首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Root morphology and Zn^2+ uptake kinetics of the hyperaccumulating ecotype (HE) and nonhyperaccumulating ecotype (NHE) of Sedum alfredii Hance were investigated using hydroponic methods and the radiotracer flux technique. The results indicate that root length, root surface area, and root volume of NHE decreased significantly with increasing Zn^2+ concentration in growth media, whereas the root growth of HE was not adversely affected, and was even promoted, by 500μmol/L Zn^2+. The concentrations of Zn^2+ in both ecotypes of S. alfredii were positively correlated with root length, root surface area and root volumes, but no such correlation was found for root diameter. The uptake kinetics for ^65Zn^2+ in roots of both ecotypes of S. alfredii were characterized by a rapid linear phase during the first 6 h and a slower linear phase during the subsequent period of investigation. The concentration-dependent uptake kinetics of the two ecotypes of S. alfredii could be characterized by the Michaelis-Menten equation, with the Vmax for ^65Zn^2+ influx being threefold greater in HE compared with NHE, indicating that enhanced absorption into the root was one of the mechanisms involved in Zn hyperaccumulation. A significantly larger Vmax value suggested that there was a higher density of Zn transporters per unit membrane area in HE roots.  相似文献   

2.
Sedum alfredii (Crasulaceae) is the only known Cd-hyperaccumulating species that are not in the Brassica family; the mechanism of Cd hyperaccumulation in this plant is, however, little understood. Here, a combination of radioactive techniques, metabolic inhibitors, and fluorescence imaging was used to contrast Cd uptake and translocation between a hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of S. alfredii. The K(m) of (109)Cd influx into roots was similar in both ecotypes, while the V(max) was 2-fold higher in the HE. Significant inhibition of Cd uptake by low temperature or metabolic inhibitors was observed in the HE, whereas the effect was less pronounced in the NHE. (109)Cd influx into roots was also significantly decreased by high Ca in both ecotypes. The rate of root-to-shoot translocation of (109)Cd in the HE was >10 times higher when compared with the NHE, and shoots of the HE accumulated dramatically higher (109)Cd concentrations those of the NHE. The addition of the metabolic inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP) resulted in a significant reduction in Cd contents in the shoots of the HE, and in the roots of the NHE. Cd was distributed preferentially to the root cylinder of the HE but not the NHE, and there was a 3-5 times higher Cd concentration in xylem sap of the HE in contrast to the NHE. These results illustrate that a greatly enhanced rate of root-to-shoot translocation, possibly as a result of enhanced xylem loading, rather than differences in the rate of root uptake, was the pivotal process expressed in the Cd hyperaccumulator HE S. alfredii.  相似文献   

3.
Yang X  Li T  Yang J  He Z  Lu L  Meng F 《Planta》2006,224(1):185-195
Sedum alfredii Hance can accumulate Zn in shoots over 2%. Leaf and stem Zn concentrations of the hyperaccumulating ecotype (HE) were 24- and 28-fold higher, respectively, than those of the nonhyperaccumulating ecotype (NHE), whereas 1.4-fold more Zn was accumulated in the roots of the NHE. Approximately 2.7-fold more Zn was stored in the root vacuoles of the NHE, and thus became unavailable for loading into the xylem and subsequent translocation to shoot. Long-term efflux of absorbed 65Zn indicated that 65Zn activity was 6.8-fold higher in shoots but 3.7-fold lower in roots of the HE. At lower Zn levels (10 and 100 μM), there were no significant differences in 65Zn uptake by leaf sections and intact leaf protoplasts between the two ecotypes except that 1.5-fold more 65Zn was accumulated in leaf sections of the HE than in those of the NHE after exposure to 100 μM for 48 h. At 1,000 μM Zn, however, approximately 2.1-fold more Zn was taken up by the HE leaf sections and 1.5-fold more 65Zn taken up by the HE protoplasts as compared to the NHE at exposure times >16 h and >10 min, respectively. Treatments with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or ruptured protoplasts strongly inhibited 65Zn uptake into leaf protoplasts for both ecotypes. Citric acid and Val concentrations in leaves and stems significantly increased for the HE, but decreased or had minimal changes for the NHE in response to raised Zn levels. These results indicate that altered Zn transport across tonoplast in the root and stimulated Zn uptake in the leaf cells are the major mechanisms involved in the strong Zn hyperaccumulation observed in S. alfredii H.  相似文献   

4.
外源钙离子对东南景天生长及锌积累的影响   总被引:2,自引:0,他引:2  
采用水培试验,研究了外源添加不同浓度钙离子(Ca2+)对两种生态型东南景天生物量、根系形态及体内锌、钙、硫含量的影响.结果表明:随着外源Ca2+浓度的上升,两种生态型东南景天的干物质量均增加,且超积累生态型地上部增加显著(P<0.05);超积累生态型根长和根表面积增加,而非超积累生态型降低;超积累生态型根、茎、叶锌含量随着外源Ca2+浓度的增加而上升,但各处理间差异不显著(P>0.05),非超积累生态型地上部锌含量显著降低(P<0.05).非超积累生态型根、茎、叶钙含量与外源Ca2+浓度呈显著正相关(P<0.05),超积累生态型根系硫含量与外源Ca2+浓度呈极显著正相关(P<0.01).外源Ca2+对超积累生态型东南景天锌吸收及积累有促进作用,而Ca2+浓度的升高抑制了非超积累生态型东南景天对锌的吸收.适当增加外源Ca2+可促进超积累生态型东南景天生长,改善其锌积累能力.  相似文献   

5.
Sedum alfredii is a well known cadmium (Cd) hyperaccumulator native to China; however, the mechanism behind its hyperaccumulation of Cd is not fully understood. Through several hydroponic experiments, characteristics of Cd uptake and translocation were investigated in the hyperaccumulating ecotype (HE) of S. alfredii in comparison with its non-hyperaccumulating ecotype (NHE). The results showed that at Cd level of 10 microM measured Cd uptake in HE was 3-4 times higher than the implied Cd uptake calculated from transpiration rate. Furthermore, inhibition of transpiration rate in the HE has no essential effect on Cd accumulation in shoots of the plants. Low temperature treatment (4 degrees C) significantly inhibited Cd uptake and reduced upward translocation of Cd to shoots for 9 times in HE plants, whereas no such effect was observed in NHE. Cadmium concentration was 3-4-fold higher in xylem sap of HE, as compared with that in external uptake solution, whereas opposite results were obtained for NHE. Cadmium concentration in xylem sap of HE was significantly reduced by the addition of metabolic inhibitors, carbonyl cyanide m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP), in the uptake solutions, whereas no such effect was noted in NHE. These results suggest that Cd uptake and translocation is an active process in plants of HE S. alfredii, symplastic pathway rather than apoplastic bypass contributes greatly to root uptake, xylem loading and translocation of Cd to the shoots of HE, in comparison with the NHE plants.  相似文献   

6.
7.
 植物长期生长在重金属污染的生境中,逐渐进化成不同的生态型。通过调查中国东南部古老Pb/zn矿和非矿山生境中的植物种群,发现生长在古老Pb/Zn矿的东南景天(Sedum alfredii Hance)是一种新的Zn超积累植物。在自然和控制条件下,古老Pb/Zn矿生态型比非矿山生态型植株的茎粗、叶片大、植株高。在矿山土壤Zn有效含量为105.5~325.4mg·kg-1时,矿山生态型东南景天植株地上部Zn含量为4134~5000mg·kg-1;当营养液中Zn浓度为1223.6μmol时,其Zn含量高达2%。在相同Zn浓度下,矿山生态型地上部Zn含量比非矿山生态型高30倍左右。两种生态型体内Zn分布也不同,古老铅锌矿山生态型的不同器官中Zn含量以茎>叶片>根系,而非矿山生态型则以根系>茎>叶片。古老铅锌矿山生态型地上部积累的Zn占植株总积累量的90%以上,其中叶片和茎分别占41.66%±5.46%和54.75%±5.87%;非矿山生态型各器官中积累的Zn远远低于古老铅锌矿山生态型,各器官中积累的Zn以茎>根系>叶片。本研究表明,这两种生态型东南景天的发现,为今后探讨植物耐高Zn胁迫和超积累Zn的微进化过程提供了非常有价值的材料,也为Zn污染土壤的植物修复提供了一种很有潜力的候选材料。  相似文献   

8.
Sedum alfredii Hance has been identified as a Zn-hyperaccumulating plant species native to China. The characteristics of Zn uptake and accumulation in the hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of S. alfredii were investigated under nutrient solution and soil culture conditions. The growth of HE was normal up to 1000 μM Zn in nutrient solution, and 1600 mg Zn kg−1 soil in a Zn-amended soil. Growth of the NHE was inhibited at Zn levels ≥250 μM in nutrient solution. Zinc concentrations in the leaves and stems increased with increasing Zn supply levels, peaking at 500 and 250 μM Zn in nutrient solution for the HE and the NHE, respectively, and then gradually decreased or leveled off with further increase in solution Zn. Minimal increases in root Zn were noted at Zn levels up to 50 μM; root Zn sharply increased at higher Zn supply. The maximum Zn concentration in the shoots of the HE reached 20,000 and 29,000 mg kg−1 in the nutrient solution and soil experiments, respectively, approximately 20 times greater than those of the NHE. Root Zn concentrations were higher in the NHE than in the HE when plants were grown at Zn levels ≥50 μM. The time-course of Zn uptake and accumulation exhibited a hyperbolic saturation curve: a rapid linear increase during the first 6 days in the long-term and 60 min in the short-term studies; followed by a slower increase or leveling off with time. More than 80% of Zn accumulated in the shoots of the HE at half time (day 16) of the long-term uptake in 500 μM Zn, and also at half time (120 min) of the short-term uptake in 10 μM 65Zn2+. These results indicate that Zn uptake and accumulation in the shoots of S. alfredii exhibited a down-regulation by internal Zn accumulated in roots or leaves under both nutrient solution and soil conditions. An altered Zn transport system and increased metal sequestration capacity in the shoot tissues, especially in the stems, may be the factors that allow increased Zn accumulation in the hyperaccumulating ecotype of S. alfredii. Section Editor: F. J. Zhao  相似文献   

9.
Uptake of Cd and Zn by intact seedlings of two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens was characterized using radioactive tracers. Uptake of Cd and Zn at 2 degrees C was assumed to represent mainly apoplastic binding in the roots, whereas the difference in uptake between 22 degrees C and 2 degrees C represented metabolically dependent influx. There was no significant difference between the two ecotypes in the apoplastic binding of Cd or Zn. Metabolically dependent uptake of Cd was 4.5-fold higher in the high Cd-accumulating ecotype, Ganges, than in the low Cd-accumulating ecotype, Prayon. By contrast, there was only a 1.5-fold difference in the Zn uptake between the two ecotypes. For the Ganges ecotype, Cd uptake could be described by Michaelis-Menten kinetics with a V(max) of 143 nmol g(-1) root FW h(-1) and a K(m) of 0.45 microM. Uptake of Cd by the Ganges ecotype was not inhibited by La, Zn, Cu, Co, Mn, Ni or Fe(II), and neither by increasing the Ca concentration. By contrast, addition of La, Zn or Mn, or increasing the Ca concentration in the uptake solution decreased Cd uptake by Prayon. Uptake of Ca was larger in Prayon than in Ganges. The results suggest that Cd uptake by the low Cd-accumulating ecotype (Prayon) may be mediated partly via Ca channels or transporters for Zn and Mn. By contrast, there may exist a highly selective Cd transport system in the root cell membranes of the high Cd-accumulating ecotype (Ganges) of T. caerulescens.  相似文献   

10.
 采用盆栽方法研究了两种生态型东南景天(Sedum alfredii)对土壤中不同含量Cd(即对照, 12.5, 25, 50, 100, 200, 300, 400 mg&;#8226;kg-1)的生 长反应、吸收和积累Cd的差异性。结果表明,土壤添加重金属Cd后,矿山生态型东南景天生长正常,地上部和根系Cd含量随着土壤中Cd含量的 增加而增加,在400 mg&;#8226;kg-1 Cd处理下含量分别高达2 900和500 mg&;#8226;kg-1,其地上部显著大于根部;然而,土壤添加Cd后,非矿山生态型东 南景天的生长受到抑制,地上部和根部的生物量显著降低。当土壤Cd含量为50~100 mg&;#8226;kg-1 时,非矿山生态型东南景天的地上部和根系Cd含 量随着土壤中Cd含量的增加而增加,而且根系Cd含量则大于地上部。当土壤Cd≤50 mg&;#8226;kg-1时,矿山生态型东南景天根系Cd含量比非矿山生态 型高 ,但当土壤Cd≥100 mg&;#8226;kg-1,两者之间无显著差异;然而,但在同一Cd处理水平下,矿山生态型东南景天地上部Cd含量总是高于非矿山 生态型。这些结果表明,矿山生态型东南景天有很强的忍耐和吸收土壤Cd的能力,再次证明其为一种Cd超积累植物。  相似文献   

11.
Effects of different zinc concentrations on antioxidant responses in the roots of the hyperaccumulating ecotype (HE) and nonhyperaccumulating ecotype (NHE) of Sedum alfredii Hance were investigated under hydroponic conditions. Growth of NHE was inhibited significantly when Zn concentration was >-50 μM, whereas high Zn concentrations were beneficial for HE growth, and 500 μM Zn induced a significant increase in the root biomass and reducing activity. Malondialdehyde content and electrical conductivity of the NHE roots increased significantly; however, no changes were observed in HE when the Zn concentration was >10 μM, suggesting a severe damage to the membrane of the NHE roots. Proline content in NHE roots increased rapidly, whereas it was low in HE roots even at high Zn concentrations, suggesting that proline may not play an important role in Zn hyperaccumulation. The activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX) in NHE roots increased significantly when the Zn concentration was >10 μM and decreased sharply when the Zn concentration was >-500 μM. For roots of HE, in contrast, no significant changes were observed in SOD, CAT, APX, and GPX activities at low Zn concentrations, whereas a high Zn concentration (≥500 μM) led to a marked enzyme activation, which was in accordance with Zn accumulation in shoots. The results suggest that antioxidant enzymes were important for Zn detoxification in NHE at low Zn concentrations (10–250 μM) and were more critical for Zn detoxification and hyperaccumulation in HE under elevated Zn concentrations (500–1000 μM).  相似文献   

12.
Abscisic acid (ABA) is a key phytohormone underlying plant resistance to toxic metals. However, regulatory effects of ABA on apoplastic transport in roots and consequences for uptake of metal ions are poorly understood. Here, we demonstrate how ABA regulates development of apoplastic barriers in roots of two ecotypes of Sedum alfredii and assess effects on cadmium (Cd) uptake. Under Cd treatment, increased endogenous ABA level was detected in roots of nonhyperaccumulating ecotype (NHE) due to up‐regulated expressions of ABA biosynthesis genes (SaABA2, SaNCED), but no change was observed in hyperaccumulating ecotype (HE). Simultaneously, endodermal Casparian strips (CSs) and suberin lamellae (SL) were deposited closer to root tips of NHE compared with HE. Interestingly, the vessel‐to‐CSs overlap was identified as an ABA‐driven anatomical trait. Results of correlation analyses and exogenous applications of ABA/Abamine indicate that ABA regulates development of both types of apoplastic barriers through promoting activities of phenylalanine ammonialyase, peroxidase, and expressions of suberin‐related genes (SaCYP86A1, SaGPAT5, and SaKCS20). Using scanning ion‐selected electrode technique and PTS tracer confirmed that ABA‐promoted deposition of CSs and SL significantly reduced Cd entrance into root stele. Therefore, maintenance of low ABA levels in HE minimized deposition of apoplastic barriers and allowed maximization of Cd uptake via apoplastic pathway.  相似文献   

13.
Zhang  M.  Zhang  J.  Jiao  R. T.  Yang  X. E.  Ji  D. W. 《Russian Journal of Plant Physiology》2021,68(6):1115-1124
Russian Journal of Plant Physiology - Hyperaccumulating ecotype (HE) of Sedum alfredii Hance is a Zn/Cd hyperaccumulator, which can accumulate Zn in shoot up to 2% of dry weight, understanding the...  相似文献   

14.
【目的】探究和比较超积累和非超积累生态型东南景天茎、叶微生物群落结构的异同。【方法】采用高通量测序技术研究野外两种生态型东南景天茎和叶片的内生细菌群落结构。【结果】4个样品总共得到366 783条有效序列和39 948个OTU(97%相似度)。从Shannon指数得知:两种生态型东南景天叶片内生菌的多样性均高于茎;超积累生态型东南景天叶片内生菌的多样性高于非超积累生态型,但非超积累生态型东南景天茎组织中内生菌多样性高于超积累生态型东南景天。超积累生态型东南景天的叶片和茎中的内生菌分别包括26和21个门,123和117个科;非超积累生态型东南景天叶片和茎中的内生菌分别包括43和22个门,175和83个科,4个样品的优势菌群均为变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和蓝藻细菌门(Cyanobacteria)。在属分类水平上,超累积生态型东南景天叶片和茎第一优势菌属分别为Synechococcus和Plesiomonas;非超积累生态型东南景天叶片和茎组织第一优势菌群分别为Pseudomonas和Dechloromonas。【结论】两种生态型东南景天的叶片和茎中均具有丰富的内生细菌,但超积累生态型东南景天叶片内生菌多样性最大,且存在一些独有的功能菌群。  相似文献   

15.
一种新的铅富集植物--富集生态型东南景天   总被引:1,自引:0,他引:1  
对浙江一古老铅锌矿区的土壤和植物种群进行调查后发现一种新的具有耐铅特性和铅富集能力的植物--景天科景天属东南景天(Sedum alfredii Hance),称为铅富集生态型植物.进一步比较和分析了不同浓度硝酸铅处理对富集和非富集生态型东南景天的生长及其对铅的吸收特性的影响.结果表明, 320 mg Pb/L处理对富集生态型的地上部分生长无显著影响,而非富集生态型在20 mg Pb/L时即出现受害症状.富集和非富集生态型的地上部分铅含量、根系铅含量以及单株铅积累速率均随处理浓度的增加而表现出先升后降的变化趋势.其中富集生态型的地上部分铅含量、根系铅含量以及单株铅积累速率最高可达到514 mg/kg、13 922 mg/kg和8.62 μg/plant/d,分别是非富集生态型的2.27、2.62和7.16倍.由于具有生长速度快和高积累铅的能力,从植物修复的观点来说,东南景天铅富集生态型在铅污染土壤的修复方面具有巨大的潜力.  相似文献   

16.
The phytotoxicity and antioxidative adaptations of lead (Pb) accumulating ecotype (AE) and non-accumulating ecotype (NAE) of Sedum alfredii Hance were investigated under different Pb treatments involving 0, 0.02 mmol/L Pb, 0.1 mmol/L Pb and 0.1 mmol/L Pb/0.1 mmol/L ethylenediaminetetraacetic acid (EDTA) for 6days. With the increasing Pb level, the Pb concentration in the shoots of AE plants enhanced accordingly, and EDTA supply helped 51% of Pb translocation to shoots of AE compared with those treated with 0.1 mmol/L Pb alone. Moreover, the presence of EDTA alleviated Pb phytotoxicity through changes in plant biomass, root morphology and chlorophyll contents. Lead toxicity induced hydrogen peroxide (H2O2) accumulation and lipid peroxidation in both ecotypes of S. alfredii. The activities of superoxide dismutase (SOD), guaiacol peroxidase (G-POD), ascorbate peroxidase, and dehydroascorbate reductase elevated in both leaves and roots of AE as well as in leaves of NAE with the increasing Pb levels, but SOD and G-POD declined in roots of NAE. Enhancement in glutathione reductase activity was only detected in roots of NAE while a depression in catalase activity was recorded in the leaves of NAE. A significant enhancement in glutathione and ascorbic acid (AsA) levels occurred in both ecotypes exposed to Pb and Pb/EDTA treatment compared with the control, however, the differences between these two treatments were insignificant. The dehydroascorbate (DHA) contents in roots of both ecotypes were 1.41 to 11.22-fold higher than those in leaves, whereas the ratios of AsA to DHA (1.38 to 6.84) in leaves altering more to the reduced AsA form were much higher than those in roots. These results suggested that antioxidative enzymes and antioxidants play an important role in counteracting Pb stress in S. alfredii.  相似文献   

17.
This study aims to determine the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulator (HE) and non hyperaccumulator (NHE) ecotypes of Sedum alfredii using a non-invasive Cd-selective microelectrode. Compared with the NHE S. alfredii, the HE S. alfredii showed a higher Cd influx in the root apical region and root hair cells, as well as a significantly higher Cd efflux in the leaf petiole after root pre-treatment with cadmium chloride (CdCl2). Thus, HE S. alfredii has a higher capability for the translocation of absorbed Cd to the shoot. Moreover, the mesophyll tissues, isolated mesophyll protoplasts, and intact vacuoles from HE S. alfredii exhibited an instantaneous influx of Cd in response to CdCl2 treatment with mean rates that are markedly higher than those from NHE S. alfredii. Therefore, the hyper-accumulating trait of HE S. alfredii is characterized by the rapid Cd uptake in specific root regions, including the apical region and root hair cells, as well as by the rapid root-to-shoot translocation and the highly efficient Cd-permeable transport system in the plasma membrane and mesophyll cell tonoplast. We suggest that the non-invasive Cd-selective microelectrode is an excellent method with a high degree of spatial resolution for the study of Cd transport at the tissue, cellular, and sub-cellular levels in plants.  相似文献   

18.
Short-term responses of Sedum alfredii roots to Cd exposure was compared in Cd hyperaccumulator (HE) and nonhyperaccumulating ecotype (NHE). Cadmium exposure significantly inhibited root elongation and induced loss of plasma membrane integrity and lipid peroxidation of roots tips in the NHE, whereas these effects were much less pronounced in the HE plants. A strong accumulation of reactive oxygen species with increasing Cd concentration was noted in the NHE root tips, but not in HE. After Cd exposure, a dose-dependent decrease in oxidized glutathione and marked increase in reduced glutathione and non-protein thiols were observed in root tips of HE, but were not seen in the NHE plants. These results suggest that the HE tolerates high Cd in the environment through the differential adaptations against Cd-induced oxidative stress.  相似文献   

19.
We have previously identified an ecotype of the hyperaccumulator Thlaspi caerulescens (Ganges), which is far superior to other ecotypes (including Prayon) in Cd uptake. In this study, we investigated the effect of Fe status on the uptake of Cd and Zn in the Ganges and Prayon ecotypes, and the kinetics of Cd and Zn influx using radioisotopes. Furthermore, the T. caerulescens ZIP (Zn-regulated transporter/Fe-regulated transporter-like protein) genes TcZNT1-G and TcIRT1-G were cloned from the Ganges ecotype and their expression under Fe-sufficient and -deficient conditions was analyzed. Both short- and long-term studies revealed that Cd uptake was significantly enhanced by Fe deficiency only in the Ganges ecotype. The concentration-dependent kinetics of Cd influx showed that the V(max) of Cd was 3 times greater in Fe-deficient Ganges plants compared with Fe-sufficient plants. In Prayon, Fe deficiency did not induce a significant increase in V(max) for Cd. Zn uptake was not influenced by the Fe status of the plants in either of the ecotypes. These results are in agreement with the gene expression study. The abundance of ZNT1-G mRNA was similar between the Fe treatments and between the two ecotypes. In contrast, abundance of the TcIRT1-G mRNA was greatly increased only in Ganges root tissue under Fe-deficient conditions. The present results indicate that the stimulatory effect of Fe deficiency on Cd uptake in Ganges may be related to an up-regulation in the expression of genes encoding for Fe(2+) uptake, possibly TcIRT1-G.  相似文献   

20.
Rengel  Z. 《Annals of botany》2000,86(6):1119-1126
Genotypes tolerant to zinc (Zn) toxicity, if they accumulateZn in their roots, may grow better than Zn-sensitive genotypes,even in Zn-deficient soil. In the present study, Holcus lanatusL. ecotypes differing in tolerance to Zn toxicity were grownin Zn-deficient Laffer soil which was amended with Zn to createa range of conditions from Zn deficiency to Zn toxicity. IncreasingZn additions to the soil, up to the sufficiency level, improvedgrowth of all ecotypes. At toxic levels of added Zn, the Zn-sensitiveecotype suffered a greater decrease in growth than the Zn-tolerantecotypes. All ecotypes accumulated more Zn in roots than inshoots, with root concentrations exceeding 8 g Zn kg-1dry weightin extreme cases. When grown in Zn-deficient or Zn-sufficientsoil (up to 0.5 mg Zn kg-1soil added), ecotypes tolerant toZn toxicity took up more Zn, grew better and had greater rootand shoot Zn concentration than the control (Zn-sensitive ecotype).Zn-tolerant ecotypes transported more Zn, copper (Cu) and iron(Fe) from roots to shoots in comparison with the Zn-sensitiveecotype. The average Zn uptake rate from Zn-deficient soil (noZn added) was greater in the Zn-tolerant ecotypes than in theZn-sensitive ecotype. In conclusion, ecotypes of H. lanatusthat are tolerant to Zn toxicity also tolerate Zn deficiencybetter than the Zn-sensitive ecotype because of their greatercapacity for taking up Zn from Zn-deficient soil. This is thefirst report of the coexistence of traits for tolerance to Zntoxicity and Zn deficiency in a single plant genotype. Copyright2000 Annals of Botany Company Copper, heavy metal, Holcus lanatus, iron, zinc deficiency, zinc toxicity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号