首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Calmodulin is an EF-hand calcium-binding protein (148 a.a.) essential in intracellular signal transduction. Its homologous N- and C-terminal domains are separated by a linker that appears disordered in NMR studies. In a study of an N-domain fragment of Paramecium CaM (PCaM1-75), the addition of linker residues 76 to 80 (MKEQD) raised the Tm by 9 degrees C and lowered calcium binding by 0.54 kcal/mol (Sorensen et al., [Biochemistry 2002;41:15-20]), showing that these tether residues affect energetics as well as being a barrier to diffusion. To determine the individual contributions of residues 74 through 80 (RKMKEQD) to stability and calcium affinity, we compared a nested series of 7 fragments (PCaM1-74 to PCaM1-80). For the first 4, PCaM1-74 through PCaM1-77, single amino acid additions at the C-terminus corresponded to stepwise increases in thermostability and decreases in calcium affinity with a net change of 13.5 degrees C in Tm and 0.55 kcal/mol in free energy. The thermodynamic properties of fragments PCaM1-77 through PCaM1-80 were nearly identical. We concluded that the 3 basic residues in the sequence from 74 to 77 (RKMK) are critical to the increased stability and decreased calcium affinity of the longer N-domain fragments. Comparisons of NMR (HSQC) spectra of 15N-PCaM1-74 and 15N-PCaM1-80 and analysis of high-resolution structural models suggest these residues are latched to amino acids in helix A of CaM. The addition of residues E78, Q79, and D80 had a minimal effect on sites I and II, but they may contribute to the mechanism of energetic communication between the domains.  相似文献   

2.
Calmodulin (CaM) is a ubiquitous, essential calcium-binding protein that regulates diverse protein targets in response to physiological calcium fluctuations. Most high-resolution structures of CaM-target complexes indicate that the two homologous domains of CaM are equivalent partners in target recognition. However, mutations between calcium-binding sites I and II in the N-domain of Paramecium calmodulin (PCaM) selectively affect calcium-dependent sodium currents. To understand these domain-specific effects, N-domain fragments (PCaM(1-75)) of six of these mutants were examined to determine whether energetics of calcium binding to sites I and II or conformational properties had been perturbed. These PCaM((1-75)) sequences naturally contain 5 Phe residues but no Tyr or Trp; calcium binding was monitored by observing the reduction in intrinsic phenylalanine fluorescence at 280 nm. To assess mutation-induced conformational changes, thermal denaturation of the apo PCaM((1-75)) sequences, and calcium-dependent changes in Stokes radii were determined. The free energy of calcium binding to each mutant was within 1 kcal/mole of the value for wild type and calcium reduced the R(s) of all of them. A striking trend was observed whereby mutants showing an increase in calcium affinity and R(s) had a concomitant decrease in thermal stability (by as much as 18 degrees C). Thus, mutations between the binding sites that increased disorder and reduced tertiary constraints in the apo state promoted calcium coordination. This finding underscores the complexity of the linkage between calcium binding and conformational change and the difficulty in predicting mutational effects.  相似文献   

3.
Calmodulin (CaM) is the primary transducer of calcium fluxes in eukaryotic cells. Its two domains allosterically regulate myriad target proteins through calcium-linked association and conformational change. Many of these proteins have a basic amphipathic alpha-helix (BAA) motif that binds one or both CaM domains. Previously, we demonstrated domain-specific binding of melittin, a model BAA peptide, to Paramecium CaM (PCaM): C-domain mutations altered the interaction with melittin, whereas N-domain mutations had no discernable effect. Here, we report on the use of fluorescence and NMR spectroscopy to measure the domain-specific association of melittin with calcium-saturated ((Ca(2+))(4)-PCaM) or calcium-depleted (apo) PCaM, which has enabled us to determine the free energies of calcium binding to the PCaM-melittin complex, and to estimate interdomain cooperativity. Under apo conditions, melittin associated with each PCaM domain fragment (PCaM(1-80) and PCaM(76-148)), as well as with the C-domain of full-length PCaM (PCaM(1-148)). In the presence of calcium, all of these interactions were again observed, in addition to which an association with the N-domain of (Ca(2+))(4)-PCaM(1-148) occurred. This new association was made possible by the fact that melittin changed the calcium-binding preferences for the domains from sequential (C > N) to concomitant, decreasing the median ligand activity of calcium toward the N-domain 10-fold more than that observed for the C-domain. This selectivity may be explained by a free energy of cooperativity of -3 kcal/mol between the N- and C-domains. This study demonstrates multiple domain-selective differences in the interactions between melittin and PCaM. Our findings support a model that may apply more generally to ion channels that associate with the C-domain of CaM under low (resting) calcium conditions, but rearrange when calcium binding triggers an association of the N- domain with the channel.  相似文献   

4.
Phosphocalmodulin (PCaM) was identified after analysis of calmodulin (CaM) preparations by two-dimensional gel electrophoresis by using a modified ampholyte system to resolve very acidic proteins. The analysis of CaM prepared by the conventional procedure based upon its heat resistance and acidity as well as the analysis of whole urea extracts from brain showed that PCaM was a major component in this tissue. PCaM was 1 pH unit more acidic than CaM, and its electrophoretic mobility, unlike CaM, was not changed by either calcium or ethylene glycol-bis(beta-aminoethyl ether)-N,N-tetraacetic acid. In urea extracts of brain prepared in buffers containing phosphate and sodium fluoride, PCaM was as prominent as CaM; it was partially converted into CaM after elution from the gel and reelectrophoresis. Amino acid analysis of PCaM and CaM purified by two-dimensional gel electrophoresis showed the same composition for the two proteins, including their trimethyllysine content. Incorporation of 32P occurred exclusively into the acidic variant when brain slices were incubated with H332PO4; amino acid analysis showed that the phosphate was bound to serine residues. CaM was found also to be phosphorylated in vitro by a phosphorylase kinase preparation from skeletal muscle.  相似文献   

5.
Functional significance of the central helix in calmodulin   总被引:6,自引:0,他引:6  
The 3-A crystal structure of calmodulin indicates that it has a polarized tertiary arrangement in which calcium binding domains I and II are separated from domains III and IV by a long central helix consisting of residues 65-92. To investigate the functional significance of the central helix, mutated calmodulins were engineered with alterations in this region. Using oligonucleotide-primed site-directed mutagenesis, Thr-79 was converted to Pro-79 to generate CaMPM. CaMPM was further mutated by insertion of Pro-Ser-Thr-Asp between Asp-78 and Pro-79 to yield CaMIM. Calmodulin, CaMPM, and CaMIM were indistinguishable in their ability to activate calcineurin and Ca2+-ATPase. All mutated calmodulins would also maximally activate cGMP-phosphodiesterase and myosin light chain kinase, however, the concentrations of CaMPM and CaMIM necessary for half-maximal activation (Kact) were 2- and 9-fold greater, respectively, than CaM23. Conversion of the 2 Pro residues in CaMIM to amino acids that predict retention of helical secondary structure did not restore normal calmodulin activity. To investigate the nature of the interaction between mutated calmodulins and target enzymes, synthetic peptides modeled after the calmodulin binding region of smooth and skeletal muscle myosin light chain kinase were prepared and used as inhibitors of calmodulin-dependent cGMP-phosphodiesterase. The data suggest that the different kinetics of activation of myosin light chain kinase by CaM23 and CaMIM are not due to differences in the ability of the activators to bind to the calmodulin binding site of this enzyme. These observations are consistent with a model in which the length but not composition of the central helix is more important for the activation of certain enzymes. The data also support the hypothesis that calmodulin contains multiple sites for protein-protein interaction that are differentially recognized by its multiple target proteins.  相似文献   

6.
We have previously characterized the calcium-dependent calmodulin (CaM)-binding domain (Ser76-Ser92) of the 135-kDa human protein 4.1 isoform using fluorescence spectroscopy and chemically synthesized nonphosphorylated or serine phosphorylated peptides [Leclerc, E. & Vetter, S. (1998) Eur. J. Biochem. 258, 567-671]. Here we demonstrate that phosphorylation of two serine residues within the 17-residue peptide alters their ability to adopt alpha helical conformation in a position-dependent manner. The helical content of the peptides was determined by CD-spectroscopy and found to increase from 36 to 45% for the Ser80 phosphorylated peptide and reduce to 28% for the Ser84 phosphorylated peptide; the di-phosphorylated peptide showed 32% helical content. Based on secondary structure prediction methods we propose that initial helix formation involves the central residues Leu82-Phe86. The ability of the peptides to adopt alpha helical conformations did not correlate with the observed binding affinities to CaM. We suggest that the reduced CaM-binding affinities observed for the phosphorylated peptides are more likely to be the result of unfavorable sterical and electrostatic interactions introduced into the CaM peptide-binding interface by the phosphate groups, rather than being due to the effect of phosphorylation on the secondary structure of the peptides.  相似文献   

7.
A hydrophobic core is a widely accepted determinant of protein stability. However, regulatory proteins undergoing ligand-induced conformational switching may expose interior residues to solvent and cannot afford to be extremely rigid. Optimizing the energetic balance between stability and binding is challenging. The addition of five interdomain residues to rat and Paramecium calmodulin N-domain fragments (residues 1-75) increased their thermostability by 9 degrees C and lowered their calcium affinity by a factor of 4. This demonstrates that the flexible linker regulates functional properties as well as tethering the neighboring domains and that protein stability may be increased markedly by minor modifications of the C-terminus. The sensitivity of this domain to few and conservative variations in helices A and D (D2E, S17A, T70S and M71L) is demonstrated by the rat CaM fragments having lower stability and higher calcium affinity than fragments of the same length derived from Paramecium CaM.  相似文献   

8.
M Ikura  S Spera  G Barbato  L E Kay  M Krinks  A Bax 《Biochemistry》1991,30(38):9216-9228
Heteronuclear 2D and 3D NMR experiments were carried out on recombinant Drosophila calmodulin (CaM), a protein of 148 residues and with molecular mass of 16.7 kDa, that is uniformly labeled with 15N and 13C to a level of greater than 95%. Nearly complete 1H and 13C side-chain assignments for all amino acid residues are obtained by using the 3D HCCH-COSY and HCCH-TOCSY experiments that rely on large heteronuclear one-bond scalar couplings to transfer magnetization and establish through-bond connectivities. The secondary structure of this protein in solution has been elucidated by a qualitative interpretation of nuclear Overhauser effects, hydrogen exchange data, and 3JHNH alpha coupling constants. A clear correlation between the 13C alpha chemical shift and secondary structure is found. The secondary structure in the two globular domains of Drosophila CaM in solution is essentially identical with that of the X-ray crystal structure of mammalian CaM [Babu, Y., Bugg, C. E., & Cook, W.J. (1988) J. Mol. Biol. 204, 191-204], which consists of two pairs of a "helix-loop-helix" motif in each globular domain. The existence of a short antiparallel beta-sheet between the two loops in each domain has been confirmed. The eight alpha-helix segments identified from the NMR data are located at Glu-6 to Phe-19, Thr-29 to Ser-38, Glu-45 to Glu-54, Phe-65 to Lys-77, Glu-82 to Asp-93, Ala-102 to Asn-111, Asp-118 to Glu-127, and Tyr-138 to Thr-146. Although the crystal structure has a long "central helix" from Phe-65 to Phe-92 that connects the two globular domains, NMR data indicate that residues Asp-78 to Ser-81 of this central helix adopt a nonhelical conformation with considerable flexibility.  相似文献   

9.
Recent studies using bee and wasp venom peptides have led to the hypothesis that proper complex formation with calmodulin (CaM) requires the presence of a basic amphiphilic helix on the surface of the target protein [Cox, J. A. (1984) Fed. Proc., Fed. Am. Soc. Exp. Biol. 43, 3000]. We have tested this hypothesis by examining CaM and troponin C (TnC) complex formation with two basic peptides, the wasp venom tetradecapeptide mastoparan and the physiologically relevant synthetic troponin I (TnI) inhibitory peptide [104-115], using far-ultraviolet circular dichroism as a secondary structure probe. Complex formation between mastoparan and either CaM or TnC results in an increase in helical content, whereas the helical content of TnI inhibitory peptide does not increase when bound to either protein. Significantly, mastoparan is 78% alpha-helical in a 50% solution of the helix-inducing solvent trifluoroethanol and has a high helix-forming potential according to the Chou-Fasman rules while TnI inhibitory peptide contains none and is not predicted to have any. We interpret these data as indicating that these peptides exhibit substantially different secondary structures upon binding to CaM or TnC. The ability of mastoparan to regulate the acto-subfragment 1-tropomyosin ATPase has also been examined. Mastoparan and TnI inhibitory peptide inhibited 31% and 45% of the activity, respectively. TnC and CaM promote differing degrees of Ca2+-sensitive release of inhibition by both peptides. Sequence comparison suggests that the basic residues present in both peptides are important for binding. However, we conclude that an alpha-helical structure is not a prerequisite for the binding of target proteins to CaM and TnC.  相似文献   

10.
We have recently investigated by far-UV circular dichroism (CD) the effects of Ca(2+) binding and the phosphorylation of Ser 81 for the synthetic peptide CaM [54-106] encompassing the Ca(2+)-binding loops II and III and the central alpha helix of calmodulin (CaM) (Arrigoni et al., Biochemistry 2004, 43, 12788-12798). Using computational methods, we studied the changes in the secondary structure implied by these spectra with the aim to investigate the effect of Ca(2+) binding and the functional role of the phosphorylation of Ser 81 in the action of the full-length CaM. Ca(2+) binding induces the nucleation of helical structure by inducing side chain stacking of hydrophobic residues. We further investigated the effect of Ca(2+) binding by using near-UV CD spectroscopy. Molecular dynamics simulations of different fragments containing the central alpha-helix of CaM using various experimentally determined structures of CaM with bound Ca(2+) disclose the structural effects provided by the phosphorylation of Ser 81. This post-translational modification is predicted to alter the secondary structure in its surrounding and also to hinder the physiological bending of the central helix of CaM through an alteration of the hydrogen bond network established by the side chain of residue 81. Using quantum mechanical methods to predict the CD spectra for the frames obtained during the MD simulations, we are able to reproduce the relative experimental intensities in the far-UV CD spectra for our peptides. Similar conformational changes that take place in CaM [54-106] upon Ca(2+) binding and phosphorylation may occur in the full-length CaM.  相似文献   

11.
In plant Ca(2+) pumps belonging to the P(2B) subfamily of P-type ATPases, the N-terminal cytoplasmic domain is responsible for pump autoinhibition. Binding of calmodulin (CaM) to this region results in pump activation but the structural basis for CaM activation is still not clear. All residues in a putative CaM-binding domain (Arg(43) to Lys(68)) were mutagenized and the resulting recombinant proteins were studied with respect to CaM binding and the activation state. The results demonstrate that (i) the binding site for CaM is overlapping with the autoinhibitory region and (ii) the autoinhibitory region comprises significantly fewer residues than the CaM-binding region. In a helical wheel projection of the CaM-binding domain, residues involved in autoinhibition cluster on one side of the helix, which is proposed to interact with an intramolecular receptor site in the pump. Residues influencing CaM negatively are situated on the other face of the helix, likely to face the cytosol, whereas residues controlling CaM binding positively are scattered throughout. We propose that early CaM recognition is mediated by the cytosolic face and that CaM subsequently competes with the intramolecular autoinhibitor in binding to the other face of the helix.  相似文献   

12.
Small conductance Ca(2+)-activated potassium (SK) channels underlie the afterhyperpolarization that follows the action potential in many types of central neurons. SK channels are voltage-independent and gated solely by intracellular Ca(2+) in the submicromolar range. This high affinity for Ca(2+) results from Ca(2+)-independent association of the SK alpha-subunit with calmodulin (CaM), a property unique among the large family of potassium channels. Here we report the solution structure of the calmodulin binding domain (CaMBD, residues 396-487 in rat SK2) of SK channels using NMR spectroscopy. The CaMBD exhibits a helical region between residues 423-437, whereas the rest of the molecule lacks stable overall folding. Disruption of the helical domain abolishes constitutive association of CaMBD with Ca(2+)-free CaM, and results in SK channels that are no longer gated by Ca(2+). The results show that the Ca(2+)-independent CaM-CaMBD interaction, which is crucial for channel function, is at least in part determined by a region different in sequence and structure from other CaM-interacting proteins.  相似文献   

13.
Using site-directed mutagenesis we have expressed in Escherichia coli three engineered calmodulins (CaM) containing deletions in the solvent-exposed region of the central helix. These are CaM delta 84, Glu-84 removed; CaM delta 83-84, Glu-83 and Glu-84 removed; and CaM delta 81-84, Ser-81 through Glu-84 removed. The abilities of these proteins to activate skeletal muscle myosin light chain kinase, plant NAD kinase, and bovine brain calcineurin activities were determined, as were their abilities to bind a synthetic peptide based on the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Similar results were obtained with all three deletion proteins. Vm values for enzymes activated by the deletion proteins are all within 10-20% of those values obtained with bacterial control calmodulin. Relative to bacterial control values, changes in Kact or Kd values associated with the deletions are all less than an order of magnitude: Kact values for NAD kinase and myosin light chain kinase are increased 5-7-fold, Kd values for binding of the synthetic peptide are increased 4-7-fold, and Kact values for calcineurin are increased only 1-3-fold. In assays of NAD kinase and myosin light chain kinase activation some differences between bovine calmodulin and bacterial control calmodulin were observed. With NAD kinase, Kact values for the bacterial control protein are increased 4-fold relative to values for bovine calmodulin, and Vm values are increased by 50%; with myosin light chain kinase, Kact values are increased 2-fold and Vm values are decreased 10-15% relative to those values obtained with bovine calmodulin. These differences between bacterial control and bovine calmodulins probably can be attributed to known differences in postranslational processing of calmodulin in bacterial and eucaryotic cells. No differences between bovine and control calmodulins were observed in assays of calcineurin activation or peptide binding. Our observations indicate that contacts with the deleted residues, Ser-81 through Glu-84, are not critical in the calmodulin-target complexes we have evaluated. Formation of these calmodulin-target complexes also does not appear to be greatly affected by the global alterations in the structure of calmodulin that are associated with the deletions. In models in which the central helix is maintained in the altered calmodulins, each deleted residue causes the two lobes of calmodulin to be twisted 100 degrees relative to one another and brought 1.5 A closer together.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Jaren OR  Kranz JK  Sorensen BR  Wand AJ  Shea MA 《Biochemistry》2002,41(48):14158-14166
Calmodulin (CaM) is an intracellular calcium-binding protein essential for many pathways in eukaryotic signal transduction. Although a structure of Ca(2+)-saturated Paramecium CaM at 1.0 A resolution (1EXR.pdb) provides the highest level of detail about side-chain orientations in CaM, information about an end state alone cannot explain driving forces for the transitions that occur during Ca(2+)-induced conformational switching and why the two domains of CaM are saturated sequentially rather than simultaneously. Recent studies focus attention on the contributions of interdomain linker residues. Electron paramagnetic resonance showed that Ca(2+)-induced structural stabilization of residues 76-81 modulates domain coupling [Qin and Squier (2001) Biophys. J. 81, 2908-2918]. Studies of N-domain fragments of Paramecium CaM showed that residues 76-80 increased thermostability of the N-domain but lowered the Ca(2+) affinity of sites I and II [Sorensen et al. (2002) Biochemistry 41, 15-20]. To probe domain coupling during Ca(2+) binding, we have used (1)H-(15)N HSQC NMR to monitor more than 40 residues in Paramecium CaM. The titrations demonstrated that residues Glu78 to Glu84 (in the linker and cap of helix E) underwent sequential phases of conformational change. Initially, they changed in volume (slow exchange) as sites III and IV titrated, and subsequently, they changed in frequency (fast exchange) as sites I and II titrated. These studies provide evidence for Ca(2+)-dependent communication between the domains, demonstrating that spatially distant residues respond to Ca(2+) binding at sites I and II in the N-domain of CaM.  相似文献   

15.
A 20-ns molecular dynamics simulation of Ca(2+)-calmodulin (CaM) in explicit solvent is described. Within 5 ns, the extended crystal structure adopts a compact shape similar in dimension to complexes of CaM and target peptides but with a substantially different orientation between the N- and C-terminal domains. Significant interactions are observed between the terminal domains in this compact state, which are mediated through the same regions of CaM that bind to target peptides derived from protein kinases and most other target proteins. The process of compaction is driven by the loss of helical structure in two separate regions between residues 75-79 and 82-86, the latter being driven by unfavorable electrostatic interactions between acidic residues. In the first 5 ns of the simulation, a substantial number of contacts are observed between the first helix of the N-terminal domain and residues 74-77 of the central linker. These contacts are correlated with the closing of the second EF-hand, indicating a mechanism by which they can lower calcium affinity in the N-terminal domain.  相似文献   

16.
Most calmodulin (CaM) targets are α‐helices. It is not clear if CaM induces the adoption of an α‐helix configuration to its targets or if those targets are selected as they spontaneously adopt an α‐helical conformation. Other than an α‐helix propensity, there is a great variety of CaM targets with little more in common. One exception to this rule is the IQ site that can be recognized in a number of targets, such as those ion channels belonging to the KCNQ family. Although there is negligible sequence similarity between the IQ motif and the docking site on SK2 channels, both adopt a similar three‐dimensional disposition. The isolated SK2 target presents a pre‐folded core region that becomes fully α‐helical upon binding to CaM. The existence of this pre‐folded state suggests the occurrence of capping within CaM targets. In this review, we examine the capping properties within the residues flanking this core domain, and relate known IQ motifs and capping.  相似文献   

17.
H Sun  D Yin  T C Squier 《Biochemistry》1999,38(38):12266-12279
We have used fluorescence spectroscopy to investigate the average structure and extent of conformational heterogeneity associated with the central helix in calmodulin (CaM), a sequence that contributes to calcium binding sites 2 and 3 and connects the amino- and carboxyl-terminal globular domains. Using site-directed mutagenesis, a double mutant was constructed involving conservative substitution of Tyr(99) --> Trp(99) and Leu(69) --> Cys(69) with no significant effect on the secondary structure of CaM. These mutation sites are at opposite ends of the central helix. Trp(99) acts as a fluorescence resonance energy transfer (FRET) donor in distance measurements of the conformation of the central helix. Cys(69) provides a reactive group for the covalent attachment of the FRET acceptor 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS). AEDANS-modified CaM fully activates the plasma membrane (PM) Ca-ATPase, indicating that the native structure is retained following site-directed mutagenesis and chemical modification. We find that the average spatial separation between Trp(99) and AEDANS covalently bound to Cys(69) decreases by approximately 7 +/- 2 A upon calcium binding. However, irrespective of calcium binding, there is little change in the conformational heterogeneity associated with the central helix under physiologically relevant conditions (i.e., pH 7.5, 0.1 M KCl). These results indicate that calcium activation alters the spatial arrangement of the opposing globular domains between two defined conformations. In contrast, under conditions of low ionic strength or pH the structure of CaM is altered and the conformational heterogeneity of the central helix is decreased upon calcium activation. These results suggest the presence of important ionizable groups that affect the structure of the central helix, which may play an important role in mediating the ability of CaM to rapidly bind and activate target proteins.  相似文献   

18.
Ye Q  Wang H  Zheng J  Wei Q  Jia Z 《Proteins》2008,73(1):19-27
The activity of the protein phosphatase calcineurin (CN) is regulated by an autoinhibition mechanism wherein several domains from its catalytic A subunit, including the calmodulin binding domain (CaMBD), block access to its active site. Upon binding of Ca2+ and calmodulin (Ca2+/CaM) to CaMBD, the autoinhibitory domains dissociate from the catalytic groove, thus activating the enzyme. To date, the structure of the CN/CaM/Ca2+ complex has not been determined in its entirety. Previously, we determined the structure of a fusion protein consisting of CaM and a 25-residue peptide taken from the CaMBD, joined by a 5-glycine linker. This structure revealed a novel CaM binding motif. However, the presence of the extraneous glycine linker cast doubt on the authenticity of this structure as an accurate representation of CN/CaM binding in vivo. Thus, here, we have determined the crystal structure of CaM complexed with the 25-residue CaMBD peptide without the glycine linker at a resolution of 2.1 A. The structure is essentially identical to the fusion construction which displays CaM bound to the CaMBD peptide as a dimer with an open, elongated conformation. The N-lobe from one molecule and C-lobe from another encompass and bind the CaMBD peptide. Thus, it validates the existence of this novel CaM binding motif. Our experiments suggest that the dimeric CaM/CaMBD complex exists in solution, which is unambiguously validated using a carefully-designed CaM-sepharose pull-down experiment. We discuss structural features that produce this novel binding motif, including the role of the CaMBD peptide residues Arg-408, Val-409, and Phe-410, which work to provide rigidity to the otherwise flexible central CaM helix joining the N- and C-lobes, ultimately keeping these lobes apart and forcing "head-to-tail" dimerization to attain the requisite N- and C-lobe pairing for CaMBD binding.  相似文献   

19.
The C-terminus of calmodulin (CaM) functions as a sensor of oxidative stress, with oxidation of methionine 144 and 145 inducing a nonproductive association of the oxidized CaM with the plasma membrane Ca(2+)-ATPase (PMCA) and other target proteins to downregulate cellular metabolism. To better understand the structural underpinnings and mechanism of this switch, we have engineered a CaM mutant (CaM-L7) that permits the site-specific oxidation of M144 and M145, and we have used NMR spectroscopy to identify structural changes in CaM and CaM-L7 and changes in the interactions between CaM-L7 and the CaM-binding sequence of the PMCA (C28W) due to methionine oxidation. In CaM and CaM-L7, methionine oxidation results in nominal secondary structural changes, but chemical shift changes and line broadening in NMR spectra indicate significant tertiary structural changes. For CaM-L7 bound to C28W, main chain and side chain chemical shift perturbations indicate that oxidation of M144 and M145 leads to large tertiary structural changes in the C-terminal hydrophobic pocket involving residues that comprise the interface with C28W. Smaller changes in the N-terminal domain also involving residues that interact with C28W are observed, as are changes in the central linker region. At the C-terminal helix, (1)H(alpha), (13)C(alpha), and (13)CO chemical shift changes indicate decreased helical character, with a complete loss of helicity for M144 and M145. Using (13)C-filtered, (13)C-edited NMR experiments, dramatic changes in intermolecular contacts between residues in the C-terminal domain of CaM-L7 and C28W accompany oxidation of M144 and M145, with an essentially complete loss of contacts between C28W and M144 and M145. We propose that the inability of CaM to fully activate the PMCA after methionine oxidation originates in a reduced helical propensity for M144 and M145, and results primarily from a global rearrangement of the tertiary structure of the C-terminal globular domain that substantially alters the interaction of this domain with the PMCA.  相似文献   

20.
Yin D  Sun H  Ferrington DA  Squier TC 《Biochemistry》2000,39(33):10255-10268
To investigate the structural linkage between the opposing globular domains in vertebrate calmodulin (CaM), we have constructed a CaM mutant (CaMX(145)) deficient in the last four amino acids between Met(145) and Lys(148) at the carboxyl terminal. Circular dichroism and fluorescence spectroscopic measurements were used to detect changes in the average secondary and tertiary structure of CaMX(145) in comparison to full-length CaM. Complementary measurements of the maximal calcium-binding stoichiometry and ability to activate the plasma membrane (PM) Ca-ATPase permit an assessment of the functional significance of observed structural changes. In comparison with native CaM, we find that CaMX(145) exhibits (i) a large reduction in alpha-helical content, (ii) a dramatic decrease in the average spatial separation between the opposing globular domains, (iii) the loss of one high-affinity calcium-binding site, and (iv) a diminished binding affinity for the PM-Ca-ATPase. Thus, the sequence near the carboxyl terminus functions to stabilize high-affinity calcium binding at one site and facilitates important intramolecular interactions that maintain CaM in an extended conformation. However, despite the large conformational changes resulting from deletion of the last four amino acids at the carboxyl terminal, CaMX(145) can fully activate the PM-Ca-ATPase. These results indicate that target protein binding can restore the nativelike structure critical to function, emphasizing that the structure of the central helix is not critical to CaM function under equilibrium conditions. Rather, the central helix functions to maintain the spatial separation between the opposing domains in CaM that may be critical to high-affinity binding and the rapid activation of the PM-Ca-ATPase, which are necessary for optimal calcium signaling. Thus, following initial association between CaM and target proteins, structural changes involving the carboxyl-terminal sequence have the potential to play an important role in triggering the structural collapse of CaM that facilitates the rapid and cooperative binding of the opposing globular domains with target proteins, which is important to high-affinity binding and rapid enzyme activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号