首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Retrofitting YACs for direct DNA transfer into plant cells   总被引:3,自引:0,他引:3  
The utility of plant YAC libraries prepared in conventional YAC vectors would be dramatically increased if these YACs could be used directly for plant transformation. A pair of vectors that allow clones from YAC libraries to be modified (retrofitted) for plant transformation by direct DNA transfer methods, such as particle bombardment or electroporation, has been developed. Modification of the YAC is achieved in two sequential yeast transformation steps by taking advantage of the homologous recombination system in yeast. Using this approach, two plant-selectable marker genes and DNA sequence elements required for copy number amplification in yeast can be introduced into YACs present in yeast strain AB1380. The utility of these vectors is demonstrated by retrofitting YACs that contain inserts ranging in size from 80 to 700 kb. The 6- to 12-fold increase in copy number of these modified YACs facilitates the isolation of YAC DNA for direct DNA transformation methods. Retrofitted YACs were used for particle bombardment to examine the efficiency with which their large DNA inserts are transferred into plant cells. The availability of these retrofitting vectors should facilitate the transfer of YAC DNA inserts into plant cells and thus help bridge the gap between existing mapping techniques and plant transformation procedures.  相似文献   

2.
We have developed a pair of vectors for exchanging yeast artificial chromosome (YAC) arms by targeted homologous recombination. These conversion vectors allow the introduction of copy-number control elements into YACs constructed with pYAC4 or related vectors. YACs modified in this way provide an enriched source of DNA for genetic or biochemical studies. A LYS2 gene on the conversion vector provides a genetic selection for the modified YACs after transformation with appropriately prepared vector. A background of Lys+ clones that do not contain modified YACs is also present. However, clones with converted YACs can be distinguished from this background by counter-screening for loss of the original p YAC4 TRP1 arm (Trp- phenotype). The elimination of yeast replication origins (ARS elements) from the conversion vectors increased the frequency of Lys+ Trp- clones, but resulted in weaker amplification. Several YACs have been converted with these vectors, and the fate of the transformed DNA and of the resident YAC DNA has been systematically investigated.  相似文献   

3.
In order to facilitate alterations of large DNA molecules for their introduction into mammalian cells we have characterised the mechanism of site-specific modifications in yeast artificial chromosomes (YACs). Newly developed yeast integration vectors with dominant selectable marker genes allow targeted integration into left (centromeric) and right (non-centromeric) YAC arms as well as alterations to the human derived insert DNA. In transformation experiments, integration proceeds exclusively by homologous recombination although yeast prefers linear ends of homology for predefined insertions. Targeted regions can be rescued which expedite the cloning of internal human sequences and the identification of 5' and 3' YAC/insert borders. Integration of the neomycin resistance gene into various parts of the YAC allowed the transfer and stable integration of large DNA molecules into a variety of mammalian cells including embryonic stem cells.  相似文献   

4.
Yeast artificial chromosomes (YACs) provide a powerful tool for the isolation and mapping of large regions of mammalian chromosomes. We developed a rapid and efficient method for the isolation of DNA fragments representing the extreme ends of YAC clones by the insertion of a rescue plasmid into the YAC vector by homologous recombination. Two rescue vectors were constructed containing a yeast LYS2 selectable gene, a bacterial origin of replication, an antibiotic resistance gene, a polylinker containing multiple restriction sites, and a fragment homologous to one arm of the pYAC4 vector. The 'end-cloning' procedure involves transformation of the rescue vector into yeast cells carrying a YAC clone, followed by preparation of yeast DNA and transformation into bacterial cells. The resulting plasmids carry end-specific DNA fragments up to 20 kb in length, which are suitable for use as hybridization probes, as templates for direct DNA sequencing, and as probes for mapping by fluorescence in situ hybridization. These vectors are suitable for the rescue of end-clones from any YAC constructed using a pYAC-derived vector. We demonstrate the utility of these plasmids by rescuing YAC-end fragments from a human YAC library.  相似文献   

5.
6.
A method for linking yeast artificial chromosomes.   总被引:1,自引:0,他引:1       下载免费PDF全文
A method for linking any standard yeast artificial chromosomes (YAC) is described. YACs are introduced into the same cell and joined by mitotic recombination between the vector arms and the homologous sequence in a linking vector; several YACs can be recombined sequentially. The linking vectors also contain the beta-galactosidase gene as an expression reporter in mammalian cells.  相似文献   

7.
To determine whether large DNA molecules could be transferred and integrated intact into the genome of plant cells, we bombarded tobacco suspension cells with yeast DNA containing artificial chromosomes (YACs) having sizes of 80, 150, 210, or 550 kilobases (kb). Plant selectable markers were retrofitted on both YAC arms so that recovery of each arm in transgenic calli could be monitored. Stably transformed calli resistant to kanamycin (300 mg/L) were recovered for each size of YAC tested. Two of 12 kanamycin-resistant transformants for the 80 kb YAC and 8 of 29 kanamycin-resistant transformants for the 150 kb YAC also contained a functional hygromycin gene derived from the opposite YAC arm. Southern analyses using probes that spanned the entire 55 kb insert region of the 80 kb YAC confirmed that one of the two double-resistant lines had integrated a fully intact single copy of the YAC DNA while the other contained a major portion of the insert. Transgenic lines that contained only one selectable marker gene from the 80 kb YAC incorporated relatively small portions of the YAC insert DNA distal to the selectable marker. Our data suggest genomic DNA cloned in artificial chromosomes up to 150 kb in size have a reasonable likelihood of being transferred by biolistic methods and integrated intact into the genome of plant cells. Biolistic transfer of YAC DNA may accelerate the isolation of agronomically useful plant genes using map-based cloning strategies.  相似文献   

8.
《Gene》1998,210(1):163-172
This report describes the construction of a new yeast artificial chromosome (YAC) vector designed for gene transfer into mammalian cells. For ease of use, the two arms of the vector were cloned separately. The vector harbours the Neo and Hyg genes for dominant selection in mammalian cells, a putative human origin of replication, a synthetic matrix attachment region and two loxP sites (one on each arm). The cloning ability of the vector was demonstrated by successful propagation of the cDNA of the cystic fibrosis gene, CFTR, as a YAC in Saccharomyces cerevisiae. A YAC containing the entire CFTR gene was also constructed by retrofitting the two arms of a pre-existing clone (37AB12) with the two arms of the novel vector. Both the cDNA and entire gene containing YACs were circularized in yeast by inducible expression of the Cre recombinase. Recombination occurred very specifically at the loxP sequences present on the two arms of the YAC. Applications of the vector to gene transfer are discussed.  相似文献   

9.
We constructed new LYS2 fragmentation vectors that allow direct acentric and centric fragmentation of yeast artificial chromosomes (YACs) and selection of fragmented YACs in yeast strain AB1380. The fragmentation vectors were used efficiently with repetitive (e.g., Alu), low-copy (e.g., CA-repeats) and single-copy (e.g., exons) sequences. High recombination efficiencies were obtained in fragmenting two different CEPH YACs with the Alu consensus sequence as target sequences for homologous recombination. Analysis of the acentric Alu fragmentation panel of 788H12, containing the presenilin 1 (PSEN1) gene for familial Alzheimer's disease (AD), indicated that high-resolution YAC fragmentation panels covering the entire parent YAC are obtained. Also, marker content analysis of the fragmentation panel indicated that fragmented YACs were propagated stably without rearrangements. The same fragmentation vectors were used efficiently for fragmentation of 788H12 with unique sequences, i.e., exons 3 and 12 of PSEN1 and D14S77, a polymorphic CA repeat, as target sequences. Together, our YAC fragmentation data of 788H12 provided a size estimate for the coding region of PSEN1 of 60kb and a more precise localization of D14S77 at 25kb upstream of PSEN1.  相似文献   

10.
An approach is described to modify yeast artificial chromosomes (YACs) with cassettes that can be easily excised for embryonic stem (ES) cell gene targeting experiments. YAC targeting technology (YTT) uses the WIBR/MIT-820 C57BL/6-mapped YAC library derived from the C57BL/6 mouse as the starting point for Internet- or PCR-based clone isolation, although in principle any YAC system can be used. Homologous recombination is initially performed in yeast using cassettes that function in Saccharomyces cerevisiae, Escherichia coli, and ES cells, followed by cloning or conversion of the targeted locus into a plasmid. The completed targeting vector can be transfected into C57BL/6 ES cells and clones selected with G418 followed by injection into Balb/c blastocysts. YTT increases the speed of targeting vector construction and obviates the need for extensive backcrossing to the C57BL/6 background.  相似文献   

11.
Transgenic mice have become invaluable for analysing gene function and regulation in vivo. However, the size of constructs injected has been limited by the cloning capacity of conventional vectors, a constraint that could be overcome with yeast artificial chromosomes (YACs). We investigated the feasibility of making transgenic mice with YACs by pronuclear injection of a small YAC carrying a gene encoding tyrosinase. Use of a vector with a conditional centromere allowed fifteenfold amplification of the YAC in yeast and its recovery in high yield. The albino phenotype of the recipient mice was rescued demonstrating the correct expression of the tyrosine gene from the construct. Furthermore, the telomeric sequences added by the yeast integrated into the mouse genome and did not reduce efficiency of integration. Using this technique future experiments with longer YACs will allow the expression of gene complexes such as Hox and the globin gene clusters to be analysed in transgenic animals.  相似文献   

12.
A method has been established to convert pYAC4-based linear yeast artificial chromosomes (YACs) into circular chromosomes that can also be propagated in Escherichia coli cells as bacterial artificial chromosomes (BACs). The circularization is based on use of a vector that contains a yeast dominant selectable marker (G418R), a BAC cassette and short targeting sequences adjacent to the edges of the insert in the pYAC4 vector. When it is introduced into yeast, the vector recombines with the YAC target sequences to form a circular molecule, retaining the insert but discarding most of the sequences of the YAC telomeric arms. YACs up to 670 kb can be efficiently circularized using this vector. Re-isolation of megabase-size YAC inserts as a set of overlapping circular YAC/BACs, based on the use of an Alu-containing targeting vector, is also described. We have shown that circular DNA molecules up to 250 kb can be efficiently and accurately transferred into E.coli cells by electroporation. Larger circular DNAs cannot be moved into bacterial cells, but can be purified away from linear yeast chromosomes. We propose that the described system for generation of circular YAC derivatives can facilitate sequencing as well as functional analysis of genomic regions.  相似文献   

13.
A method has been established to convert pYAC4-based linear yeast artificial chromosomes (YACs) into circular chromosomes that can also be propagated in Escherichia coli cells as bacterial artificial chromosomes (BACs). The circularization is based on use of a vector that contains a yeast dominant selectable marker (G418R), a BAC cassette and short targeting sequences adjacent to the edges of the insert in the pYAC4 vector. When it is introduced into yeast, the vector recombines with the YAC target sequences to form a circular molecule, retaining the insert but discarding most of the sequences of the YAC telomeric arms. YACs up to 670 kb can be efficiently circularized using this vector. Re-isolation of megabase-size YAC inserts as a set of overlapping circular YAC/BACs, based on the use of an Alu-containing targeting vector, is also described. We have shown that circular DNA molecules up to 250 kb can be efficiently and accurately transferred into E.coli cells by electroporation. Larger circular DNAs cannot be moved into bacterial cells, but can be purified away from linear yeast chromosomes. We propose that the described system for generation of circular YAC derivatives can facilitate sequencing as well as functional analysis of genomic regions.  相似文献   

14.
Large regions of human DNA can be cloned and mapped in yeast artificial chromosomes (YACs). Overlapping YAC clones can be used in order to reconstruct genomic segments in vivo by meiotic recombination. This is of importance for reconstruction of a long gene or a gene complex. In this work we have taken advantage of yeast protoplast fusion to generate isosexual diploids followed by mitotic crossing-over, and show that it can be an alternative simple strategy for recombining YACs. Integrative transformation of one of the parent strains with the construct pRAN4 (containing the ADE2 gene) is used to disrupt the URA3 gene contained within the pYAC4 vector arm, providing the markers required for forcing fusion and detecting recombination. All steps can be carried out within the commonly used AB1380 host strain without the requirement for micromanipulation. The method was applied to YAC clones from the human MHC and resulted in the reconstruction of a 650 kb long single clone containing 18 known genes from the MHC class II region.  相似文献   

15.
DNA of yeast artificial chromosomes (YACs) was prepared for microinjection by separation from most of the natural yeast chromosomes on a pulsed-field gel, treatment with agarase, and centrifugation. A salt concentration of 100 mM NaCl was necessary to protect the DNA from shear during these procedures. Injection of a 590-kb YAC, yGART2, into Chinese hamster ovary cells gave rise to cells expressing the 40-kb human GART gene carried on the YAC. Nine of 12 cell lines analyzed contained an intact stretch of at least 110 kb of YAC DNA surrounding the GART gene, and one cell line contained at least 480 kb, but not the entire 590 kb, intact. Mouse L A-9 cells were similarly injected with DNA of a 230-kb YAC containing the human β-globin gene cluster and a mammalian selectable marker. Seven of 10 of the resulting cell lines contained both YAC vector arms plus the intact 140-kb SfiI fragment spanning the β-globin gene. Three cell lines were analyzed by Rec A-assisted restriction endonuclease (RARE) cleavage and found to contain the entire intact 210-kb YAC insert. Introduction of similarly prepared DNA into mammalian cells by lipofection gave rise to cell lines with multiple YAC fragments that were generally shorter than the YAC fragments found in microinjected cell lines. The results show that microinjection of gel-purified YAC DNA into mammalian cells is an efficient method of transferring DNA fragments several hundred kilobase pairs in size into mammalian cells.  相似文献   

16.
We have designed and constructed integration-defective retroviral vectors to explore their potential for gene targeting in mammalian cells. Two nonoverlapping deletion mutants of the bacterial neomycin resistance (neo) gene were used to detect homologous recombination events between viral and chromosomal sequences. Stable neo gene correction events were selected at a frequency of approximately 1 G418r cell per 3 x 10(6) infected cells. Analysis of the functional neo gene in independent targeted cell clones indicated that unintegrated retroviral linear DNA recombined with the target by gene conversion for variable distances into regions of nonhomology. In addition, transient neo gene correction events which were associated with the complete loss of the chromosomal target sequences were observed. These results demonstrated that retroviral vectors can recombine with homologous chromosomal sequences in rodent and human cells.  相似文献   

17.
Two Yeast Artificial Chromosomes (YACs) were isolated each with a full-length copy of the human gene that encodes the trifunctional protein containing phosphoribosylglycinamide synthetase (GARS), phosphoribosylglycinamide formyltransferase (GART) and phosphoribosylaminoimidazole synthetase (AIRS). The YACs were characterized by restriction mapping and by in situ hybridization of cosmid subclones containing the YAC ends to human metaphase chromosomes. One of the YACs contains co-cloned non-contiguous DNA whereas the other appears to have a single 600 kbp insert from 21q22.1, the location of the GART gene. A restriction map of the gene was obtained from two cosmid subclones which together span the 40 kb gene. The gene is functional when YAC DNA is transferred into GARS- or GARS-and-AIRS-deficient Chinese Hamster Ovary cells. The gene transfer was carried out both by lipofection using purified yeast DNA and by fusion between yeast spheroplasts and the hamster cells. Restriction analysis of DNA from cell lines whose purine auxotrophy was complemented by the YAC showed that with either method a complete and unrearranged copy of the gene can be transferred. The majority of the fusion cell lines appear to contain at least 80% of the YAC.  相似文献   

18.
The BRCA1 gene, mutations of which contribute significantly to hereditary breast cancer, was not identified in the existing YAC and BAC libraries. The gene is now available only as a set of overlapping fragments that form a contig. In this work we describe direct isolation of a genomic copy of BRCA1 from human DNA by transformation-associated recombination (TAR) cloning. Despite the presence of multiple repeats, most of the primary BRCA1 YAC isolates did not contain detectable deletions and could be stably propagated in a host strain with conditional RAD52. Similar to other circular YACs, 90 kb BRCA1 YACs were efficiently and accurately retrofitted into bacterial artificial chromosomes (BACs) with the NeoR mammalian selectable marker and transferred as circular BAC/YACs in E. coli cells. The BRCA1 BAC/YAC DNAs were isolated from bacterial cells and were used to transfect mouse cells using the NeoR gene as selectable marker. Western blot analysis of transfectants showed that BRCA1 YACs isolated by a TAR cloning contained a functional gene. The advantage of this expression vector is that the expression of BRCA1 is generated from its own regulatory elements and does not require additional promoter elements that may result in overexpression of the protein. In contrast to the results with cDNA expression vectors, the level of BRCA1 expression from this TAR vector is stable, does not induce cell death, maintains serum regulation, and approximates the level of endogenously expressed BRCA1 in human cells. The entire isolation procedure of BRCA1 described in this paper can be accomplished in approximately 10 days and can be applied to isolation of gene from clinical material. We propose that the opportunity to directly isolate normal and mutant forms of BRCA1 will greatly facilitate analysis of the gene and its contribution to breast cancer.  相似文献   

19.
Circular yeast artificial chromosomes (YACs) provide significant advantages for cloning and manipulating large segments of genomic DNA in Saccharomyces cerevisiae. However, it has been difficult to exploit these advantages, because circular YACs are difficult to isolate and purify. Here we describe a method for purification of large circular YACs that is more reliable compared with previously described protocols. This method has been used to purify YACs up to 600 kb in size. The purified YAC DNA is suitable for restriction enzyme digestion, DNA sequencing and functional studies. For example, YACs carrying full-size genes can be purified from yeast and used for transfection into mammalian cells or for the construction of a synthetic genome that can be used to produce a synthetic cell. This method for isolating high-quality YAC DNA in microgram quantities should be valuable for functional and synthetic genomic studies. The entire protocol takes ~3 d to complete.  相似文献   

20.
A novel strategy for separation of co-cloned YACs was developed. For this, yeast cells were grown under non-selective conditions to allow the mitotic loss of multiple YACs. Yeast colonies of different size appear on 'drop-out' selection plates with small clones consistently containing a single-copy YAC. Different auxotrophic marker genes can be used to separate co-cloned YACs or reduce their copy number, which is essential for most YAC-modification procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号