH remained fairly constant during the exponential growth phase followed by a gradual increase into the stationary growth phase. Mycelial brefeldin A levels were low throughout the various growth phases. The principal fatty acids present in decreasing order during the exponential growth phase were linoleic, oleic and palmitic acids. However, the content of linoleic acid was significantly reduced at the onset and during the stationary growth phase.  相似文献   

13.
The acid adaption is commonly used as a strategy to enhance the acid tolerance of bifidobacteria. However, the acid tolerance response (ATR) mechanism elicited by this method is unclear. Real-time relative-quantitative PCR was applied to analyze the changes in the expressions of ffh, uvrA, groES, and dnaK involved in the ATR after acid-adaptation in Bifidobacterium longum BBMN68 in different growth phases. BBMN68 was cultured at a constant neutral pH during the whole growth phase. Without acid-adaptation, the survival ratios at the lethal pH 3.0 were 0.25% and 17% in the exponential and stationary phases, respectively. The genes ffh, uvrA, groES, and dnaK were significantly higher in the stationary phase than in the exponential phase. The results indicated that although there was no acid stress, the acid tolerance of cells was elevated from the exponential phase into stationary phase. After acid-adaptation at pH 5.0 for 120 min, the survival ratios of BBMN68 in the exponential and stationary phases were increased to 2.5 and 31%, respectively. In the exponential phase, ffh, uvrA groES, and dnaK were significantly decreased after acid-adaptation. In the stationary phase, after acid-adaptation for 15, 60, and 120 min, the genes uvrA, groES, and dnaK were significantly decreased, whereas, ffh was significantly up-regulated at 15 min, and then suppressed at 60 and 120 min after acid-adaptation. The results represented that the ATR in B. longum was different from other bacteria, and ffh may be the transient acid gene.  相似文献   

14.
Deinococcus species exhibit an extraordinary ability to withstand ionizing radiation (IR). Most of the studies on radiation resistance have been carried out with exponential phase cells. The studies on radiation resistance of Deinococcus radiodurans R1 with respect to different phases of growth showed that late stationary phase cells of D. radiodurans R1 were fourfold more sensitive to IR and heat as compared with exponential or early stationary phase cells. The increased sensitivity of D. radiodurans R1 to IR in the late stationary phase was not due to a decrease in the intracellular Mn/Fe ratio or an increase in the level of oxidative protein damage. The resistance to IR was restored when late stationary phase cells were incubated for 15 min in fresh medium before irradiation, indicating that replenishment of exhausted nutrients restored the metabolic capability of the cells to repair DNA damage. These observations suggest that stress tolerance mechanisms in D. radiodurans R1 differ from established paradigms.  相似文献   

15.
We determined the effects of various light spectra (white, green, blue, and red) on the growth rate, biochemical composition, and fatty acid content of Tisochrysis lutea (Haptophyta, Isochrysidales) maintained in batch cultures. The growth rate peaked with white and blue light, and the lowest rate was observed with green and red light. The chlorophyll a content differed significantly between light spectra and growth phases—higher values were recorded with blue and red light in both growth phases. The proximal composition varied significantly with growth phases and light spectrum. In the exponential growth phase, protein content was significantly greater with blue light and in the stationary phase with green light. The level of carbohydrates in the exponential growth phase was significantly higher for white light, but unchanged in the stationary growth phase between light spectra. The lipid percentages were similar in the exponential phase but differed significantly in the stationary growth phase. The lipid percentages peaked in the stationary growth phase with red and green light. The highest eicosapentaenoic acid (EPA) levels were seen in white light in the exponential growth phase and under green light in the stationary growth phase. Docosahexaenoic acid (DHA) levels were greatest in the exponential growth phase with red light and in the stationary growth phase with green light. Blue light increased the DHA content in both growth phases. We conclude that T. lutea alters its metabolic pathways and experience shifts in growth rate, proximate composition, and fatty acid content, depending on the type of light used.  相似文献   

16.
Bordetella pertussis growth phases during homogenous batch dynamic cultivation in the liquid medium as well as during the static cultivation on the solid medium were established. The maximal activity of agglutination reaction with antisera to B. pertussis agglutinogens 1, 2, and 3 was detected in bacterial culture at the end of exponential phase of growth. The activity of agglutination reaction decreased when cultures in stationary and death phases were used. During transition from exponential to death phase level of antibodies to agglutinogen 2 decreased by4 - 32 times. 2 - 4-fold decrease of antibodies level was observed when antiserum to agglutinogen 3 was used. Activity of agglutination reaction with antiserum to agglutinogen 1 was high and did not depend from phase of growth. When polyvalent antiserum to B. pertussis was used 4-fold decrease of antibody titers was observed in parallel with change of growth phases. Sera from rabbits immunized with B. pertussis cultures from the middle of exponential growth phase, the end of this phase, and begin of the death phase had high (maximal) level of agglutinating antibodies (6400), which was detected on 101 day after immunization with the former culture and on 31 day after immunization with either of the two latter cultures. To the end of experiment (292 day) titers decreased to 800, 3200, and 1600 respectively. These findings confirm an advisability of use of exponential growth culture for immunization of rabbits in order to obtain highly active diagnostic antisera to B. pertussis.  相似文献   

17.
Cell size, macromolecular composition, carbohydrate utilization patterns, and O2 concentrations were measured throughout the growth stages of Naegleria gruberi in agitated culture in a complex medium. Biphasic logarithmic growth occurred during the intial 83 hr of growth and the mean generation time was 7.0 hr and 19 hr during initial and secondary log growth stages, respectively. The maximum yield was 5 X 10(6) amebae/ml. The pH rose rapidly (1 pH unit) during the secondary log growth phase (52-83 hr) and continued into the stationary growth phase (83-120 hr). Dry weight, total protein, carbohydrate, and RNA per ameba increased just before the secondary log growth phase. RNA increase 31% to 35% per ameba at the end of each phase of log growth. DNA increased approximately 2-fold throughout the different growth phases. Average cell size increased 90% during biphasic log growth then decreased during stationary phase. O2 tension decreased from 100% to 18% of saturation during the biphasic growth phase, then increased during stationary growth to near 100% saturation. Glucose and total carbohydrate assays showed little utilization of those substrates throughout the growth stages. Naegleria gruberi presumably has a predominantly aerobic metabolism, also its metabolism may change during the different growth phases.  相似文献   

18.
The lipid and biochemical composition of the haptophyte Isochrysis galbana TK1 was examined. Cultures were grown at 15 °C and 30 °C, and harvested in the exponential and early stationary growth phases. Carbohydrate and protein content varied at the two culture temperatures and growth phases. The highest protein content was found at the exponential growth phase at 15 °C, and the highest carbohydrate content was found at the stationary phase at the same culture temperature. Lipid accumulated in the stationary growth phase and its content was higher at 30 °C than at 15 °C regardless of the growth phase. The neutral lipids were the major class of lipid found in all the cultures. The stationary phase culture had a higher proportion of neutral lipids than the exponential phase culture and the proportion decreased slightly when culture temperature was increased from 15 °C to 30 °C. Phospholipid levels remained constant at the two temperatures, but slightly decreased in the stationary phase. Glycolipids in the exponentially growing cells were higher than those from stationary growth phase and increased with temperature. Polyunsaturated fatty acids (PUFAs) predominated in glycolipids and phospholipids. Cells grown at 15 °C contained higher proportion of 18:3 (n–3) and 22:6 (n–3) with a corresponding decrease in 18:2 (n–6), monounsaturated and saturated fatty acids. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Cultures of Bordetella pertussis from phases of exponential growth, retarded growth and from stationary phase were obtained during periodic dynamic cultivation. Preparations for intravenous immunization of rabbits were made from these cultures. Levels of IgG to pertussis toxin, cell walls preparations from 12 bacterial species, 4 organo-specific antigens, and 7 organospecific human antigens were measured in obtained sera. It was shown that higher levels of IgG to pertussis toxin were found in sera of rabbits immunized with cultures from exponential growth phase whereas decrease of this level in 8 times was observed in sera of rabbits immunized with cultures from retarded growth phase or end of stationary phase. After immunization with culture from exponential growth phase increase of IgG levels to cross-reactive antigens was not observed compared to levels of these antibodies in control sera obtained before immunization. After immunization with cultures from retarded growth phase or end of stationary phase increase of IgG levels to preparations of cell walls of Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, to denaturated DNA, elastin, and renal and liver microsomal fractions was detected compared to control sera. Described data can substantiate usefulness of obtaining the most specific diagnostic sera and test-systems using cultures of B. pertussis from the phase of exponential growth.  相似文献   

20.
Fatty acid synthesis in Escherichia coli   总被引:6,自引:3,他引:3       下载免费PDF全文
1. Fatty acid formation by cells of a strain of Escherichia coli has been studied in the exponential, post-exponential and stationary phases of growth. 2. During the exponential phase of growth, the metabolic quotient (mmumoles of fatty acid synthesized/mg. dry wt. of cells/hr.) for each fatty acid in the extractable lipid was constant. 3. The newly synthesized fatty acid mixtures produced during this phase contained hexadecanoic acid (41%), hexadecenoic acid (31%), octadecenoic acid (21%) and the C(17)-cyclopropane acid, methylenehexadecanoic acid (4%). 4. As the proportion of newly synthesized material increased, changes in the fatty acid composition of the cells during this period were towards this constant composition. 5. Abrupt changes in fatty acid synthesis occurred when exponential growth ceased. 6. In media in which glycerol, or SO(4) (2-) or Mg(2+), was growth-limiting there was a small accumulation of C(17)-cyclopropane acid in cells growing in the post-exponential phase of growth. 7. Where either NH(4) (+) or PO(4) (3-) was growth-limiting and there were adequate supplies of glycerol, Mg(2+) and SO(4) (2-), there was a marked accumulation of C(17)-cyclopropane acid and C(19)-cyclopropane acid appeared. 8. Under appropriate conditions the metabolic quotient for C(17)-cyclopropane acid increased up to sevenfold at the end of exponential growth. Simultaneously the metabolic quotients of the other acids fell. 9. A mixture of glycerol, Mg(2+) and SO(4) (2-) stimulated cyclopropane acid formation in resting cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号