首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial precursor protein, apocytochrome c, binds to model membranes containing negatively charged phospholipids (Rietveld, A., Sijens, R., Verkleij, A.J. and Kruijff, B. (1983) EMBO J. 2, 907-913). In the present paper the effect of apocytochrome c on the lipid distribution in model membranes, consisting of neutral and acidic phospholipids, is examined. Both ESR and fluorescence energy transfer experiments show that the protein preferentially interacts with the negatively charged phospholipid in the mixed model membranes. Semi-quantitative analysis of the fluorescence energy transfer from the single tryptophan in apocytochrome c to the parinaric acid in phosphatidylserine or phosphatidylcholine in mixed bovine brain phosphatidylserine/egg phosphatidylcholine vesicles reveals and average donor-acceptor distance of 22-26 A and 26-30 A for phosphatidylserine and phosphatidylcholine, respectively. In addition, these experiments demonstrate that this preferential interaction does not induce the separation of large domains enriched in complexes of apocytochrome c with negatively charged phospholipids and domains enriched in neutral lipids.  相似文献   

2.
The ability of apocytochrome c and the heme containing respiratory chain component, cytochrome c, to induce fusion of phosphatidylcholine (PC) small unilamellar vesicles containing 0-50 mol % negatively charged lipids was examined. Both molecules mediated fusion of phosphatidylserine (PS):PC 1:1 vesicles as measured by energy transfer changes between fluorescent lipid probes in a concentration- and pH-dependent manner, although cytochrome c was less potent and interacted over a more limited pH range than the apocytochrome c. Maximal fusion occurred at pH 3, far below the pKa of the 19 lysine groups contained in the protein (pI = 10.5). A similar pH dependence was observed for vesicles containing 50 mol % cardiolipin (CL), phosphatidylglycerol (PG), and phosphatidylinositol (PI) in PC but the apparent pKa values varied somewhat. In the absence of vesicles, the secondary structure of apocytochrome c was unchanged over this pH range, but in the presence of negatively charged vesicles, the polypeptide underwent a marked conformational change from random coil to alpha-helix. By comparing the pH dependencies of fusion induced by poly-L-lysine and apocytochrome c, we concluded that the pH dependence derived from changes in the net charge on both the vesicles and apocytochrome c. Aggregation could occur under conditions where fusion was imperceptible. Fusion increased with increasing mole ratio of PS. Apocytochrome c did induce some fusion of vesicles composed only of PC with a maximum effect at pH 4. Biosynthesis of cytochrome c involves translocation of apocytochrome c from the cytosol across the outer mitochondrial membrane to the outer mitochondrial space where the heme group is attached. The ability of apocytochrome c to induce fusion of both PS-containing and PC-only vesicles may reflect characteristics of protein/membrane interaction that pertain to its biological translocation.  相似文献   

3.
Monomolecular layers of lipid extracts of microsomal, mitochondrial outer and inner membranes, and pure lipid species have been used to measure their interaction with apo- and holocytochrome c. Large differences were observed both with respect to the nature and the lipid specificity of the interaction. The initial electrostatic interaction of the hemefree precursor apocytochrome c with anionic phospholipids is followed by penetration of the protein in between the acyl chains. Apocytochrome c shows similar interactions for all anionic lipids tested. In strong contrast the holoprotein discriminates enormously between cardiolipin for which it has a high affinity and phosphatidylserine and phosphatidylinositol for which it has a much lower affinity. For these latter lipids the interaction with cytochrome c is primarily electrostatic. The cytochrome c-cardiolipin interaction shows several unique features which suggest the formation of a specific complex between the two molecules. These properties account for the preference in interaction of the apoprotein with the lipid extract of the outer mitochondrial membrane over that of the endoplasmic reticulum and the large preference of cytochrome c for the inner over that of the outer mitochondrial membrane lipid extract. Only apocytochrome c was able to induce close contacts between monolayers of the mitochondrial outer membrane lipids and vesicles of mitochondrial inner membrane lipids. Experiments with fragments of both protein and unfolding experiments with cytochrome c revealed that the differences in interaction between the two proteins are mainly due to differences in their tertiary structure and not the presence of the heme group itself. The initial unfolded structure of apocytochrome c is responsible for the high penetrative power of the protein and its ability to induce close membrane contact, whereas the folded structure of cytochrome c is responsible for the specific interaction with cardiolipin. The results are discussed in the light of the apocytochrome c import process in mitochondria and suggest that lipid-protein interactions contribute to targeting the precursor toward mitochondria and are important for its translocation across the outer mitochondrial membrane and the final localization of cytochrome c toward the outside of the inner mitochondrial membrane.  相似文献   

4.
Insertion of apocytochrome c into lipid vesicles   总被引:6,自引:0,他引:6  
Apocytochrome c (cytochrome c without the heme) is synthesized in the cell cytoplasm without a cleaved signal sequence, then transported across the outer mitochondrial membrane. We have studied the interaction of apocytochrome c with lipid vesicles as a model for understanding protein translocation across membranes. Apocytochrome c (but not holocytochrome c) that has been incubated with vesicles at 37 degrees C in 0.2 M NaCl binds to the vesicles. Under these conditions, as well as upon incubation with detergent or at high protein concentrations, all the added protein remains partly accessible to externally added protease, but a COOH-terminal fragment of some of the protein molecules becomes protected against digestion. When apocytochrome c is added to azolectin vesicles with internally trapped proteases, most of the added protein can be digested, even in the presence of a large excess of protease inhibitor external to the vesicles. Thus, in spite of a lack of nonpolar stretches in its amino acid sequence, apocytochrome c is capable of binding to and inserting into lipid membranes. In this model system, transport may be driven by trapping of protease-digested apocytochrome c on one side of the membrane.  相似文献   

5.
W Jordi  B de Kruijff  D Marsh 《Biochemistry》1989,28(23):8998-9005
The contribution of the various regions of the mitochondrial precursor protein apocytochrome c to the interaction of the protein with phosphatidylserine dispersions has been studied with chemically and enzymatically prepared fragments of horse heart apocytochrome c and phospholipids spin-labeled at different positions of the sn-2 chain. Three amino-terminal heme-less peptides, two heme-containing amino-terminal fragments, one central fragment, and three carboxy-terminal fragments were studied. The electron spin resonance spectra of phospholipids spin-labeled at the C5 position of the fatty acid chain indicate that both amino-terminal and carboxy-terminal fragments of the apocytochrome c molecule cause a restriction of motion of the lipids, whereas the heme-containing peptides and protein have less effect. In addition, a second motionally more restricted lipid component, which is observed for apocytochrome c interacting with phosphatidylserine dispersions containing lipids spin-labeled at the C12 or C14 position [G?rrissen, H., Marsh, D., Rietveld, A., & de Kruijff, B. (1986) Biochemistry 25, 2904-2910], was observed both on binding the carboxy-terminal fragments and on binding of the amino-terminal fragments of the precursor protein. Interestingly, even a small water-soluble peptide consisting of the 24 carboxy-terminal residues gave rise to a two-component spectrum, with an outer hyperfine splitting of the restricted lipid component of 59 G, indicating a considerable restriction of the chain motion. This suggests that both the carboxy- and amino-terminal parts of the protein penetrate into the center of the bilayer and cause a strong perturbation of the fatty acyl chain motion. The implications of these findings for the mechanism of apocytochrome c translocation across membranes are discussed.  相似文献   

6.
The ability of apocytochrome c and the heme containing respiratory chain component, cytochrome c, to induce fusion of phosphatidylcholine (PC) small unilamellar vesicles containing 0–50 mol% negatively charged lipids was examined. Both molecules mediated fusion of phosphatidylserine (PS):PC 1:1 vesicles as measured by energy transfer changes between fluorescent lipid probes in a concentration- and pH-dependent manner, although cytochrome c was less potent and interacted over a more limited pH range than the apocytochrome c. Maximal fusion occurred at pH 3, far below the pKa of the 19 lysine groups contained in the protein (pl = 10.5). A similar pH dependence was observed for vesicles containing 50 mol% cardiolipin (CL), phosphatidylglycerol (PG), and phosphatidylinositol (PI) in PC but the apparent pKa values varied somewhat. In the absence of vesicles, the secondary structure of apocytochrome c was unchanged over this pH range, but in the presence of negatively charged vesicles, the polypeptide underwent a marked conformational change from random coil to α-helix. By comparing the pH dependencies of fusion induced by poly-L-lysine and apocytochrome c, we concluded that the pH dependence derived from changes in the net charge on both the vesicles and apocytochrome c. Aggregation could occur under conditions where fusion was imperceptible. Fusion increased with increasing mole ratio of PS. Apocytochrome c did induce some fusion of vesicles composed only of PC with a maximum effect at pH 4. Biosynthesis of cytochrome c involves translocation of apocytochrome c from the cytosol across the outer mitochondrial membrane to the outer mitochondrial space where the heme group is attached. The ability of apocytochrome c to induce fusion of both PS-containing and PC-only vesicles may reflect characteristics of protein/membrane interaction that pertain to its biological translocation.  相似文献   

7.
The interaction of phenethyl alcohol with model membranes and its effect on translocation of the chemically prepared mitochondrial precursor protein apocytochrome c across a lipid bilayer was studied. Phenethyl alcohol efficiently penetrates into monolayers and causes acyl chain disordering judged from deuterium nuclear magnetic resonance measurements with specific acyl chain-deuterated phospholipids. Translocation of apocytochrome c across a phospholipid bilayer was stimulated on addition of phenethyl alcohol indicating that the efficiency of translocation of this precursor protein is enhanced due to a disorder of the acyl chain region of the bilayer.  相似文献   

8.
In this study, we have investigated the protein/lipid interactions of two mitochondrial precursor proteins, apocytochrome c and pCOX IV-DHFR, which exhibit mitochondrial import pathways with different characteristics. In-vitro-synthesized apocytochrome c was found to bind efficiently and specifically to liposomes composed of negatively charged phospholipids and showed a (at least partial) translocation across a lipid bilayer, as reported previously for the chemically prepared precursor protein [Rietveld, A. & de Kruijff, B. (1984) J. Biol. Chem. 259, 6704-6707; Dumont, M. E. & Richards, F. M. (1984) J. Biol. Chem. 259, 4147-4156]. Negatively charged liposomes were shown to efficiently compete with mitochondria for import of in-vitro-synthesized apocytochrome c into the organelle, suggesting an important role for negatively charged phospholipids in the initial binding of apocytochrome c to mitochondria. In contrast, the purified and in-vitro-synthesized precursor fusion protein pCOX IV-DHFR, consisting of the presequence of yeast cytochrome oxidase subunit IV fused to mouse dihydrofolate reductase was unable to translocate across a pure lipid bilayer. The data indicate that the ability of apocytochrome c to spontaneously translocate across the bilayer is not shared by all mitochondrial precursor proteins. The implications of the special protein/lipid interaction of apocytochrome c for import into mitochondria will be discussed.  相似文献   

9.
The interaction between cytochrome c and its heme-free precursor apocytochrome c and chemically prepared fragments of these basic proteins with phosphatidylserine containing model membrane systems was studied by differential scanning calorimetry and carboxyfluorescein release experiments. Addition of apocytochrome c and fragments derived from the N-terminus cause a pronounced and linear decrease of the enthalpy (delta H) of the gel to liquid-crystalline phase transition of dielaidoylphosphatidylserine. In contrast, fragments derived from the C-terminus cause a smaller reduction in delta H; a similar trend was observed for the ability of the fragments to cause an increased carboxyfluorescein release from unilamellar vesicles. In addition, the covalent attachment of the heme at cysteine residues 14 and 17 greatly reduced the ability of both the intact protein and the N-terminal fragments to decrease delta H. Using a protein translocation assay based on large unilamellar vesicles containing enclosed trypsin it was found that at gel state temperatures the ability of apocytochrome c to partially translocate the bilayer (reach the opposite membrane/water interface) was greatly reduced. The implications of these findings for the import mechanism of apocytochrome c in mitochondria are shortly indicated.  相似文献   

10.
The yeast prion Ure2p polymerizes into native-like fibrils, retaining the overall structure and binding properties of the soluble protein. Recently we have shown that, similar to amyloid oligomers, the native-like Ure2p fibrils and their precursor oligomers are highly toxic to cultured mammalian cells when added to the culture medium, whereas Ure2p amyloid fibrils generated by heating the native-like fibrils are substantially harmless. We show here that, contrary to the nontoxic amyloid fibrils, the toxic, native-like Ure2p assemblies induce a significant calcein release from negatively charged phosphatidylserine vesicles. A minor and less-specific effect was observed with zwitterionic phosphatidylcholine vesicles, suggesting that the toxic aggregates preferentially bind to negatively charged sites on lipid membranes. We also found that cholesterol-enriched phospholipid membranes are protected against permeabilization by native-like Ure2p assemblies. Moreover, vesicle permeabilization appears charge-selective, allowing calcium, but not chloride, influx to be monitored. Finally, we found that the interaction with phosphatidylserine membranes speeds up Ure2p polymerization into oligomers and fibrils structurally and morphologically similar to the native-like Ure2p assemblies arising in free solution, although less cytotoxic. These data suggest that soluble Ure2p oligomers and native-like fibrils, but not amyloid fibrils, interact intimately with negatively charged lipid membranes, where they allow selective cation influx.  相似文献   

11.
Myelin basic protein associates with bilayer vesicles of pure egg phosphatidylcholine, L-alpha-dimyristoyl phosphatidylcholine and DL-alpha-dipalmitoyl phosphatidylcholine. Under optimum conditions the vesicles contain 15-18% of protein by weight. The binding to dipalmitoyl phosphatidylcholine is facilitated above its gel-to-liquid crystalline transition temperature. At low ionic strength the protein provokes a large increase in vesicle size and aggregation of these enlarged vesicles. Above a sodium chloride concentration of 0.07 M vesicle fusion is far less marked but aggregation persists. The pH- and ionic strength-dependence of this aggregation follows that of the protein alone; in both cases it occurs despite appreciable electrostatic repulsion between the associated species. A similar interaction was observed with diacyl phosphatidylserine vesicles. These observations, which contrast with earlier reports in the literature of a lack of binding of basic protein to phosphatidylcholine-containing lipids, demonstrate the ability of this protein to interact non-ionically with lipid bilayers. The strong cross-linking of lipid bilayers suggests a role for basic protein in myelin, raising the possibility that the protein is instrumental in collapsing the oligodendrocyte cell membrane and thus initiating myelin formation.  相似文献   

12.
Deuterium and phosphorus nuclear magnetic resonance techniques were used to study the interaction of the mitochondrial precursor protein apocytochrome c with headgroup-deuterated (dioleoylphosphatidyl-L-[2-2H1]serine) and acyl chain deuterated (1,2-[11,11-2H2]dioleoylphosphatidylserine) dispersions. Binding of the protein to dioleoylphosphatidylserine liposomes results in phosphorus nuclear magnetic resonance spectra typical of phospholipids undergoing fast axial rotation in extended liquid-crystalline bilayers with a reduced residual chemical shift anisotropy and an increased line width. 2H NMR spectra on headgroup-deuterated dioleoylphosphatidylserine dispersions showed a decrease in quadrupolar splitting and a broadening of the signal on interaction with apocytochrome c. Addition of increasing amounts of apocytochrome c to the acyl chain deuterated dioleoylphosphatidylserine dispersions results in the gradual appearance of a second component in the spectra with a 44% reduced quadrupolar splitting. Such large reduction of the quadrupolar splitting has never been observed for any protein studied yet. The lipid structures corresponding to these two components could be separated by sucrose gradient centrifugation, demonstrating the existence of two macroscopic phases. In mixtures of phosphatidylserine and phosphatidylcholine similar effects are observed. The induction of a new spectral component with a well-defined reduced quadrupolar splitting seems to be confined to the N-terminus since addition of a small hydrophilic amino-terminal peptide (residues 1-38) also induces a second component with a strongly reduced quadrupolar splitting. A chemically synthesized peptide corresponding to amino acid residues 2-17 of the presequence of the mitochondrial protein cytochrome oxidase subunit IV also has a large perturbing effect on the order of the acyl chains, indicating that the observed effects may be a property shared by many mitochondrial precursor proteins. In contrast, binding of the mature protein, cytochrome c, to acyl chain deuterated phosphatidylserine dispersions has no effect on the deuterium and phosphorus nuclear magnetic resonance spectra, thereby demonstrating precursor-specific perturbation of the phospholipid order. The inability of holocytochrome c to perturb the phospholipid order is due to folding of this protein, since unfolding of cytochrome c by heat or urea treatment results in similar effects on dioleoylphosphatidylserine bilayers, as observed for the unfolded precursor. Implications of these data for the import of apocytochrome c into mitochondria will be discussed.  相似文献   

13.
Myelin basic protein associates with bilayer vesicles of pure egg phosphatidylcholine, l-α-dimyristoyl phosphatidylcholine and dl-α-dipalmitoyl phosphatidylcholine. Under optimum conditions the vesicles contain 15–18% of protein by weight. The binding to dipalmitoyl phosphatidylcholine is facilitated above its gel-to-liquid crystalline transition temperature. At low ionic strength the protein provokes a large increase in vesicle size and aggregation of these enlarged vesicles. Above a sodium chloride concentration of 0.07 M vesicle fusion is far less marked but aggregation persists. The pH- and ionic strength-dependence of this aggregation follows that of the protein alone; in both cases it occurs despite appreciable electrostatic repulsion between the associating species.A similar interaction was observed with diacyl phosphatidylserine vesicles.These observations, which contrast with earlier reports in the literature of a lack of binding of basic protein to phosphatidylcholine-containing lipids, demonstrate the ability of this protein to interact non-ionically with lipid bilayers. The strong cross-linking of lipid bilayers suggests a role for basic protein in myeling, raising the possibility that the protein is instrumental in collapsing the oligodendrocyte cell membrane and thus initiating myelin formation.  相似文献   

14.
A phospholipid transfer protein from yeast (Daum, G. and Paltauf, F. (1984) Biochim. Biophys. Acta 794, 385-391) was 2800-fold enriched by an improved procedure. The specificity of this transfer protein and the influence of membrane properties of acceptor vesicles (lipid composition, charge, fluidity) on the transfer activity were determined in vitro using pyrene-labeled phospholipids. The yeast transfer protein forms a complex with phosphatidylinositol or phosphatidylcholine, respectively, and transfers these two phospholipids between biological and/or artificial membranes. The transfer rate for phosphatidylinositol is 19-fold higher than for phosphatidylcholine as determined with 1:8 mixtures of phosphatidylinositol and phosphatidylcholine in donor and acceptor membrane vesicles. If acceptor membranes consist only of non-transferable phospholipids, e.g., phosphatidylethanolamine, a moderate but significant net transfer of phosphatidylcholine occurs. Phosphatidylcholine transfer is inhibited to a variable extent by negatively charged phospholipids and by fatty acids. Differences in the accessibility of the charged groups of lipids to the transfer protein might account for the different inhibitory effects, which occur in the order phosphatidylserine which is greater than phosphatidylglycerol which is greater than phosphatidylinositol which is greater than cardiolipin which is greater than phosphatidic acid which is greater than fatty acids. Although mitochondrial membranes contain high amounts of negatively charged phospholipids, they serve effectively as acceptor membranes, whereas transfer to vesicles prepared from total mitochondrial lipids is essentially zero. Ergosterol reduces the transfer rate, probably by decreasing membrane fluidity. This notion is supported by data obtained with dipalmitoyl phosphatidylcholine as acceptor vesicle component; in this case the transfer rate is significantly reduced below the phase transition temperature of the phospholipid.  相似文献   

15.
We have used fluorescence measurements and assays of vesicle disruption (contents leakage) to monitor the interaction between lipid vesicles and a synthetic peptide corresponding to the N-terminal 27 amino acids of rat mitochondrial pre-ornithine carbamyltransferase (pOCT). This peptide and two fluorescent derivatives bind reversibly to vesicles composed of neutral and anionic phospholipids with increasing affinity as the proportion of anionic lipids in the vesicles increases. The affinity of the peptide for lipid vesicles is unaffected by the presence of a transbilayer potential (inside negative) of at least -80 mV across the vesicle membranes. Our results support the proposal that the signal sequence of pOCT may promote an initial association of the precursor protein with mitochondrial membranes prior to binding to a specific receptor. However, we find no evidence that the pOCT signal sequence can subsequently undergo transfer into or across the lipid bilayer, even in the presence of a transmembrane potential of the magnitude previously found to support the import of precursor proteins into mitochondria.  相似文献   

16.
A Muga  H H Mantsch  W K Surewicz 《Biochemistry》1991,30(10):2629-2635
Apocytochrome c, the heme-free precursor of cytochrome c, has been used extensively as a model to study molecular aspects of posttranslational translocation of proteins across membranes. In this report, we have used Fourier-transform infrared spectroscopy to gain further insight into the mechanism of apocytochrome c interaction with membrane phospholipids. Association of apocytochrome c with model membranes containing the acidic lipid dimyristoylphosphatidylglycerol (DMPG) as a single component results in a drastic perturbation of phospholipid structure, at the level of both the acyl chains and the interfacial carbonyl groups. However, in a binary mixture of DMPG with acyl chain perdeuterated dimyristoylphosphatidylcholine (DMPC-d54), the perturbing effect of the protein on the acidic phospholipid is greatly attenuated. In such a membrane with mixed lipids, the physical properties of the DMPG and DMPC components are affected in a similar fashion, indicating that apocytochrome c does not induce any significant segregation or lateral-phase separation of acidic and zwitterionic lipids. Analysis of the apocytochrome c spectrum in the amide I region reveals that binding to phospholipids causes considerable changes in the secondary structure of the protein, the final conformation of which depends on the lipid to protein ratio. In the presence of a large excess of DMPG, apocytochrome c undergoes a transition from an essentially unordered conformation in solution to an alpha-helical structure. However, in complexes of lower lipid to protein ratios (less than or equal to approximately 40:1), infrared spectra are indicative of an extended, intermolecularly hydrogen-bonded beta-sheet structure. The latter is suggestive of an extensive aggregation of the membrane-associated protein.  相似文献   

17.
Experiments directed to measure the interaction of lysozyme with liposomes consisting of phosphatidylcholine (PC) and phosphatidylserine (PS) have been conducted by monitoring both protein and lipid fluorescence and fluorescence anisotropy of the protein. The binding of lysozyme to the unilamellar vesicles was quantified using a novel method of analysis in which the fractional contribution at moderate binding conditions is determined from either total fluorescence decay or anisotropy decay curves of tryptophan at limiting binding conditions. In the energy transfer experiments PC and PS lipids labelled with two pyrene acyl chains served as energy acceptors of the excited tryptophan residues in lysozyme. The binding was strongly dependent on the molar fraction of negatively charged PS in neutral PC membranes and on the ionic strength. Changes in the tryptophan fluorescence decay characteristics were found to be connected with long correlation times, indicating conformational rearrangements induced by binding of the protein to these lipid membranes. The dynamics of membrane bound protein appeared to be dependent on the physical state of the membrane. Independent of protein fluorescence studies, formation of a protein-membrane complex can also be observed from the lipid properties of the system. The interaction of lysozyme with di-pyrenyl-labelled phosphatidylserine in anionic PS/PC membranes resulted in a substantial decrease of the intramolecular excimer formation, while the excimer formation of dipyrenyl-labelled phosphatidylcholine in neutral PC membranes barely changed in the presence of lysozyme.Abbreviations dipyr4 sn-1,2-(pyrenylbutyl) - dipyr10 sn-1,2-(pyrenyldecanoyl). - DMPC dimyristoyl-phosphatidylcholine - DOPC dioleoyl-phosphatidylcholine - DPPC dipalmitoyl-phosphatidylcholine - DPPC dipalmitoylphosphatidylcholine - PC phosphatidylcholine - PS phosphatidylserine Correspondence to: A. J. W. G. Visser  相似文献   

18.
The ability of oligo- and polymers of the basic amino acids L-lysine, L-arginine, L-histidine and L-ornithine to induce lipid intermixing and membrane fusion among vesicles containing various anionic phospholipids has been investigated. Among vesicle consisting of either phosphatidylinositol or mixtures of phosphatidic acid and phosphatidylethanolamine rapid and extensive lipid intermixing, but not complete fusion, was induced at neutral pH by poly-L-ornithine or L-lysine peptides of five or more residues. When phosphatidylcholine was included in the vesicles, the lipid intermixing was severely inhibited. Such lipid intermixing was also much less pronounced among phosphatidylserine vesicles. Poly-L-arginine provoked considerable leakage from the various anionic vesicles and caused significantly less lipid intermixing than L-lysine peptides at neutral pH. When the addition of basic amino acid polymer was followed by acidification to pH 5-6, vesicle fusion was induced. Fusion was more pronounced among vesicles containing phosphatidylserine or phosphatidic acid than among those containing phosphatidylinositol, and occurred also with vesicles whose composition resembles that of cellular membranes (i.e., phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine, 50:30:20, by mol). Liposomes with this composition are resistant to fusion by Ca2+ or by acidification after lectin-mediated contact. The tight interaction among vesicles at neutral pH, resulting in lipid intermixing, does not seem to be necessary for the fusion occurring after acidification, but the basic peptides nevertheless appear to play a more active role in the fusion process than simply bringing the vesicles in contact. However, protonation of the polymer side chains and transformation of the polymer into a polycation does not explain the need for acidification, since the pH-dependence was quite similar for poly(L-histidine)- and poly(L-lysine)-mediated fusion.  相似文献   

19.
The interaction of apocytochrome c with aqueous dispersions of phosphatidylserine from bovine spinal cord and with other negatively charged phospholipids has been studied as a function of pH and salt concentration by using spin-label electron spin resonance (ESR) spectroscopy and chemical binding assays. The ESR spectra of phospholipids spin-labeled at different positions on the sn-2 chain indicate a generalized decrease in mobility of the lipids, while the characteristic flexibility gradient toward the terminal methyl end of the chain is maintained, on binding of apocytochrome c to phosphatidylserine dispersions. This perturbation of the bulk lipid mobility or ordering is considerably greater than that observed on binding of cytochrome c. In addition, a second, more motionally restricted, lipid component is observed with lipids labeled close to the terminal methyl ends of the chains. This second component is not observed on binding of cytochrome c and can be taken as direct evidence for penetration of apocytochrome c into the lipid bilayer. It is less strongly motionally restricted than similar spectral components observed with integral membrane proteins and displays a steep flexibility gradient. The proportion of this second component increases with increasing protein-to-lipid ratio, but the stoichiometry per protein bound decreases from 4.5 lipids per 12 000-dalton protein at low protein contents to 2 lipids per protein at saturating amounts of protein. Apocytochrome c binding to phosphatidylserine dispersions decreases with increasing salt concentration from a saturation value corresponding to approximately 5 lipids per protein in the absence of salt to practically zero at 0.4 M NaCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The reversibility and specificity of phospholipid translocation between the inner and outer membrane of Salmonella typhimurium has been investigated by incorporating exogenous lipids from phospholipid vesicles into the outer membrane of intact cells. Translocation of newly incorporated phospholipids to the inner membrane was demonstrated by decarboxylation of vesicle-derived phosphatidylserine and by recovery of vesicle constituents in both inner and outer membrane fractions. All Salmonella phospholipids tested, as well as phosphatidylcholine and cholesteryl oleate were effectively translocated to the inner membrane. However, no translocation of vesicle-derived lipopolysaccharide or an incomplete biosynthetic precursor of lipid A could be detected. Translocation of phospholipids and cholesteryl ester was rapid and extensive, and appeared to lead to equilibration of the lipids between the two membranes. The mechanism of intermembrane translocation has not been established, but the results are suggestive of diffusional flow across zones of adhesion between the inner and outer membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号