首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Vegetative regeneration plays an important role in the adaptation of clonal plants in frequently disturbed habitats, but few studies have compared vegetative regeneration capacity of invasive clonal plants with that of their native congeners. Vegetative regeneration capacity from shoot nodes can also be affected by the position of the nodes, but this appears little studied. We conducted a greenhouse experiment with Alternanthera philoxeroides, a highly invasive species in China, and its native congener A. sessilis to test the difference in vegetative regeneration capacity of stolon nodes at five different positions (i.e. 3rd, 4th, 5th, 6th and 7th node starting from the apex of the stolon). At the end of the experiment, we counted and harvested all regenerated plants and determined their biomass and allocation. Both species could successfully regenerate from stolon fragments and node position significantly affected regeneration rate and subsequent growth. However, the vegetative regeneration capacity of A. philoxeroides was not higher than that of A. sessilis. These results suggest that vegetative regeneration from stolon fragments may not be a trait that can explain the invasiveness of A. philoxeroides.  相似文献   

2.
Plant invasion is one of the major threats to natural ecosystems. Phenotypic plasticity is considered to be important for promoting plant invasiveness. High tolerance of stress can also increase survival of invasive plants in adverse habitats. Limited growth and conservation of carbohydrate are considered to increase tolerance of flooding in plants. However, few studies have examined whether invasive species shows a higher phenotypic plasticity in response to waterlogging or a higher tolerance of waterlogging (lower plasticity) than native species. We conducted a greenhouse experiment to compare the growth and morphological and physiological responses to waterlogging of the invasive, clonal, wetland species Alternanthera philoxeroides with those of its co-occurring, native, congeneric, clonal species Alternanthera sessilis. Plants of A. philoxeroides and A. sessilis were subjected to three treatments (control, 0 and 60 cm waterlogging). Both A. philoxeroides and A. sessilis survived all treatments. Overall growth was lower in A. philoxeroides than in A. sessilis, but waterlogging negatively affected the growth of A. philoxeroides less strongly than that of A. sessilis. Alternanthera philoxeroides thus showed less sensitivity of growth traits (lower plasticity) and higher waterlogging tolerance. Moreover, the photosynthetic capacity of A. philoxeroides was higher than that of A. sessilis during waterlogging. Alternanthera philoxeroides also had higher total non-structural and non-soluble carbohydrate concentrations than A. sessilis at the end of treatments. Our results suggest that higher tolerance to waterlogging and higher photosynthetic capacity may partly explain the invasion success of A. philoxeroides in wetlands.  相似文献   

3.
自然界的氮素释放总是呈现出空间和时间上的异质性,但关于异质性氮释放对于入侵植物和本地植物种间关系影响的研究相对较少。将入侵植物空心莲子草(Alternanthera philoxeroides)和同属本地植物莲子草(Alternanthera sessilis)分别进行单种种植(12株,无种间竞争)和混种种植(每种6株,有种间竞争),模拟大气氮湿沉降设置由两种不同施氮总量(15g N m~(-2)a~(-1)和30g N m~(-2)a~(-1))和两种不同施氮频率(每5天1次和每15天1次)交叉组成的4种施氮处理,并以不施氮为对照。施氮总量的增加显著促进了两种植物的生长,但对两种植物的种间竞争关系没有显著影响。施氮频率对两种植物的生长以及种间竞争关系都没有显著影响。两种植物在面对竞争时表现出不同的生物量分配策略,空心莲子草将更多的生物量分配到茎,而莲子草将更多的生物量分配到根。在全球变化的背景下,大气氮湿沉降可能会改变两种植物的种群结构和动态,但可能对这两种植物的种间关系影响较小。  相似文献   

4.
Phenotypic plasticity and genetic differentiation are two possible mechanisms that plants use to cope with varying environments. Although alligator weed (Alternanthera philoxeroides) possesses very low genetic diversity, this alien weed has successfully invaded diverse habitats with considerably varying water availability (from swamps to dry lands) in China. In contrast, its native congener (Alternanthera sessilis) has a much narrower ecological breadth, and is usually found in moist habitats. To understand the mechanisms underlying the contrasting pattern, we performed a greenhouse experiment to compare the reaction norms of alligator weed with those of its native congener, in which water availability was manipulated. Our results revealed that the two congeners had similar direction of phenotypic plasticity. However, A. philoxeroides showed greater plasticity in amount than did A. sessilis in many traits examined during the switch from wet to drought treatment. Nearly all of the phenotypic variance in A. philoxeroides could be ascribed to plasticity, while A. sessilis had a much higher fraction of phenotypic variance that could be explained by genotypic variation. These interspecific differences in plastic responses to variable water availability partially explained the difference in spatial distribution of the two congeners.  相似文献   

5.
Zhou J  Dong BC  Alpert P  Li HL  Zhang MX  Lei GC  Yu FH 《Annals of botany》2012,109(4):813-818

Background and Aims

Fine-scale, spatial heterogeneity in soil nutrient availability can increase the growth of individual plants, the productivity of plant communities and interspecific competition. If this is due to the ability of plants to concentrate their roots where nutrient levels are high, then nutrient heterogeneity should have little effect on intraspecific competition, especially when there are no genotypic differences between individuals in root plasticity. We tested this hypothesis in a widespread, clonal species in which individual plants are known to respond to nutrient heterogeneity.

Methods

Plants derived from a single clone of Alternanthera philoxeroides were grown in the greenhouse at low or high density (four or 16 plants per 27·5 × 27·5-cm container) with homogeneous or heterogeneous availability of soil nutrients, keeping total nutrient availability per container constant. After 9 weeks, measurements of size, dry mass and morphology were taken.

Key Results

Plants grew more in the heterogeneous than in the homogeneous treatment, showing that heterogeneity promoted performance; they grew less in the high- than in the low-density treatment, showing that plants competed. There was no interactive effect of nutrient heterogeneity and plant density, supporting the hypothesis that heterogeneity does not affect intraspecific competition in the absence of genotypic differences in plasticity. Treatments did not affect morphological characteristics such as specific leaf area or root/shoot ratio.

Conclusions

Results indicate that fine-scale, spatial heterogeneity in the availability of soil nutrients does not increase competition when plants are genetically identical, consistent with the suggestion that effects of heterogeneity on competition depend upon differences in plasticity between individuals. Heterogeneity is only likely to increase the spread of monoclonal, invasive populations such as that of A. philoxeroides in China.  相似文献   

6.
Some clonal plants can spread their ramet populations radially, and soil heterogeneity and clonal integration may greatly affect the establishment of these types of populations. We constructed Alternanthera philoxeroides populations with a radial ramet aggregation, allowing old ramets of clonal fragments to concentrate in central pots and younger ramets to root in peripheral pots. The peripheral pots were supplemented either with three different levels (high, medium and low) of soil nutrients to simulate a heterogeneous soil environment, or only one medium level of soil nutrients to simulate a homogeneous environment. Stolon connections between the central older ramets and the peripheral younger ramets were left intact or severed to test the effect of clonal integration. The maintenance of stolon connection could induce the division of labor between different‐aged ramets, by increasing the root investment in central ramets and the above‐ground growth in peripheral ramets. The maintenance of stolon connection could improve the growth of the central and peripheral ramets, clonal fragments and even the whole population. However, the positive consequence in peripheral ramets and whole fragments was only detected in the high‐nutrient patch of heterogeneous treatment. In sum, in the population with the radial ramet aggregation, clonal integration can play a key role in the rapid recruitment of young ramets of A. philoxeroides fragments, as well as the expansion of the whole population. The magnitude of clonal integration also became more obvious in the peripheral young ramets and whole fragments that experienced high‐nutrient patches.  相似文献   

7.
Invasive plants may be attacked both above ground and below ground. Few studies have, however, investigated the simultaneous effects of above‐ground and below‐ground herbivory. In the present study, we report the effects of beetle herbivory and nematode infection on alligator weed, Alternanthera philoxeroides, an invasive plant in China. We found that the root‐knot nematode Meloidogyne incognita widely occurred on the plant in south China. To examine its effect on the plant in conjunction with above‐ground herbivory, we conducted a field common garden experiment with a local insect defoliator, Cassida piperata. We also included the native congener Alternanthera sessilis in our experiments for a comparison of the response of invasive and native species. We found no significant effects on plant biomass of the nematode infection in conjunction with the above‐ground herbivory. Further chemical analysis, however, showed that the water‐soluble carbohydrate content in roots of A. philoxeroides was significantly increased in plants attacked by both the nematode and the herbivore compared with the water‐soluble carbohydrate content in plants attacked by only the nematode or herbivore alone. We found no such change in the native congener A. sessilis. Together these results may suggest that A. philoxeroides tolerates joint above‐ground and below‐ground damage by allocating more resources to below‐ground material.  相似文献   

8.
Prior studies on preferences of native herbivores for native or exotic plants have tested both the enemy release hypothesis and the biotic resistance hypothesis and have reported inconsistent results. The different levels of resistance of native and exotic plants to native herbivores could resolve this controversy, but little attention has been paid to this issue. In this study, we investigated population performance, photosynthesis, leaf nitrogen concentration, and the constitutive and induced resistances of the successful invasive plant, Alternanthera philoxeroides, and its native congener, Alternanthera sessilis, in the presence of three population densities of the grasshopper, Atractomorpha sinensis. When the grasshopper was absent, leaf biomass, total biomass, photosynthesis, and leaf nitrogen concentration of A. philoxeroides were higher than those of A. sessilis. However, the morphological and physiological performances of A. philoxeroides were all decreased more intensively than A. sessilis after herbivory by grasshoppers. Especially as the concentrations of constitutive lignin and cellulose in leaf of A. philoxeroides were higher than A. sessilis, A. philoxeroides exhibited increased leaf lignin concentration to reduce its palatability only at severe herbivore load, whereas, leaf lignin, cellulose, and polyphenolic concentrations of A. sessilis all increased with increasing herbivory pressure, and cellulose and polyphenolic concentrations were higher in A. sessilis than in A. philoxeroides after herbivory. Our study indicated that the capability of the invasive plant to respond to native insect damage was lower than the native plant, and the invasive plant was suppressed more intensively than its native congener by the native insect. Our results support the biotic resistance hypothesis and suggest that native herbivores can constrain the abundance and reduce the adverse effects of invasive species.  相似文献   

9.
Non-target plant selection tests using 20 representative species showed that Agasicles hygrophila could feed on Alternanthera sessilis, but the mature larvae did not pupate successfully. A. hygrophila could not complete their life cycle on the other plant species tested. Thus, A. hygrophila is safe for controlling Alternanthera philoxeroides in China.  相似文献   

10.
Wang N  Yu FH  Li PX  He WM  Liu FH  Liu JM  Dong M 《Annals of botany》2008,101(5):671-678
Background and Aims: Many notorious alien invasive plants are clonal, but littleis known about some roles and aspects of clonal integration.Here, the hypothesis is tested that clonal integration affectsgrowth, photosynthetic efficiency, biomass allocation and competitiveability of the exotic invasive weed Alternanthera philoxeroides(Amaranthaceae). Methods: The apical parts of Alternanthera were grown either with orwithout the lawn grass Schedonorus phoenix (tall fescue) andtheir stolon connections to the basal parts grown without competitorswere either severed or left intact. Key Results: Competition greatly reduced the maximum quantum yield of photosystemII (Fv/Fm) and growth (biomass, number of ramets and leaves,total stolon length and total leaf area) of the apical Alternanthera,but not the biomass of S. phoenix. Stolon connections significantlyincreased Fv/Fm and growth of Alternanthera. However, such effectson growth were smaller with than without competition and stolonconnections did not alter the relative neighbour effect of Alternanthera.Stolon connections increased Alternanthera's biomass allocationto roots without competition, but decreased it with competition. Conclusions: Clonal integration contributed little to Alternanthera's competitiveability, but was very important for Alternanthera to exploreopen space. The results suggest that the invasiveness of Alternantheramay be closely related to clonal integration.  相似文献   

11.
Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides''s biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits from clonal integration more than co-occurring native J. repens, suggesting that the invasiveness of A. philoxeroides may be closely related to clonal integration in heterogeneous environments.  相似文献   

12.
Few studies have examined the effects of clonal integration (translocation of resources between interconnected ramets) during the expansion of amphibious clonal plants from terrestrial to aquatic habitats. We conducted a greenhouse experiment to simulate the expansion of plants from terrestrial to contaminated aquatic habitats in the amphibious stoloniferous herb Alternanthera philoxeroides (alligator weed). The proximal ramets (i.e. relatively old) of clonal fragments grown in uncontaminated soils were connected to (allowing clonal integration) or disconnected from (preventing clonal integration) distal ramets (i.e. relatively young) grown either in uncontaminated water (control, no CuSO4) or in four copper‐contaminated water treatments containing 31.25, 62.5, 125 and 250 mg/L CuSO4, respectively. When a stolon connection was severed, all distal ramets grown in the contaminated water died. When the stolon connection was intact, however, the survival rate of the distal ramets was 85–100% when they were grown at the three lower levels of contamination and 43.75% at the highest level. Moreover, the survival rate and growth of the distal ramets grown in the three lower levels of contamination treatments did not differ from those in the control (uncontaminated water). These results suggest that clonal integration could greatly improve the survival and growth of alligator weed subjected to moderate levels of copper stress. Although clonal integration could also increase the survival rate of the connected distal ramets subjected to the highest level of copper stress (250 mg/L CuSO4) compared with that of disconnected distal ramets, the survival rate and growth measures were still significantly lower than those in the control. This suggests that clonal integration plays a limited role in the survival and growth of alligator weed when it is subjected to severe stress by high levels of copper contamination.  相似文献   

13.
Physical connection between ramets usually allows clonal plants to perform better but can have the opposite effects in some cases. Clonal integration and the effects of climate warming have been extensively studied, but to date little is known about how climate warming affects the benefits of clonal integration. We conducted a field experiment in which Alternanthera philoxeroides segments with connected and severed stolons were subject to four climate regimes (ambient, day warming, night warming and daily warming), and measured final biomass, number of ramets and total length of stolons. Across the three warming treatments, temperature rise suppressed growth of clonal fragments with connected stolons but increased growth of fragments with severed stolons; temperature rise affected the biomass of distal ramets but not proximal ramets, and had similar effects on the numbers of proximal and distal ramets. When the three warming treatments were considered separately, they had contrasting consequences for the benefits of clonal integration. Specifically, when fragments were exposed to day and night warming, physical connection evened out the advantages of clonal integration that occur under ambient conditions; when fragments were exposed to daily warming, physical connection led to smaller clonal plants. These findings suggest that physical connection between ramets may be disadvantageous to overall performance of A. philoxeroides fragments under climate warming, and also indicate that the net consequences of daily warming outweigh those of day or night warming.  相似文献   

14.
In natural environments, plants frequently interact with both heterospecific and conspecific neighbors. The intensity of belowground plant interaction with neighboring species commonly varies with the availability of soil nutrients in the habitats. According to classical ecological theory, competition between conspecific neighbors may be more severe than competition between unrelated species due to the similar nutrient requirements of close relatives, especially when nutrients are scarce in the habitat. However, many recent studies have shown the opposite pattern, and suggested an alternative mechanism based on species recognition. Taking Zoysia sinica as the focal species, we conducted a controlled experiment to test the results of intraspecific and interspecific interactions among three clonal species Zoysia sinica, Zoysia japonica and Alternanthera philoxeroides, which represent a conspecific, a close relative and a distant relative of the focal species, respectively, and at different root treatments (no separation NS, clone separation CS and ramet separation RS) and two nutrient levels. The results showed that Z. sinica recognized conspecific plants in the NS and CS treatments, and did not show above or belowground competition with these. The performance of the focal plant (Z. sinica) was better when it was grown with a conspecific neighbor as compared to all other types of neighbors. In all root separation treatments, the competition was more intense when Z. sinica grew with a close relative (Z. japonica) than when growing with a distant relative (A. philoxeroides). Generally, competition between plants was more intense at the high nutrient level than at the low nutrient level, suggesting that both soil nutrients and a species recognition mechanism play a significant role for the intra‐ and interspecific interaction and fitness of these three neighboring clonal species.  相似文献   

15.
Relatively few studies have compared invasibility and species invasiveness among microhabitats within communities, synchronously. We surveyed the abundance and performance of non-native Alternanthera philoxeroides (Mart.) Griseb. (alligator weed), its co-occurring native congener, Alternanthera sessilis (L.) DC. (sessile joyweed), and other species in a wetland community along a riparian zone in southeast China to test the hypotheses that: i) degree of invasion differs between different types of microhabitats within the community; and ii) microhabitat types that differ in invasibility also differ in soil resource availability or in sediment characteristics likely to affect resource availability; iii) phenotypic plasticity of A. philoxeroides may play a key role in its adaptation to diverse habitats as can be concluded from its extremely low genetic diversity in China. The study riparian zone comprises different types of microhabitats including wet abandoned field, swamp, marsh dunes and gravel dunes. Consistent with these hypotheses, cover of A. philoxeroides was high in abandoned fields (73 ± 2.9%) and swamps (94 ± 1.3%), which had high soil nutrients and water availability. On the contrary, cover of native A. sessilis was relatively high in marsh dunes and grave dunes, which had coarse gravel surfaces, low soil nutrients and low water availability. A. philoxeroides showed greater morphological plasticity in response to habitat variation. In abiotically harsh habitats, stems had limited growth, and were prostrate with weak adventitious roots at nodes, forming thin, scattered patches. In the two richer habitats, the highly branched plants spread over the water or soil surface, supporting dense stronger leaf-bearing stems which grew vertically. The growth pattern of A. sessilis among microhabitats did not exhibit significant variations. These results suggest that morphological plasticity and microhabitat types with high soil resources may facilitate invasions of A. philoxeroides.  相似文献   

16.
《Aquatic Botany》2005,81(3):277-283
Alternanthera philoxeroides (Mart.) Grisb was introduced into China in the 1930s, and today occurs in most regions of southern China. Techniques using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) markers were applied to analyze genetic diversity of this invasive, weedy species. The fragments amplified by both 28 RAPD primers and 23 ISSR primers showed no polymorphic bands within and among the seven populations sampled. These results might be a consequence of the short introduction history in China and the clonal propagation of this aquatic plant. Although A. philoxeroides is widely distributed in China, the molecular data indicated its genetic diversity is extremely low, which implies that the low genetic diversity did not affect the success of its expansion in China. The rapid range expansion of A. philoxeroides is most likely the result of a massive clonal propagation since its introduction.  相似文献   

17.
  • Environments experienced by parent ramets of clonal plants can potentially influence fitness of clonal offspring ramets. Such clonal parental effects may result from heritable epigenetic changes, such as DNA methylation, which can be removed by application of DNA de‐methylation agents such as 5‐azacytidine.
  • To test whether parental shading effects occur via clonal generation and whether DNA methylation plays a role in such effects, parent plants of the clonal herb Alternanthera philoxeroides were first subjected to two levels of light intensity (high versus low) crossed with two levels of DNA de‐methylation (no or with de‐methylation by application of 5‐azacytidine), and then clonal offspring taken from each of these four types of parent plant were subjected to the same two light levels.
  • Parental shading effects transmitted via clonal generation decreased growth and modified morphology of clonal offspring. Offspring responses were also influenced by DNA methylation level of parent plants. For clonal offspring growing under low light, parental shading effects on growth and morphology were always negative, irrespective of the parental de‐methylation treatment. For clonal offspring growing under high light, parental shading effects on offspring growth and morphology were negative when the parents were not treated with 5‐azacytidine, but neutral when they were treated with 5‐azacytidine.
  • Overall, parental shading effects on clonal offspring performance of A. philoxeroides were found, and DNA methylation is likely to be involved in such effects. However, parental shading effects contributed little to the tolerance of clonal offspring to shading.
  相似文献   

18.
Bioinvasion has become a serious environmental problem in the world in general and is considered the second biggest threat to biodiversity. Alternanthera philoxeroides is widely distributed and causes the most serious threat to biodiversity in China. The traditional physical or biological control methods are not effective in controlling the invasion and extension of A. philoxeroides. In the present paper, some physiological characteristics of Humulus scandens and A. philoxeroides were investigated in the field and laboratory. The results showed that H. scandens is more competitive than A. philoxeroides, the competitive rate (CR) of H. scandens against A. philoxeroides was 9.834. Additionally, the leaf, stem, and root biomass of A. philoxeroides decreased significantly when the two species co-occurred. Thus, the invasive abilities of these two invasive plants are different and H. scandens strongly inhibited the growth of A. philoxeroides. Moreover, as an annual herb, H. scandens can be easily eliminated by harvesting before its seeds mature. The result suggests that sowing seeds of H. scandens in the habitats invaded by A. philoxeroides could be an ideal biological control method.  相似文献   

19.
In this study, physiological, biochemical, and proteomic changes of Alternanthera philoxeroides leaves under zinc stress were investigated. Zinc is an essential micronutrient for plants, but it can be toxic at higher concentrations. Accumulations of zinc and MDA in leaves increased significantly with the increase of zinc concentrations. Zn considerably changed the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). Zn also altered the antioxidant level, such as reduced glutathione (GSH) and ascorbic acid (AsA). Therefore, it seems that zinc induced oxidative stress in the leaves of A. philoxeroides, in which we found enhancement of antioxidant enzyme activities and antioxidant concentrations. Protein profiles analyzed by two-dimensional electrophoresis revealed that five protein spots were up-regulated in zinc-treated samples. These differentially displayed proteins were identified by mass spectrometry. The up-regulation of some antioxidant enzymes and stress-related proteins clearly indicated that excess zinc generates oxidative stress that might be disruptive to other important metabolic processes. These results indicate a good correlation between the physiological and biochemical changes in A. philoxeroides leaves exposed to excess zinc. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 4, pp. 546–554. This text was submitted by the authors in English.  相似文献   

20.
Dong BC  Zhang MX  Alpert P  Lei GC  Yu FH 《PloS one》2010,5(10):e13631

Background

The ability of small clonal fragments to establish and grow after disturbance is an important ecological advantage of clonal growth in plants and a major factor in the invasiveness of some introduced, clonal species. We hypothesized that orientation in the horizontal position (typical for stoloniferous plants) can increase the survival and growth of dispersed clonal fragments, and that this effect of orientation can be stronger when fragments are smaller and thus have fewer reserves to support initial growth.

Methodology/Principal Findings

To test these hypotheses, we compared performance of single-node pieces of stolon fragments of Alternanthera philoxeroides planted at angles of 0, 45 or 90° away from the horizontal position, with either the distal or the proximal end of the fragment up and with either 1 or 3 cm of stolon left attached both distal and proximal to the ramet. As expected, survival and growth were greatest when fragments were positioned horizontally. Contrary to expectations, some of these effects of orientation were stronger when attached stolons were longer. Orientation had smaller effects than stolon length on the performance of fragments; survival of fragments was about 60% with shorter stolons and 90% with longer stolons.

Conclusions/Significance

Results supported the hypothesis that orientation can affect establishment of small clonal fragments, suggested that effects of orientation can be stronger in larger rather than smaller fragments, and indicated that orientation may have less effect on establishment than amount of stored resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号