首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alpha interferon (IFN-α) is an approved medication for chronic hepatitis B. Gamma interferon (IFN-γ) is a key mediator of host antiviral immunity against hepatitis B virus (HBV) infection in vivo. However, the molecular mechanism by which these antiviral cytokines suppress HBV replication remains elusive. Using an immortalized murine hepatocyte (AML12)-derived cell line supporting tetracycline-inducible HBV replication, we show in this report that both IFN-α and IFN-γ efficiently reduce the amount of intracellular HBV nucleocapsids. Furthermore, we provide evidence suggesting that the IFN-induced cellular antiviral response is able to distinguish and selectively accelerate the decay of HBV replication-competent nucleocapsids but not empty capsids in a proteasome-dependent manner. Our findings thus reveal a novel antiviral mechanism of IFNs and provide a basis for a better understanding of HBV pathobiology.Hepatitis B virus (HBV) is a noncytopathic hepatotropic DNA virus which belongs to the family Hepadnaviridae (11, 44). Despite the fact that most adulthood HBV infections are transient, approximately 5 to 10% of infected adults and more than 90% of infected neonates fail to clear the virus and develop a lifelong persistent infection, which may progress to chronic hepatitis, cirrhosis, and primary hepatocellular carcinoma (4, 33, 34). It has been shown by several research groups that resolution of HBV and other animal hepadnavirus infection in vivo depends on both killing of infected hepatocytes by viral antigen-specific cytotoxic T lymphocytes and noncytolytic suppression of viral replication, which is most likely mediated by inflammatory cytokines, such as gamma interferon (IFN-γ) and tumor necrosis factor α (TNF-α) (10, 12, 15, 20, 26, 27, 48). Moreover, together with five nucleoside or nucleotide analogs that inhibit HBV DNA polymerase, alpha IFN (IFN-α) and pegylated IFN-α are currently available antiviral medications for the management of chronic hepatitis B. Compared to the viral DNA polymerase inhibitors, the advantages of IFN-α therapy include a lack of drug resistance, a finite and defined treatment course, and an increased likelihood for hepatitis B virus surface antigen (HBsAg) clearance (8, 39). However, only approximately 30% of treated patients achieve a sustained virological response to a standard 48-month pegylated IFN-α therapy (6, 32). Thus far, the antiviral mechanism of IFN-α and IFN-γ and the parameters determining the success or failure of IFN-α therapy in chronic hepatitis B remain elusive. Elucidation of the mechanism by which the cytokines suppress HBV replication represents an important step toward understanding the pathobiology of HBV infection and the molecular basis of IFN-α therapy of chronic hepatitis B.Considering the mechanism by which IFNs noncytolytically control HBV infection in vivo, it is possible that the cytokines either induce an antiviral response in hepatocytes to directly limit HBV replication or modulate the host antiviral immune response to indirectly inhibit the virus infection. However, due to the fact that IFN-α and -γ do not inhibit or only modestly inhibit HBV replication in human hepatoma-derived cell lines (5, 22, 23, 30), the direct antiviral effects of the cytokines and their antiviral mechanism against HBV have been studied with either an immortalized hepatocyte cell line derived from HBV transgenic mice or duck hepatitis B virus (DHBV) infection of primary duck hepatocytes (37, 53). While these studies revealed that IFN treatment significantly reduced the amount of encapsidated viral pregenomic RNA (pgRNA) in both mouse and duck hepatocytes, further mechanistic analyses suggested that IFN-α inhibited the formation of pgRNA-containing nucleocapsids in murine hepatocytes (52) but shortened the half-life of encapsidated pgRNA in DHBV-replicating chicken hepatoma cells (21). Moreover, the fate of viral DNA replication intermediates or nucleocapsids in the IFN-treated hepatocytes was not investigated in the previous studies.To further define the target(s) of IFN-α and -γ in the HBV life cycle and to create a robust cell culture system for the identification of IFN-stimulated genes (ISGs) that mediate the antiviral response of the cytokines (25), we established an immortalized murine hepatocyte (AML-12)-derived stable cell line that supported a high level of HBV replication in a tetracycline-inducible manner. Consistent with previous reports, we show that both IFN-α and IFN-γ potently inhibited HBV replication in murine hepatocytes (37, 40). With the help of small molecules that inhibit HBV capsid assembly (Bay-4109) (7, 47) and prevent the incorporation of pgRNA into nucleocapsids (AT-61) (9, 29), we obtained evidence suggesting that the IFN-induced cellular antiviral response is able to distinguish and selectively accelerate the decay of HBV replication-competent nucleocapsids but not empty capsids in a proteasome-dependent manner. Our findings provide a basis for further studies toward better understanding of IFN′s antiviral mechanism, which might ultimately lead to the development of strategies to improve the efficacy of IFN therapy of chronic hepatitis B.  相似文献   

2.
Hepatits B virus (HBV)-specific T cells play a key role both in the control of HBV replication and in the pathogenesis of liver disease. Human immunodeficiency virus type 1 (HIV-1) coinfection and the presence or absence of HBV e (precore) antigen (HBeAg) significantly alter the natural history of chronic HBV infection. We examined the HBV-specific T-cell responses in treatment-naïve HBeAg-positive and HBeAg-negative HIV-1-HBV-coinfected (n = 24) and HBV-monoinfected (n = 39) Asian patients. Peripheral blood was stimulated with an overlapping peptide library for the whole HBV genome, and tumor necrosis factor alpha and gamma interferon cytokine expression in CD8+ T cells was measured by intracellular cytokine staining and flow cytometry. There was no difference in the overall magnitude of the HBV-specific T-cell responses, but the quality of the response was significantly impaired in HIV-1-HBV-coinfected patients compared with monoinfected patients. In coinfected patients, HBV-specific T cells rarely produced more than one cytokine and responded to fewer HBV proteins than in monoinfected patients. Overall, the frequency and quality of the HBV-specific T-cell responses increased with a higher CD4+ T-cell count (P = 0.018 and 0.032, respectively). There was no relationship between circulating HBV-specific T cells and liver damage as measured by activity and fibrosis scores, and the HBV-specific T-cell responses were not significantly different in patients with either HBeAg-positive or HBeAg-negative disease. The quality of the HBV-specific T-cell response is impaired in the setting of HIV-1-HBV coinfection and is related to the CD4+ T-cell count.There are 40 million people worldwide infected with human immunodeficiency virus type 1 (HIV-1), and 6 to 15% of HIV-1-infected patients are also chronically infected with hepatitis B virus (HBV) (13, 20, 35, 38, 40-42, 47, 50, 61, 69). The highest rates of coinfection with HIV-1 and HBV are in Asia and Africa, where HBV is endemic (33, 68). Following the introduction of highly active antiretroviral therapy (HAART), liver disease is now the major cause of non-AIDS-related deaths in HIV-1-infected patients (12, 13, 38, 59, 65).Coinfection of HBV with HIV-1 alters the natural history of HBV infection. Individuals with HIV-1-HBV coinfection seroconvert from HBV e (precore) antigen (HBeAg) to HBV e antibody less frequently and have higher HBV DNA levels but lower levels of alanine aminotransferase (ALT) and milder necroinflammatory activity on histology than those infected with HBV alone (18, 26, 49). Progression to cirrhosis, however, seems to be more rapid and more common, and liver-related mortality is higher, in HIV-1-HBV coinfection than with either infection alone (47, 59). HBeAg is an accessory protein of HBV and is not required for viral replication or infection; however, chronic HBV infection typically is divided into two distinct phases: HBeAg positive and HBeAg negative (reviewed in reference 15). Most natural history studies of HIV-1-HBV coinfection to date have primarily focused on HBeAg-positive patients from non-Asian countries (23, 44, 46).We previously developed an overlapping peptide library for the HBV genome to detect HBV-specific CD4+ and CD8+ T-cell responses to all HBV gene products from multiple HBV genotypes (17). In a small cross-sectional study of patients recruited in Australia, we found that in coinfected patients, HBV-specific CD4+ T-cell responses, as measured by gamma interferon (IFN-γ) production, were diminished compared to those seen in HBV-monoinfected patients (17). However, patients had varying lengths of exposure to anti-HBV-active HAART at the time of analysis. In this study, therefore, we aimed to characterize the HBV-specific T-cell response in untreated HBeAg-positive and HBeAg-negative HIV-1-HBV-coinfected patients and to determine the relationship between the HBV-specific immune response, HBeAg status, and liver disease.  相似文献   

3.
4.
During untreated human immunodeficiency virus type 1 (HIV-1) infection, virus-specific CD8+ T cells partially control HIV replication in peripheral lymphoid tissues, but host mechanisms of HIV control in the central nervous system (CNS) are incompletely understood. We characterized HIV-specific CD8+ T cells in cerebrospinal fluid (CSF) and peripheral blood among seven HIV-positive antiretroviral therapy-naïve subjects. All had grossly normal brain magnetic resonance imaging and spectroscopy and normal neuropsychometric testing. Frequencies of epitope-specific CD8+ T cells by direct tetramer staining were on average 2.4-fold higher in CSF than in blood (P = 0.0004), while HIV RNA concentrations were lower. Cells from CSF were readily expanded ex vivo and responded to a broader range of HIV-specific human leukocyte antigen class I restricted optimal peptides than did expanded cells from blood. HIV-specific CD8+ T cells, in contrast to total CD8+ T cells, in CSF and blood were at comparable maturation states, as assessed by CD45RO and CCR7 staining. The strong relationship between higher T-cell frequencies and lower levels of viral antigen in CSF could be the result of increased migration to and/or preferential expansion of HIV-specific T cells within the CNS. This suggests an important role for HIV-specific CD8+ T cells in control of intrathecal viral replication.Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) early during primary infection (21, 30, 35), and proviral DNA persists in the brain throughout the course of HIV-1 disease (7, 25, 29, 47, 77, 83). Limited data from human and nonhuman primate studies suggest that little or no viral replication occurs in the brain during chronic, asymptomatic infection, based on the absence of demonstrable viral RNA or proteins (8, 85). In contrast, cognitive impairment affects approximately 40% of patients who progress to advanced AIDS without highly active antiretroviral therapy (21, 30, 35, 65). During HIV-associated dementia, there is active HIV-1 replication in the brain (23, 52, 61, 81), and viral sequence differences between cerebrospinal fluid (CSF) and peripheral tissues suggest distinct anatomic compartments of replication (18, 19, 22, 53, 75, 76, 78). Host mechanisms that control viral replication in the CNS during chronic, asymptomatic HIV-1 infection are incompletely understood.Anti-HIV CD8+ T cells are present in blood and peripheral tissues throughout the course of chronic HIV-1 infection (2, 14). Multiple lines of evidence support a critical role for these cells in controlling HIV-1 replication. During acute HIV-1 infection, the appearance of CD8+ T-cell responses correlates temporally with a decline in viremia (11, 43), and a greater proliferative capacity of peripheral blood HIV-specific CD8+ T cells correlates with better control of viremia (36, 54). In addition, the presence of certain major histocompatibility complex class I human leukocyte antigen (HLA) alleles, notably HLA-B*57, predicts slower progression to AIDS and death during chronic, untreated HIV-1 infection (55, 62). Finally, in the simian immunodeficiency virus (SIV) model, macaques depleted of CD8+ T cells experience increased viremia and rapid disease progression (39, 51, 67).Little is known regarding the role of intrathecal anti-HIV CD8+ T cells in HIV neuropathogenesis. Nonhuman primate studies have identified SIV-specific CD8+ T cells in the CNS early after infection (16, 80). Increased infiltration of SIV antigen-specific CD8+ T cells and cytotoxic T lymphocytes has been detected only in CSF of slow progressors without neurological symptoms (72). In chronically infected macaques with little or no SIV replication in the brain, the frequency of HIV-specific T cells was higher in CSF than in peripheral blood but did not correlate with the level of plasma viremia or CD4+ T-cell counts (56). Although intrathecal anti-HIV CD8+ T cells may help control viral replication, a detrimental role in the neuropathogenesis of HIV-1 has also been postulated (38). Immune responses contribute to neuropathogenesis in models of other infectious diseases, and during other viral infections cytotoxic T lymphocytes can worsen disease through direct cytotoxicity or release of inflammatory cytokines such as gamma interferon (IFN-γ) (3, 17, 31, 37, 42, 44, 71).We tested the hypothesis that quantitative and/or qualitative differences in HIV-specific CD8+ T-cell responses are present in CSF compared to blood during chronic, untreated HIV-1 infection. We characterized HIV-specific CD8+ T-cell responses in CSF among seven antiretroviral therapy-naïve adults with chronic HIV-1 infection, relatively high peripheral blood CD4+ T-cell counts, and low plasma HIV-1 RNA concentrations. We show that among these HIV-positive individuals with no neurological symptoms and with little or no HIV-1 RNA in CSF, frequencies of HIV-specific T cells are significantly higher in CSF than in blood. These CSF cells are at a state of differentiation similar to that of T cells in blood and are functionally competent for expansion and IFN-γ production. The higher frequency of functional HIV-specific CD8+ T cells in CSF, in the context of low or undetectable virus in CSF, suggests that these cells play a role in the control of intrathecal viral replication.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Receptors (FcγRs) for the constant region of immunoglobulin G (IgG) are an important link between humoral immunity and cellular immunity. To help define the role of FcγRs in determining the fate of human immunodeficiency virus type 1 (HIV-1) immune complexes, cDNAs for the four major human Fcγ receptors (FcγRI, FcγRIIa, FcγRIIb, and FcγRIIIa) were stably expressed by lentiviral transduction in a cell line (TZM-bl) commonly used for standardized assessments of HIV-1 neutralization. Individual cell lines, each expressing a different FcγR, bound human IgG, as evidence that the physical properties of the receptors were preserved. In assays with a HIV-1 multisubtype panel, the neutralizing activities of two monoclonal antibodies (2F5 and 4E10) that target the membrane-proximal external region (MPER) of gp41 were potentiated by FcγRI and, to a lesser extent, by FcγRIIb. Moreover, the neutralizing activity of an HIV-1-positive plasma sample known to contain gp41 MPER-specific antibodies was potentiated by FcγRI. The neutralizing activities of monoclonal antibodies b12 and 2G12 and other HIV-1-positive plasma samples were rarely affected by any of the four FcγRs. Effects with gp41 MPER-specific antibodies were moderately stronger for IgG1 than for IgG3 and were ineffective for Fab. We conclude that FcγRI and FcγRIIb facilitate antibody-mediated neutralization of HIV-1 by a mechanism that is dependent on the Fc region, IgG subclass, and epitope specificity of antibody. The FcγR effects seen here suggests that the MPER of gp41 could have greater value for vaccines than previously recognized.Fc receptors (FcRs) are differentially expressed on a variety of cells of hematopoietic lineage, where they bind the constant region of antibody (Ab) and provide a link between humoral and cellular immunity. Humans possess two classes of FcRs for the constant region of IgG (FcγRs) that, when cross-linked, are distinguished by their ability to either activate or inhibit cell signaling (69, 77, 79). The activating receptors FcγRI (CD64), FcγRIIa (CD32), and FcγRIII (CD16) signal through an immunoreceptor tyrosine-based activation motif (ITAM), whereas FcγRIIb (CD32) contains an inhibitory motif (ITIM) that counters ITAM signals and B-cell receptor signals. It has been suggested that a balance between activating and inhibitory FcγRs coexpressed on the same cells plays an important role in regulating adaptive immunity (23, 68). Moreover, the inhibitory FcγRIIb, being the sole FcγR on B cells, appears to play an important role in regulating self-tolerance (23, 68). The biologic role of FcγRs may be further influenced by differences in their affinity for immunoglobulin G (IgG); thus, FcγRI is a high-affinity receptor that binds monomeric IgG (mIgG) and IgG immune complexes (IC), whereas FcγRIIa, FcγRIIb, and FcγRIIIa are medium- to low-affinity receptors that preferentially bind IgG IC (10, 49, 78). FcγRs also exhibit differences in their relative affinity for the four IgG subclasses (10), which has been suggested to influence the balance between activating and inhibitory FcγRs (67).In addition to their participation in acquired immunity, FcγRs can mediate several innate immune functions, including phagocytosis of opsonized pathogens, Ab-dependent cell cytotoxicity (ADCC), antigen uptake by professional antigen-presenting cells, and the production of inflammatory cytokines and chemokines (26, 35, 41, 48, 69). In some cases, interaction of Ab-coated viruses with FcγRs may be exploited by viruses as a means to facilitate entry into FcγR-expressing cells (2, 33, 47, 84). Several groups have reported FcγR-mediated Ab-dependent enhancement (ADE) of HIV-1 infection in vitro (47, 51, 58, 63, 94, 96), whereas other reports have implicated FcγRs in efficient inhibition of the virus in vitro (19, 21, 29, 44-46, 62, 98) and possibly as having beneficial effects against HIV-1 in vivo (5, 27, 28, 42). These conflicting results are further complicated by the fact that HIV-1-susceptible cells, such as monocytes and macrophages, can coexpress more than one FcγR (66, 77, 79).HIV-1 entry requires sequential interactions between the viral surface glycoprotein, gp120, and its cellular receptor (CD4) and coreceptor (usually CCR5 or CXCR4), followed by membrane fusion that is mediated by the viral transmembrane glycoprotein gp41 (17, 106). Abs neutralize the virus by binding either gp120 or gp41 and blocking entry into cells. Several human monoclonal Abs that neutralize a broad spectrum of HIV-1 variants have attracted considerable interest for vaccine design. Epitopes for these monoclonal Abs include the receptor binding domain of gp120 in the case of b12 (71, 86), a glycan-specific epitope on gp120 in the case of 2G12 (13, 85, 86), and two adjacent epitopes in the membrane-proximal external region (MPER) of g41 in the cases of 2F5 and 4E10 (3, 11, 38, 93). At least three of these monoclonal Abs have been shown to interact with FcRs and to mediate ADCC (42, 43).A highly standardized and validated assay for neutralizing Abs against HIV-1 that quantifies reductions in luciferase (Luc) reporter gene expression after a single round of virus infection in TZM-bl cells has been developed (60, 104). TZM-bl (also called JC53BL-13) is a CXCR4-positive HeLa cell line that was engineered to express CD4 and CCR5 and to contain integrated reporter genes for firefly Luc and Escherichia coli β-galactosidase under the control of the HIV-1 Tat-regulated promoter in the long terminal repeat terminal repeat sequence (74, 103). TZM-bl cells are permissive to infection by a wide variety of HIV-1, simian immunodeficiency virus, and human-simian immunodeficiency virus strains, including molecularly cloned Env-pseudotyped viruses. Here we report the creation and characterization of four new TZM-bl cell lines, each expressing one of the major human FcγRs. These new cell lines were used to gain a better understanding of the individual roles that FcγRs play in determining the fate of HIV-1 IC. Two FcγRs that potentiated the neutralizing activity of gp41 MPER-specific Abs were identified.  相似文献   

16.
Receptor protein tyrosine phosphatase α (RPTPα) is the mitotic activator of the protein tyrosine kinase Src. RPTPα serine hyperphosphorylation was proposed to mediate mitotic activation of Src. We raised phosphospecific antibodies to the two main serine phosphorylation sites, and we discovered that RPTPα Ser204 was almost completely dephosphorylated in mitotic NIH 3T3 and HeLa cells, whereas Ser180 and Tyr789 phosphorylation were only marginally reduced in mitosis. Concomitantly, Src pTyr527 and pTyr416 were dephosphorylated, resulting in 2.3-fold activation of Src in mitosis. Using inhibitors and knockdown experiments, we demonstrated that dephosphorylation of RPTPα pSer204 in mitosis was mediated by PP2A. Mutation of Ser204 to Ala did not activate RPTPα, and intrinsic catalytic activity of RPTPα was not affected in mitosis. Interestingly, binding of endogenous Src to RPTPα was induced in mitosis. GRB2 binding to RPTPα, which was proposed to compete with Src binding to RPTPα, was only modestly reduced in mitosis, which could not account for enhanced Src binding. Moreover, we demonstrate that Src bound to mutant RPTPα-Y789F, lacking the GRB2 binding site, and mutant Src with an impaired Src homology 2 (SH2) domain bound to RPTPα, illustrating that Src binding to RPTPα is not mediated by a pTyr-SH2 interaction. Mutation of RPTPα Ser204 to Asp, mimicking phosphorylation, reduced coimmunoprecipitation with Src, suggesting that phosphorylation of Ser204 prohibits binding to Src. Based on our results, we propose a new model for mitotic activation of Src in which PP2A-mediated dephosphorylation of RPTPα pSer204 facilitates Src binding, leading to RPTPα-mediated dephosphorylation of Src pTyr527 and pTyr416 and hence modest activation of Src.Protein tyrosine phosphatases (PTPs) are responsible for dephosphorylation of the phosphotyrosyl residues. The human genome contains approximately 100 genes that encode members of the four PTP families, and most of them have mouse orthologues (2, 48). According to their subcellular localization, the classical PTPs, encoded by less than half of the total PTP genes, are divided into two subfamilies: cytoplasmic and receptor protein tyrosine phosphatases (RPTPs). The majority of the RPTPs contain, besides a variable extracellular domain and a transmembrane domain, two highly homologous phosphatase domains (27), with the membrane-proximal domain comprising most of the catalytic activity (33).RPTPα is a typical RPTP with a small, highly glycosylated extracellular domain (13). RPTPα function is regulated by many mechanisms, including proteolysis (18), oxidation (55), dimerization (7, 23, 24, 47, 52), and phosphorylation of serine and tyrosine residues (16, 17, 49). RPTPα is broadly expressed in many cell types, and over the years, RPTPα has been shown to be involved in a number of signaling mechanisms, including neuronal (15) and skeletal muscle (34) cell differentiation, neurite elongation (8, 9, 56), insulin receptor signaling downregulation (3, 28, 30, 31, 35), insulin secretion (25), activation of voltage-gated potassium channel Kv1.2 (51), long-term potentiation in hippocampal neurons (32, 38), matrix-dependent force transduction (53), and cell spreading and migration (21, 45, 57).The majority of the roles played in these cellular processes involve RPTPα''s ability to activate the proto-oncogenes Src and Fyn by dephosphorylating their C-terminal inhibitory phosphotyrosine (5, 15, 39, 45, 61). Normally, this phosphotyrosine (pTyr527 in chicken Src) binds to the Src homology 2 (SH2) domain, keeping the protein in an inactive closed conformation. A displacement mechanism was proposed for RPTPα-mediated Src activation in which pTyr789 of RPTPα is required to bind the SH2 domain of Src before RPTPα dephosphorylates Tyr527 (58). This model is the subject of debate since other studies show that RPTPα lacking Tyr789 is still able to dephosphorylate and activate Src (12, 26, 29, 56). In normal cells, Src reaches its activation peak during mitosis (4, 11, 40, 42), and with the help of overexpressing cells, it was shown that this activation is triggered mainly by RPTPα. The model that emerged is that RPTPα is activated in mitosis due to serine hyperphosphorylation and detaches from the GRB2 scaffolding protein (59, 60) that normally binds most of the pTyr789 of RPTPα via its SH2 domain (14, 17, 46). Two serine phosphorylation sites were mapped in the juxtamembrane domain of RPTPα, Ser180 and Ser204 (49). The kinases that were found responsible for their phosphorylation were protein kinase C delta (PKCdelta) (10) and CaMKIIalpha (9), but there is no clear evidence that these kinases are activated in mitosis. We set out to investigate the role of serine phosphorylation of RPTPα in mitotic activation of Src.We generated phosphospecific antibodies and show that RPTPα pSer204, but not pSer180, is dephosphorylated in mitotic NIH 3T3 and HeLa cells, concomitantly with activation of Src. Selective inhibitors suggested that PP2A was the phosphatase that dephosphorylated pSer204. RNA interference (RNAi)-mediated knockdown of the catalytic subunit of PP2A demonstrated that indeed PP2A was responsible for mitotic dephosphorylation of RPTPα pSer204. It is noteworthy that PP2A is known to be activated in mitosis. Intrinsic PTP activities of RPTPα were similar in unsynchronized and mitotic cells, and mutation of Ser204 did not activate RPTPα in in vitro PTP assays. Yet, Src binding to RPTPα was induced in mitotic NIH 3T3 cells and RPTPα-S204D with a phosphomimicking mutation at Ser204 coimmunoprecipitated less efficiently with Src. Based on our results, we propose a mechanism for mitotic activation of Src that is triggered by dephosphorylation of RPTPα pSer204, resulting in enhanced affinity for Src and subsequent dephosphorylation and activation of Src.  相似文献   

17.
18.
A critical function of the human immunodeficiency virus type 1 Nef protein is the downregulation of CD4 from the surfaces of infected cells. Nef is believed to act by linking the cytosolic tail of CD4 to the endocytic machinery, thereby increasing the rate of CD4 internalization. In support of this model, weak binary interactions between CD4, Nef, and the endocytic adaptor complex, AP-2, have been reported. In particular, dileucine and diacidic motifs in the C-terminal flexible loop of Nef have been shown to mediate binding to a combination of the α and σ2 subunits of AP-2. Here, we report the identification of a potential binding site for the Nef diacidic motif on α-adaptin. This site comprises two basic residues, lysine-297 and arginine-340, on the α-adaptin trunk domain. The mutation of these residues specifically inhibits the ability of Nef to bind AP-2 and downregulate CD4. We also present evidence that the diacidic motif on Nef and the basic patch on α-adaptin are both required for the cooperative assembly of a CD4-Nef-AP-2 complex. This cooperativity explains how Nef is able to efficiently downregulate CD4 despite weak binary interactions between components of the tripartite complex.CD4, a type I transmembrane glycoprotein that serves as a coreceptor for major histocompatibility complex class II (MHC-II) molecules, is expressed on the surfaces of helper T lymphocytes and cells of the monocyte/macrophage lineage (8). Primate immunodeficiency viruses gain access to these cells by virtue of the interaction of the viral envelope glycoprotein (Env) with a combination of CD4 and a chemokine receptor (63). This interaction causes a conformational change within the Env protein that promotes the fusion of the viral envelope with the plasma membrane. Upon the delivery of the viral genetic material into the cytoplasm of the host cells, one of the first virally encoded proteins to be expressed is Nef, an accessory factor that modulates specific signal transduction and protein-trafficking pathways in a manner that optimizes the intracellular environment for viral replication (reviewed in references 21, 39, and 65). Perhaps the best characterized function of Nef is the downregulation of CD4 from the surfaces of the host cells (6, 22, 29, 45). CD4 downregulation prevents superinfection (6, 41) and enhances virion release (19, 38, 48, 66, 76), thereby contributing to the establishment of a robust infective state (24, 72).The mechanism used by the Nef protein of human immunodeficiency virus type 1 (HIV-1) to downregulate CD4 has been the subject of extensive study, but only recently have the molecular details of this process begun to be unraveled. It is generally acknowledged that HIV-1 Nef accelerates the internalization of CD4 from the plasma membrane by linking the cytosolic tail of the receptor to the clathrin-associated endocytic machinery (1, 12, 20, 34, 40, 64). In support of this model, a hydrophobic pocket comprising W57 and L58 on the folded core domain of Nef binds with millimolar affinity to the cytosolic tail of CD4 (28) (all residues and numbers correspond to the NL4-3 variant of HIV-1 Nef used in this study). In addition, a dileucine motif (ENTSLL, residues 160 to 165) (10, 16, 26) and a diacidic motif (D174 and D175) (2) on the C-terminal flexible loop of Nef mediate an interaction of micromolar affinity with the clathrin-associated, heterotetrameric (α-β2-μ2-σ2) adaptor protein 2 (AP-2) complex (12, 20, 40, 49). These interactions draw CD4 into clathrin-coated pits that eventually bud inwards as clathrin-coated vesicles (11, 27). Internalized CD4 is subsequently delivered to endosomes and then to lysosomes for degradation (3, 23, 59, 64).Despite progress in the understanding of the mechanism of Nef-induced CD4 downregulation, several important aspects remain to be elucidated. Previous studies have shown that the Nef dileucine and diacidic motifs interact with a combination of the α and σ2 subunits of AP-2 (referred to as the α-σ2 hemicomplex) (12, 20, 40, 49), but the precise location of the Nef binding sites is unknown. It also remains to be determined whether Nef can actually bind CD4 and AP-2 at the same time. Indeed, the formation of a tripartite CD4-Nef-AP-2 complex in which Nef links the cytosolic tail of CD4 to AP-2 has long been hypothesized but has never been demonstrated experimentally. Given the relatively weak affinity of Nef for the CD4 tail (28) and AP-2 (12, 40), it is unclear how such a complex could assemble and function in CD4 downregulation.In this study, we have addressed these issues by using a combination of yeast hybrid, in vitro binding, and in vivo CD4 downregulation assays. We report the identification of a candidate binding site for the Nef diacidic motif on the AP-2 complex. This site, a basic patch comprising K297 and R340 on α-adaptin, is specifically required for Nef binding and Nef-induced CD4 downregulation. We also show that the Nef diacidic motif and the α-adaptin basic patch are required for the cooperative assembly of a tripartite complex composed of the CD4 cytosolic tail, Nef, and the α-σ2 hemicomplex. The cooperative manner in which this complex is formed explains how Nef is able to efficiently downregulate CD4 from the plasma membrane despite weak binary interactions between the components of this complex.  相似文献   

19.
Viral infections of the central nervous system (CNS) are important causes of worldwide morbidity and mortality, and understanding how viruses perturb host cell signaling pathways will facilitate identification of novel antiviral therapies. We now show that reovirus infection activates transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signaling in a murine model of encephalitis in vivo. TGF-β receptor I (TGF-βRI) expression is increased and its downstream signaling factor, SMAD3, is activated in the brains of reovirus-infected mice. TGF-β signaling is neuroprotective, as inhibition with a TGF-βRI inhibitor increases death of infected neurons. Similarly, BMP receptor I expression is increased and its downstream signaling factor, SMAD1, is activated in reovirus-infected neurons in the brains of infected mice in vivo. Activated SMAD1 and SMAD3 were both detected in regions of brain infected by reovirus, but activated SMAD1 was found predominantly in uninfected neurons in close proximity to infected neurons. Treatment of reovirus-infected primary mouse cortical neurons with a BMP agonist reduced apoptosis. These data provide the first evidence for the activation of TGF-β and BMP signaling pathways following neurotropic viral infection and suggest that these signaling pathways normally function as part of the host''s protective innate immune response against CNS viral infection.The transforming growth factor β (TGF-β) superfamily of growth factors regulates multiple cellular functions including inflammation, cell growth, differentiation, migration, and apoptosis (33). In excess of 30 genes represent the TGF-β superfamily in mammals including three TGF-β genes, four activin β-chains (nodal), 10 bone morphogenetic proteins (BMPs), and 11 growth and differentiation factors. The receptors for the TGF-β superfamily of ligands form the only known transmembrane Ser-Thr kinases (33). The signaling pathways are similar for all ligands. Briefly, a TGF-β ligand binds to and brings into proximity a TGF-β receptor type I (TGF-βRI) and a TGF-β receptor type II (TGF-βRII), assembling a heterotetrameric complex (45). The constitutively active type II receptor kinase phosphorylates the type I receptor at several serine and threonine residues in a glycine- and serine-rich juxtamembrane domain, resulting in the recruitment and phosphorylation at two C-terminal serine residues in the MH2 domain of the receptor-regulated SMADs (R-SMAD): SMAD1, SMAD2, SMAD3, SMAD5, and SMAD8 (33). Phosphorylated R-SMAD proteins form complexes with the common mediator SMAD4, translocate to the nucleus, and alter gene expression. Each type I receptor typically binds a specific TGF-β superfamily ligand and activates a subset of R-SMADs. The TGF-β-activin-nodal ligands signal through specific type I receptors to activate SMAD2 or SMAD3, and the BMP-growth and differentiation factor ligands signal through specific type I receptors and activate SMAD1, SMAD5, or SMAD8 (33).Members of the TGF-β superfamily modulate innate immune responses to multiple infections by controlling inflammation and repair after injury (25). In addition, TGF-β signaling controls apoptosis and viral replication in several viral systems including polyomaviruses such as BK virus (1) and JC virus (16, 30), human immunodeficiency virus (16), Epstein-Barr virus reactivation (17), and hepatitis C virus (26). In the case of hepatitis C virus, the synergistic activation of BMP signaling and alpha interferon suppresses viral replication (35). In noninfectious models of disease, previous studies have shown that modulating TGF-β signaling is protective in a murine model of Alzheimer''s disease (36), and augmenting BMP signal activation can protect cells and neurons following oxidative stress (15), stroke (40), or other cellular injuries (3, 44). However, to our knowledge, the roles of TGF-β and BMP signaling have not been studied following acute viral infection in the central nervous system (CNS).Reovirus infection is a well-characterized experimental system utilized to study viral pathogenesis. Serotype 3 strains of reovirus (Abney [T3A] and Dearing [T3D]) induce apoptosis in vitro and in vivo by activating caspase-3-dependent cell death (4, 28). Reovirus-induced encephalitis in vivo is largely a result of virus-induced apoptosis with little associated infiltrate of inflammatory cells. Caspase 3 activation is initiated by reovirus-induced activation of death receptors and is augmented by mitochondrial apoptotic signaling (6, 24, 31). Previous studies have also demonstrated that virus-induced signaling events affect cell survival and cell death. Reovirus-induced selective activation of mitogen-activated protein kinases such as c-Jun N-terminal kinase (JNK) are vital to apoptosis in vitro and in a murine model of reovirus-induced encephalitis (2, 9). Similarly, the activation and subsequent inhibition of NF-κB signaling are important determinants of apoptosis (5, 7, 10). These pathways are likely to act in part by regulating critical components of either death receptor or mitochondrial apoptotic signaling. For example, reovirus-induced inhibition of NF-κB activation decreases cellular levels of c-FLIP, a caspase 8 inhibitor, and inhibition of JNK signaling decreases mitochondrial release of proapoptotic proteins cytochrome c and SMAC (5, 8). While many of these signaling pathways modulate apoptosis, the reovirus model of pathogenesis has been utilized to understand the interferon response to viral infection in cell culture, in myocardial cells, and in the CNS as well (18, 22, 34). Understanding the cellular response to viral infection will lead to the identification of new targets for antiviral therapy.Studies of neuroinvasive viral infections including those with Sindbis virus, West Nile virus, herpes simplex virus, and cytomegalovirus have shown that apoptosis is an important mechanism of neuronal cell death (11, 20, 27, 32). In many cases of neuroinvasive viral infection, exemplified by West Nile virus, viremia has ended by the time that the patient presents with acute symptoms; yet, ongoing virus-induced injury in the CNS results in significant morbidity and mortality (13, 21). There are currently no proven effective therapies for acute CNS viral infections other than acyclovir therapy for herpes simplex virus encephalitis, and even with optimal treatment of herpes simplex virus encephalitis, morbidity and mortality remain significant. The goal of our studies is to utilize the reovirus system to identify potential novel therapeutic targets that will enhance neuroprotection following CNS viral infection.We show here for the first time that TGF-β and BMP are activated in response to viral infection in a model of murine viral encephalitis in vivo. We extend these findings by showing that virus-activated BMP signaling protects mouse cortical neurons from cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号