首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Mitochondrial transfer RNA genes have been ordered relative to the position of five mitochondrial drug resistance markers, namely, chloramphenicol (C), erythromycin (E), oligomycin I and II (OI, OII), and paromomycin (P). Forty-six petite yeast clones that were genetically characterized with respect to these markers were used for a study of these relationships. Different regions of the mitochondrial genome are deleted in these individual mutants, resulting in variable loss of genetic markers. Mitochondrial DNA was isolated from each mutant strain and hybridized with eleven individual mitochondrial transfer RNAs. The following results were obtained: i) Of the seven petite clones that retained C, E, and P resistance markers (but not OI or OII), four carried all eleven transfer RNA genes examined; the other three clones lost several transfer RNA genes, probably by secondary internal deletion; ii) Prolyl and valyl transfer RNA genes were located close to the P marker, whereas the histidyl transfer RNA gene was close to the C marker; iii) Except for a glutamyl transfer RNA gene that was loosely associated with the OI region, no other transfer RNA genes were found in petite clones retaining only the OI and/or the OII markers; and iv) Two distinct mitochondrial genes were found for glutamyl transfer RNA, they were not homologous in DNA sequence and were located at two separate loci.The data indicate that the petite mitochondrial genome is the result of a primary deletion followed by successive additional deletions. Thus an unequivocal gene arrangement cannot be readily established by deletion mapping with petite mutants alone. Nevertheless, we have derived a tentative circular map of the yeast mitochondrial genome from the data; the map indicates that all but one of the transfer RNA genes are found between the C and P markers without forming a tight cluster. The following arrangement is suggested:-P-pro-val-ile-(phe, ala, tyr, asp)-glu2-(lys-leu)-his-C-E-OI-glu1-OII-P-.Supported in part by Cancer Center CCRC 111B-3. Present address: Laboratoire de Biologie Generale, Universite Paris-Sud Orsay, 91405, FranceThe Franklin McLean Memorial Research Institute is operated by the University of Chicago for the U.S. Energy Research and Development Administration under Contract E(11-1)69  相似文献   

2.
Mitochondrial glutamyl-tRNA isolated from mitochondria of Saccharomyces cerevisiae was separated into two distinct species by re versed-phase chromatography. The migration of the two mitochondrial glutamyl-tRNAs (tRNAIGlu and tRNAIIGlu) differed from that of two glutamyl-tRNA species found in the cytoplasm of a mitochondrial DNA-less petite strain. Both mitochondrial tRNAs hybridized with mitochondrial DNA. Three lines of evidence demonstrate that mitochondrial tRNAIGlu and tRNAIIGlu are transcribed from different mitochondrial cistrons. First the level of hybridization of a mixture of the two tRNAs to mitochondrial DNA was equal to the sum of the saturation hybridization levels of each glutamyl-tRNA alone. Second, the two mitochondrial glutamyl-tRNAs did not compete with each other in hybridization competition experiments. Finally the tRNAs showed individual hybridization patterns with different petite mitochondrial DNAs.Hybridization of the tRNAs to mitochondrial DNA of genetically defined petite strains localized each tRNA with respect to antibiotic resistance markers. The two glutamyl-tRNA cistrons were spatially separated on the genetic map.  相似文献   

3.
Summary Retention or loss of the two new mitochondrial antimycin A resistance loci AI and AII has been analyzed in a large number of stable cytoplasmic petite mutants. Using these deletion mutants it was possible to localize the two antimycin A resistance loci in the OI-OII region of mitochondrial DNA. The genetic loci are mapped in the following order: OII-AI-AII-cobl-OI. The mapping relationship of mutants resistant to antimycin A or funiculosin to various cob mutants is described.  相似文献   

4.
Summary We have physically mapped the loci conferring resistance to antibiotics that inhibit mitochondrial protein synthesis (erythromycin, chloramphenicol and paromomycin) or respiration (oligomycin I and II), as well as the 21s and 14s rRNA and tRNA genes on the restriction map of the mitochondrial genome of the yeast Saccharomyces cerevisiae. The mitochondrial genes were localized by hybridization of labeled RNA probes to restriction fragments of grande (strain MH41-7B) mitochondrial DNA (mtDNA)1 generated by endonucleases EcoRI, HpaI, BamHI, HindIII, SalI, PstI and HhaI. We have derived the HhaI restriction fragment map of MH41-7B mit DNA, to be added to our previously reported maps for the six other endonucleases.The antibiotic resistance loci (ant R) were mapped by hybridization of 3H-cRNA transcribed from single marker petite mtDNA's of low kinetic complexity to grande restriction fragments. We have chosen the single Sal I site as the origin of the circular physical map and have positioned the antibiotic loci as follows: C (99.5-1.Ou)-P(27-36.Ou)-OII (58.3-62u)-OI (80-84u)-E (94.4-98.4u). The 21s rRNA is localized at 94.4-99.2u, and the 14s rRNA is positioned between 36.2-39.8u. The two rRNA species are separated by 36% of the genome. Total mitochondrial tRNA labeled with 125I hybridized primarily to two regions of the genome, at 99.5-11.5u and 34-44u. A third region of hybridization was occasionally detected at 70-76u, which probably corresponds to seryl and glutamyl tRNA genes, previously located to this region by petite deletion mapping.Supported by USPHS Training Grant T32-GM-07197.Supported by USPHS Training Grant 5-T01-GM-0090-19.The Franklin McLean Memorial Research Institute is operated by the University of Chicago for the U. S. Energy Research and Development Administration under Contract EY-76-C-02-0069.  相似文献   

5.
Summary A comparative study of eight independently isolated mitochondrial oligomycin resistant mutants obtained from three laboratories show a variety of phenotypes based on cross resistance to venturicidin and sensitivity to low temperature. Analysis of recombination between pairs of markers indicate the existence of at least three genetic classes; class A, cross resistant to venturicidin and including the mutations O III, [oli1-r], [OLG1-R], [tso-r]; class B, mutations O I, [oli17-r], [OLG2-R]; and class C, the mutation O II. The recombination data is consistent with mutations of each class residing in three separate genes, although mutations of class A and B show very close linkage.Recombination in non-polar crosses has demonstrated that markers of all three classes are linked to the mik1 locus in the configuration (AB)-mik1-C. The mapping of this segment with respect to other markers of the mitochondrial genome and the order of classes A and B was established by analyses of co-retention frequencies of markers in primary petite isolates as well as by analysis of marker overlap of genetically and physically defined petite genomes. The unambiguous order ery1-A-B-mik1-C-par was obtained. DNA-DNA hybridization studies using mtDNA isolated from selected petites confirms this map and estimates the physical separation of markers. A reasonable correlation exists in this region of the genome between distances estimated physically by hybridization and genetically by frequency of recombination in non-polar crosses.It is postulated that the oligomycin-mikamycin linkage group represents a cluster of genes involved in determining a number of mitochondrial membrane proteins associated with the mitochondrial ATPase and respiratory complex III.This work was supported by the Australian Research Grants Committee, Project D65/15930  相似文献   

6.
Construction of a physical map of the chloroplast DNA from Phaseolus vulgaris showed that this circular molecule is segmentally organized into four regions. Unlike other chloroplast DNAs which have analogous organization, two single-copy regions that separate two inverted repeats have been demonstrated to exist in both relative orientations, giving rise to two populations of DNA molecules.Hybridization studies using individual rRNA and tRNA species revealed the location of a set of rRNA genes and at least seven tRNA genes in each inverted repeat region, a minimum of 17 tRNA genes in the large single-copy region and one tRNA gene in the small single-copy region. The tRNA genes code for 24 tRNA species corresponding to 16 amino acids. Comparison of this gene map with those of other chloroplast DNAs suggests that DNA sequence rearrangements, involving some tRNA genes, have occurred.  相似文献   

7.
The 16S ribosomal RNA gene of yeast mitochondria was titrated in various cytoplasmic petite mutants by DNA-RNA hybridization. The gene was located close to the prolyl transfer RNA gene. The properties of the rho? strains suggest that the gene order would be: - PI - 16S - prolyl tRNA - valyl tRNA - (tRNAs) - RI - RIII -; the 23S ribosomal gene is far from the 16S one. Several petite mutants were found which have retained, in addition to many transfer RNA genes, both of the 23S and 16S ribosomal RNA genes. The two genes seem to be transcribed in these mutants.  相似文献   

8.
The low molecular weight of RNAs of adenovirus 2-infected cells   总被引:16,自引:0,他引:16  
The cytoplasm of HeLa cells infected with adenovirus type 2 contains many species of low molecular weight RNA, including several of viral origin. In addition to a 9 S messenger RNA, the viral genome gives rise to two species of virus-associated RNA: the major species is 5.5 S RNA or virus-associated RNAI, and the minor species is 5.2 S RNA or virus-associated RNAII. Virus-associated RNAI occurs in the cytoplasm in several electrophoretically separable forms, and its sequences are also present in high molecular weight nuclear RNA but not in cytoplasmic mRNA. The structure of virus-associated RNAII is shown to be distinct from that of the major species, and the position of its gene is mapped on the viral genome. The two virus-associated RNA genes are located on the r strand near position 30 of the adenovirus type 2 physical map, and are separated by a spacer of about 75 base-pairs.  相似文献   

9.
J E Heckman  U L RajBhandary 《Cell》1979,17(3):583-595
Through analysis of cloned fragments of N. crassa mitochondrial DNA, we have derived a physical map for the region of the mitochondrial genome which encodes the ribosomal RNAs and most of the tRNAs. We have located RNA genes on this map by hybridization of purified 32P end-labeled RNA probes, and our findings are as follows. First, the gene for the large ribosomal RNA contains an intervening sequence of approximately 2000 bp. Second, the genes for the small and large ribosomal RNAs are not adjacent, as previously reported, and the region between them contains a number of tRNA genes, including that for the mitochondrial tRNATyr, which is located close to the small rRNA gene on the same strand of the mitochondrial DNA. Third, there is a second cluster of tRNA genes on the mitochondrial DNA following the large ribosomal RNA gene, but there is no evidence for the presence of tRNA genes in the intervening sequence of the large ribosomal RNA. Fourth, hybridization of labeled ribosomal and transfer RNAs to the separated strands of a cloned 16 kbp DNA fragment covering this region indicates that the two ribosomal RNAs and most, if not all, of the mitochondrial tRNAs are encoded on one strand of the mitochondrial DNA.  相似文献   

10.
A minimum of 37 genes corresponding to tRNAs for 17 different amino acids have been localized on the restriction endonuclease cleavage site map of theZea mays chloroplast DNA molecule. Of these, 14 genes corresponding to tRNAs for 11 amino acids are located in the larger of the two single-copy regions which separate the two inverted copies of the repeat region. One tRNA gene is in the smaller single-copy region. Each copy of the large repeated sequence contains, in addition to the ribosomal RNA genes, 11 tRNA genes corresponding to tRNAs for 8 amino acids. The genes for tRNA2 Ile and tRNAAla map in the ribosomal spacer sequence separating the 16S and 23S ribosomal RNA genes. The three isoaccepting species for the tRNAsLeu and the three for tRNAsSer, as well as the two isoaccepting species for tRNAAsn, tRNAGly, tRNAsIle, tRNAsMet, tRNAsThr, are shown to be encoded at different loci. Two independent methods have been used for the localization of tRNA genes on the physical map of the maize chloroplast DNA molecule: (a) cloned chloroplast DNA fragments were hybridized with radioactively-labelled total 4S RNAs, the hybridized RNAs were then eluted, and identified by two-dimensional polyacrylamide gel electrophoresis, and (b) individual tRNAs were32P-labelledin vitro and hybridized to DNA fragments generated by digestion of maize chloroplast DNA with various restriction endonucleases.  相似文献   

11.
A restriction map of the T4 transfer RNA gene cluster   总被引:4,自引:0,他引:4  
  相似文献   

12.
Yeast mitochondrial DNA codes for a complete set of tRNAs. Although most components necessary for the biosynthesis of mitochondrial tRNA are coded by nuclear genes, there is one genetic locus on mitochondrial DNA necessary for the synthesis of mitochondrial tRNAs other than the mitochondrial tRNA genes themselves. Characterization of mutants by deletion mapping and restriction enzyme mapping studies has provided a precise location of this yeast mitochondrial tRNA synthesis locus. Deletion mutants retaining various segments of mitochondrial DNA were examined for their ability to synthesize tRNAs from the genes they retain. A subset of these strains was also tested for the ability to provide the tRNA synthesis function in complementation tests with deletion mutants unable to synthesize mature mitochondrial tRNAs. By correlating the tRNA synthetic ability with the presence or absence of certain wild-type restriction fragments, we have confined the locus to within 780 base pairs of DNA located between the tRNAMetf gene and tRNAPro gene, at 29 units on the wild-type map. Heretofore, no genetic function or gene product had been localized in this area of the yeast mitochondrial genome.  相似文献   

13.
Summary We have analyzed the restriction digest patterns of the mitochondrial DNA from 41 cytoplasmic petite strains of Saccharomyces cerevisiae, that have been extensively characterized with respect to genetic markers. Each mitochondrial DNA was digested with seven restriction endonucleases (EcoRI, HpaI, HindIII, BamHI, HhaI, SalI, and PstI) which together make 41 cuts in grande mitochondrial DNA and for which we have derived fragment maps. The petite mitochondrial DNAs were also analyzed with HpaII, HaeIII, and AluI, each of which makes more than 80 cleavages in grande mitochondrial DNA. On the basis of the restriction patterns observed (i.e., only one fragment migrating differently from grande for a single deletion, and more than one for multiple deletions) and by comparing petite and grande mitochondrial DNA restriction maps, the petite clones could be classified into two main groups: (1) petites representing a single deletion of grande mitochondrial DNA and (2) petites containing multiple deletions of the grande mitochondrial DNA resulting in rearranged sequences. Single deletion petites may retain a large portion of the grande mitochondrial genome or may be of low kinetic cimplexity. Many petites which are scored as single continuous deletions by genetic criteria were later demonstrated to be internally deleted by restriction endonuclease analysis. Heterogeneous sequences, manifested by the presence of sub-stoichiometric amounts of some restriction fragments, may accompany the single or multiple deletions. Single deletions with heterogeneous sequences remain useful for mapping if the low concentration sequences represent a subset of the stoichiometric bands. Using a group of petites which retain single continuous regions of the grande mitochondrial DNA, we have physically mapped antibiotic resistance and mit- markers to regions of the grande restriction map as follows: C (99.3-1.4 map units)-OXI-1 (2.5-15.7)-OXI-2 (18.5-25)-P (28.1-34.2)-OXI-3 (32.2-61.2)-OII (60-62)-COB (64.6-80.8)-OI (80.4-85.7)-E (95-98.9).Supported by USPHS Training Grant 5-T01-GM-00090-19.Supported by USPHS Training Grant T32-GM-07197.The Franklin McLean Memorial Research Institute is operated by the University of Chicago for the U.S. Energy Research and Development Administration under Contract EY-76-C-02-0069.  相似文献   

14.
The mitochondrial DNA (mtDNA) segments of several ρ? mutants carrying the oli-2, oli-4 and pho-1 loci have been sequenced. The segments contain a common structural gene sequence that has been identified to include all three genetic markers. The gene codes for a protein with a molecular weight of 28,257. This new gene is located between 61.5 and 62.6 units on the wild-type map of Saccharomyces cerevisiae and is transcribed from the same DNA strand as most other yeast mitochondrial genes sequenced to date. The amino acid composition and sequence deduced from the DNA sequence indicate that the protein is very hydrophobic, with three long domains (>30 residues) consisting of nonpolar amino acids. Based on its molecular weight, the gene product is tentatively proposed to be either subunit 3 or 6 of the oligomycin-sensitive ATPase.  相似文献   

15.
16.
Summary This paper consolidates and refines the physical map of genetic loci previously established in our laboratory, by molecular analysis of seven genetically characterized new petites (deletion mutants of mtDNA). A modified DNA-DNA hybridization procedure employing filters simultaneously bound with mtDNA from two different petites has been used to measure the overlaps in mtDNA sequences between the different petite mutants.Thus, by analysis of three new petites carrying the antibiotic-resistance loci, ery1, cap1 and par1 on their mitochondrial genomes, it has now been possible to improve our estimation of the maximum distance between the cap1 and ery1 loci. The cap1, ery1 loci, and the 21S ribosomal RNA gene have now been mapped within 5 units in the same region (map position 0 to 5 units). Similarly, by analysis of four new petites carrying the O II and/or par1 loci on their mtDNAs, the map position of the O II locus is also more accurately determined within 2 units in a region (map position 34 to 36 units) between the par1 and ana1 loci. The positions of other loci including par1, the 15S ribosomal RNA gene, and some mit - loci are also discussed.We have thus extended our library of genetically and molecularly defined petite mutants, resulting in a set of petites having overlapping regions distributed throughout the entire wild-type mitochondrial genome, consistent with the idea that yeast mtDNA is physically circular.  相似文献   

17.
18.
19.
We have obtained collections of recombinant Escherichia coli plasmids containing restriction fragments of Neurospora crassa mitochondrial DNA cloned into pBR322. By hybridization of 32P end-labeled total mitochondrial tRNAs and seven different purified tRNAs to restriction digests of mitochondrial DNA and of recombinant plasmids carrying specific restriction fragments, we have located the tRNA genes on the mitochondrial DNA. We have found that the mitochondrial tRNA genes are present in two major clusters, one between the two ribosomal RNA genes and the second closely following the large rRNA gene. Only one of the two DNA strands within these clusters codes for tRNAs. All of the genes for the seven specific purified tRNAs examined--those for alanine, formylmethionine, leucine 1, leucine 2, threonine, tyrosine, and valine--lie within these clusters. Interestingly, the formylmethionine tRNA hybridizes to two loci within one of these gene clusters. We have obtained a fairly detailed restriction map of part of this cluster and have shown that the two "putative" genes for formylmethionine tRNA are not arranged in tandem but are separated by more than 900 base pairs and by at least two other tRNA genes, those for alanine and for leucine 1 tRNAs.  相似文献   

20.
The transfer and integration of tRNA genes from organellar genomes to the nuclear genome and between organellar genomes occur extensively in flowering plants. The routes of the genetic materials flowing from one genome to another are biased, limited largely by compatibility of DNA replication and repair systems differing among the organelles and nucleus. After thoroughly surveying the tRNA gene transfer among organellar genomes and the nuclear genome of a domesticated rice (Oryza sativa L. ssp. indica), we found that (i) 15 mitochondrial tRNA genes originate from the plastid; (ii) 43 and 80 nuclear tRNA genes are mitochondrion-like and plastid-like, respectively; and (iii) 32 nuclear tRNA genes have both mitochondrial and plastid counterparts. Besides the native (or genuine) tRNA gene sets, the nuclear genome contains organelle-like tRNA genes that make up a complete set of tRNA species capable of transferring all amino acids. More than 97% of these organelle-like nuclear tRNA genes flank organelle-like sequences over 20 bp. Nearly 40% of them colocalize with two or more other organelle-like tRNA genes. Twelve of the 15 plastid-like mitochondrial tRNA genes possess 5′- and 3′-flanking sequences over 20 bp, and they are highly similar to their plastid counterparts. Phylogenetic analyses of the migrated tRNA genes and their original copies suggest that intergenomic tRNA gene transfer is an ongoing process with noticeable discriminatory routes among genomes in flowering plants. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Reviewing Editor: Dr. David Guttman  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号