首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this article, we consider, in detail, the second half-cycle of the six-electron nitrite reduction mechanism catalyzed by cytochrome c nitrite reductase. In total, three electrons and four protons must be provided to reach the final product, ammonia, starting from the HNO intermediate. According to our results, the first event in this half-cycle is the reduction of the HNO intermediate, which is accomplished by two PCET reactions. Two isomeric radical intermediates, HNOH? and H2NO?, are formed. Both intermediates are readily transformed into hydroxylamine, most likely through intramolecular proton transfer from either Arg114 or His277. An extra proton must enter the active site of the enzyme to initiate heterolytic cleavage of the N–O bond. As a result of N–O bond cleavage, the H2N+ intermediate is formed. The latter readily picks up an electron, forming H2N+?, which in turn reacts with Tyr218. Interestingly, evidence for Tyr218 activity was provided by the mutational studies of Lukat (Biochemistry 47:2080, 2008), but this has never been observed in the initial stages of the overall reduction process. According to our results, an intramolecular reaction with Tyr218 in the final step of the nitrite reduction process leads directly to the final product, ammonia. Dissociation of the final product proceeds concomitantly with a change in spin state, which was also observed in the resonance Raman investigations of Martins et al. (J Phys Chem B 114:5563, 2010).  相似文献   

2.
Escherichia coli K-12 cells contain two dehydrogenases which in sequence catalyze the net conversion of L-threonine to the D-isomer of 1-amino-2-propanol. These two enzymes are L-threonine dehydrogenase (L-threonine + NAD+ → aminoacetone + CO2 + NADH + H+) and D-1-amino-2-propanol dehydrogenase (aminoacetone + NADH + H+D-1-amino-2-propanol + NAD+). Each enzyme has been obtained in purified form free of the other; the nature of the reaction catalyzed by the latter dehydrogenase alone and in a coupled system with the former enzyme has been studied. The results provide an explanation on the enzymological level for the utilization of L-threonine by cell suspensions of certain microorganisms for the biosynthesis of the D-1-amino-2-propanol moiety of Vitamin B12.  相似文献   

3.
H2-FormingN 5,N10-methylenetetrahydromethanopterin dehydrogenase (Hmd) is a novel type of hydrogenase found in methanogenic Achaea that contains neither nickel nor iron-sulfur clusters. The enzyme has previously been characterized fromMethanobacterium thermoautotrophicum and fromMethanopyrus kandleri. We report here on the purification and properties of the enzyme fromMethanococcus thermolithotrophicus. Thehmd gene was cloned and sequenced. The results indicate that the enzyme fromMc. thermolithotrophicus is functionally and structurally closely related to the H2-forming methylene tetrahydromethanopterin dehydrogenase fromMb. thermoautotrophicum andMp. kandleri. From amino acid sequence comparisons of the three enzymes, a phylogenetic tree was deduced that shows branching orders similar to those derived from sequence comparisons of the 16S rRNA of the orders Methanococcales, Methanobacteriales, and Methanopyrales.Abbreviations H 2 Forming dehydrogenase orHmd - H2-FormingN 5,N10 methylene tetrahydromethanopterin dehydrogenase - H 4MPT Tetrahydromethanopterin - CH 2=H4MPT N5,N10 Methylene tetrahydromethanopterin - CHH 4MPT+ N5,N10 Methenyltetrahydromethanopterin - MALDI-TOF-MS Matrix-assisted laser desorption  相似文献   

4.
(1) The kinetics of isotope exchange catalysed by the membrane-bound hydrogenase of Paracoccus denitrificans have been studied by measuring H2H, H2 or 2H2 produced when the enzyme catalyses the exchange between 2H2 and H2O or H2 and 2H2O. (2) In the 2H2-H2O system the measured rate of H2 production was always higher than that of H2H. The H2H2H ratio remained constant (about 1.70) in the protein concentration range 0.08–1.32 mg. The very rapid formation of H2 with respect to H2H is consistent with the hypothesis of a heterolytic cleavage of 2H2 into a deuteron and an enzyme hydride that can exchange with the solvent. (3) In the H2-2H2O system, the exchange rate was much lower than in the 2H2-H2O system, indicating a marked isotopic effect of 2H2O. (4) The H-2H exchange activity, determined from the initial velocity of H2H formation, is optimal at pH 4.5. A second maximum of activity is observed at pH 8.3. The pH value of 4.5 is also the pH optimum for H2 production while at pH 8.3–8.5 there is a maximum of H2 oxidation activity. (5) In ordinary H2O the Km for hydrogen uptake estimated either from H2 consumption or from benzyl viologen reduction was 0.06–0.07 μM for both H2 and 2H2 indicating a strong affinity of the enzyme for hydrogen at pH 8.3–8.5. Shifting from H2O to 2H2O does not affect the Km of the enzyme for H2 but lowers the Vmax value about 10-fold. The Km for benzyl viologen and methyl viologen was 0.08 and 2 mM, respectively.  相似文献   

5.
《Insect Biochemistry》1991,21(2):177-184
Brush border membrane from Heliothis virescens catalyzed delta-endotoxin-induced leakage of 86Rb+-K+ and H2O from phospholipid vesicles. Activated delta-endotoxin [CrylA(c)-55 kDa] from Bacillus thuringiensis kurstaki strain EG2244 producing a single CrylA(c) toxin, when incorporated into phospholipid vesicles, made these vesicles more leaky to 86Rb+-K+ than phospholipid vesicles without toxin. This effect was assayed by following the movement of 86Rb+ into the vesicles in response to a KCl gradient. When toxin was added to the outside of phospholipid vesicles, 86Rb+ uptake was impeded. Vesicles prepared with H. virescens brush border membrane catalyzed the association of the toxin with the vesicle, and stimulated KCl gradient-induced 86Rb+ uptake. Toxin did not catalyze the leakage of 36Cl, suggesting that the toxin created a cation-selective leak. Toxin enhanced the permeability of phospholipid vesicles to H2O, demonstrated by the enhanced rate of vesicle shrinking under increased osmotic pressure. This was analyzed spectrophotometrically by following the rate of vesicle shrinking in response to a 10 mM KCl gradient. In the presence of concentrated phosphatidylcholine vesicles, toxin spontaneously associated with the vesicles so as to enhance the rate of vesicle shrinking in an osmotic gradient. The rate of vesicle shrinking the presence of KCl and toxin was catalyzed by the presence of brush border reconstituted into the vesicles, reducing the effective toxin concentration 1000-fold.  相似文献   

6.
Photocatalytic production of the electron (e-) and positive hole (h+) in an aqueous suspension of TiO2 (anatase form) under illumination by near-UV light (295-390 nm) generated the superoxide (O2 -) and hydroxyl radical (?OH), which both proceeded linearly with reaction time, while H2O2 accumulated non-linearly. Under anaerobic conditions (introduced Ar gas), the yields of three active species of oxygen were decreased to 10-20% of those detected in the air-saturated reaction. The electron spin resonance (ESR) signal characteristics of ?OH were obtained when a spin trap of 5,5-dimthyl-1-pyrroline-N-oxide (DMPO) was included in the illuminating mixture. The intensity of the ESR signal was increased by Cu/Zn superoxide dismutase, and decreased under anaerobic conditions, amounting to only 20% of the intensity detected in the aerobic reaction. The addition of H2O2 to the reaction mixture resulted in about an 8-fold increase of ?OH production in the anaerobic reaction, but only about 1.5-fold in the aerobic reaction, indicating that e- generated by the photocatalytic reaction reduced H2O2 to produce ?OH plus OH-. On the other hand, D2O lowered the yield of ?OH generation to 18% under air and 40% under Ar conditions, indicating the oxidation of H2O by h+. The addition of Fe(III)-EDTA as an electron acceptor effectively increased ?OH generation, 2.3-fold in the aerobic reaction and 8.4-fold in the anaerobic reaction, the yield in the latter exceeding that in the air-saturated reaction.  相似文献   

7.
We studied the effects of H2O/D2O substitution on the permeation and gating of the large conductance Ca2+-activated K+ channels inChara gymnophylla droplet membrane using the patchclamp technique. The selectivity sequence of the channel was: K+>Rb+≫Li+, Na+, Cs+ and Cl. The conductance of this channel in symmetric 100mm KCl was found to be 130 pS. The single channel conductance was decreased by 15% in D2O as compared to H2O. The blockade of channel conductance by cytosolic Ca2+ weakened in D2O as a result of a decrease in zero voltage Ca2+ binding affinity by a factor of 1.4. Voltage-dependent channel gating was affected by D2O primarily due to the change in Ca2+ binding to the channel during the activation step. The Hill coefficient for Ca2+ binding was 3 in D2O and around 1 in H2O. The values of the Ca2+ binding constant in the open channel conformation were 0.6 and 6 μm in H2O and D2O, respectively, while the binding in the closed conformation was much less affected by D2O. The H2O/D2O substitution did not produce a significant change in the slope of channel voltage dependence but caused a shift as large as 60 mV with 1mm internal Ca2+.  相似文献   

8.
[Fe] hydrogenase (iron–sulfur-cluster-free hydrogenase) catalyzes the reversible reduction of methenyltetrahydromethanopterin (methenyl-H4MPT+) with H2 to methylene-H4MPT, a reaction involved in methanogenesis from H2 and CO2 in many methanogenic archaea. The enzyme harbors an iron-containing cofactor, in which a low-spin iron is complexed by a pyridone, two CO and a cysteine sulfur. [Fe] hydrogenase is thus similar to [NiFe] and [FeFe] hydrogenases, in which a low-spin iron carbonyl complex, albeit in a dinuclear metal center, is also involved in H2 activation. Like the [NiFe] and [FeFe] hydrogenases, [Fe] hydrogenase catalyzes an active exchange of H2 with protons of water; however, this activity is dependent on the presence of the hydride-accepting methenyl-H4MPT+. In its absence the exchange activity is only 0.01% of that in its presence. The residual activity has been attributed to the presence of traces of methenyl-H4MPT+ in the enzyme preparations, but it could also reflect a weak binding of H2 to the iron in the absence of methenyl-H4MPT+. To test this we reinvestigated the exchange activity with [Fe] hydrogenase reconstituted from apoprotein heterologously produced in Escherichia coli and highly purified iron-containing cofactor and found that in the absence of added methenyl-H4MPT+ the exchange activity was below the detection limit of the tritium method employed (0.1 nmol min−1 mg−1). The finding reiterates that for H2 activation by [Fe] hydrogenase the presence of the hydride-accepting methenyl-H4MPT+ is essentially required. This differentiates [Fe] hydrogenase from [FeFe] and [NiFe] hydrogenases, which actively catalyze H2/H2O exchange in the absence of exogenous electron acceptors.  相似文献   

9.
Precocious leaf senescence can reduce crop yield and quality by limiting the growth stage. Melatonin has been shown to delay leaf senescence; however, the underlying mechanism remains obscure. Here, we show that melatonin offsets abscisic acid (ABA) to protect photosystem II and delay the senescence of attached old leaves under the light. Melatonin induced H2O2 accumulation accompanied by an upregulation of melon respiratory burst oxidase homolog D (CmRBOHD) under ABA-induced stress. Both melatonin and H2O2 induced the accumulation of cytoplasmic-free Ca2+ ([Ca2+]cyt) in response to ABA, while blocking of Ca2+ influx channels attenuated melatonin- and H2O2-induced ABA tolerance. CmRBOHD overexpression induced [Ca2+]cyt accumulation and delayed leaf senescence, whereas deletion of Arabidopsis AtRBOHD, a homologous gene of CmRBOHD, compromised the melatonin-induced [Ca2+]cyt accumulation and delay of leaf senescence in Arabidopsis under ABA stress. Furthermore, melatonin, H2O2 and Ca2+ attenuated ABA-induced K+ efflux and subsequent cell death. CmRBOHD overexpression and AtRBOHD deletion alleviated and aggravated the ABA-induced K+ efflux, respectively. Taken together, our study unveils a new mechanism by which melatonin offsets ABA action to delay leaf senescence via RBOHD-dependent H2O2 production that triggers [Ca2+]cyt accumulation and subsequently inhibits K+ efflux and delays cell death/leaf senescence in response to ABA.  相似文献   

10.
Oxidative reactions can result in the formation of electronically excited species that undergo radiative decay depending on electronic transition from the excited state to the ground state with subsequent ultra‐weak photon emission (UPE). We investigated the UPE from the Fe2+–EDTA (ethylenediaminetetraacetic acid)–AA (ascorbic acid)–H2O2 (hydrogen peroxide) system with a multitube luminometer (Peltier‐cooled photon counter, spectral range 380–630 nm). The UPE, of 92.6 μmol/L Fe2+, 185.2 μmol/L EDTA, 472 μmol/L AA, 2.6 mmol/L H2O2, reached 1217 ± 118 relative light units during 2 min measurement and was about two times higher (P < 0.001) than the UPE of incomplete systems (Fe2+–AA–H2O2, Fe2+–EDTA–H2O2, AA–H2O2) and medium alone. Substitution of Fe2+ with Cr2+, Co2+, Mn2+ or Cu2+ as well as of EDTA with EGTA (ethylene glycol‐bis(β‐aminoethyl ether)‐N,N,N′,N′‐tetraacetic acid) or citrate powerfully inhibited UPE. Experiments with scavengers of reactive oxygen species (dimethyl sulfoxide, mannitol, sodium azide, superoxide dismutase) revealed the dependence of UPE only on hydroxyl radicals. Dimethyl sulfoxide at the concentration of 0.74 mmol/L inhibited UPE by 79 ± 4%. Plant phenolics (ferulic, chlorogenic and caffec acids) at the concentration of 870 μmol/L strongly enhanced UPE by 5‐, 13.9‐ and 46.8‐times (P < 0.001), respectively. It is suggested that augmentation of UPE from Fe2+–EDTA–AA–H2O2 system can be applied for detection of these phytochemicals.  相似文献   

11.
Hinge cleavage of a recombinant human IgG1 antibody, generated during production in a Chinese hamster ovary cell culture, was observed in the purified material. The cleavage products could be reproduced by incubation of the antibody with H2O2 and featured complementary ladders of the C- and N-terminal residues (Asp226–Lys227–Thr228–His229–Thr230) in the heavy chain of the Fab domain and the upper hinge of one of the Fc domains, respectively. Two adducts of +45 and +71 Da were also observed at the N-terminal residues of some Fc fragments and were identified as isocyanate and α-ketoacyl derivatives generated by radical cleavage at the α-carbon position through the diamide and α-amidation pathways. We determined that the hinge cleavage was initiated by radical-induced breakage of the disulfide bond between the two hinge cysteines at position 231 (Cys231-Pro-Pro-Cys-Pro), followed by the formation of a thiyl radical (Cys231-S) on one cysteine and sulfenic acid (Cys231-SOH) on the other. The location of the initial radical attack and the critical role of Cys231 were demonstrated by the observation that 5,5-dimethyl-1-pyrroline N-oxide only reacted with the Cys231 radical and completely blocked hinge cleavage, suggesting the necessity of an electron/radical transfer from the Cys231 radical to the hinge residues where cleavage was observed. As a precursor of hydroxyl radicals, H2O2 is widely produced in healthy cells and tissues and therefore could be the source for the radical-induced fragmentation of human IgG1 antibodies in vivo.  相似文献   

12.
The report of R. J. Gillies, M. P. Rosenberg, and D. W. Deamer (1981, J. Cell. Phys., 108, 115–122) that sea urchin fertilization acid is anaerobically produced CO2, was reinvestigated by inseminating Strongylocentrotus purpuratus eggs in HCO?3-free seawater, then bubbling the seawater with N2 to remove volatile acid. Fertilization acid production occurred in HCO?3-free seawater and with N2-bubbling, the pH rose 0.28 ± 0.08 unit, significantly less than the rise of 0.63 ± 0.14 unit during N2-bubbling of HCO?3-free seawater that had been acidified with CO2 and similar to the rise of 0.18 ± 0.07 unit when acidification was with HCl. We conclude that most, if not all, of the sea urchin fertilization acid is nonvolatile and thus is not CO2; since it is not a weak acid, it must be H+.  相似文献   

13.
Methanopyrus kandleri belongs to a novel group of abyssal methanogenic archaebacteria that can grow at 110°C on H2 and CO2 and that shows no close phylogenetic relationship to any methanogen known so far. Methyl-coenzyme M reductase, the enzyme catalyzing the methane forming step in the energy metabolism of methanogens, was purified from this hyperthermophile. The yellow protein with an absorption maximum at 425 nm was found to be similar to the methyl-coenzyme M reductase from other methanogenic bacteria in that it was composed each of two -, - and -subunits and that it contained the nickel porphinoid coenzyme F430 as prosthetic group. The purified reductase was inactive. The N-terminal amino acid sequence of the -subunit was determined. A comparison with the N-terminal sequences of the -subunit of methyl-coenzyme M reductases from other methanogenic bacteria revealed a high degree of similarity.Besides methyl-coenzyme M reductase cell extracts of M. kandleri were shown to contain the following enzyme activities involved in methanogenesis from CO2 (apparent Vmax at 65°C): formylmethanofuran dehydrogenase, 0.3 U/mg protein; formyl-methanofuran: tetrahydromethanopterin formyltransferase, 13 U/mg; N 5,N10-methenyltetrahydromethanopterin cyclohydrolase, 14 U/mg; N 5,N10-methylenetetrahydromethanopterin dehydrogenase (H2-forming), 33 U/mg; N 5,N10-methylenetetrahydromethanopterin reductase (coenzyme F420 dependent), 4 U/mg; heterodisulfide reductase, 2 U/mg; coenzyme F420-reducing hydrogenase, 0.01 U/mg; and methylviologen-reducing hydrogenase, 2.5 U/mg. Apparent Km values for these enzymes and the effect of salts on their activities were determined.The coenzyme F420 present in M. kandleri was identified as coenzyme F420-2 with 2 -glutamyl residues.Abbreviations H–S-CoM coenzyme M - CH3–S-CoM methylcoenzyme M - H–S-HTP 7-mercaptoheptanoylthreonine phosphate - MFR methanofuran - CHO-MFR formyl-MFR - H4MPT tetrahydromethanopterin - CHO–H4MPT N 5-formyl-H4MPT - CH=H4MPT+ N 5,N10-methenyl-H4MPT - CH2=H4MPT N 5,N10-methylene-H4MPT - CH3–H4MPT N 5-methyl-H4MPT - F420 coenzyme F420 - 1 U= 1 mol/min  相似文献   

14.
15.
Although considerably more oxidation-resistant than other P-type ATPases, the yeast PMA1 H+-ATPase of Saccharomyces cerevisiae SY4 secretory vesicles was inactivated by H2O2, Fe2+, Fe- and Cu-Fenton reagents. Inactivation by Fe2+ required the presence of oxygen and hence involved auto-oxidation of Fe2+ to Fe3+. The highest Fe2- (100 μM) and H2O2 (100 mM) concentrations used produced about the same effect. Inactivation by the Fenton reagent depended more on Fe2+ content than on H2O2 concentration, occurred only when Fe2+ was added to the vesicles first and was only slightly reduced by scavengers (mannitol, Tris, NaN3, DMSO) and by chelators (EDTA, EGTA, DTPA, BPDs, bipyridine, 1, 10-phenanthroline). Inactivation by Fe- and Cu- Fenton reagent was the same; the identical inactivation pattern found for both reagents under anaerobic conditions showed that both reagents act via OH·. The lipid peroxidation blocker BHT prevented Fenton-induced rise in lipid peroxidation in both whole cells and in isolated membrane lipids but did not protect the H+-ATPase in secretory vesicles against inactivation. ATP partially protected the enzyme against peroxide and the Fenton reagent in a way resembling the protection it afforded against SH-specific agents. The results indicate that Fe2+ and the Fenton reagent act via metal-catalyzed oxidation at specific metal-binding sites, very probably SH-containing amino acid residues. Deferrioxamine, which prevents the redox cycling of Fe2+, blocked H+-ATPase inactivation by Fe2+ and the Fenton reagent but not that caused by H2O2, which therefore seems to involve a direct non-radical attack. Fe-Fenton reagent caused fragmentation of the H+-ATPase molecule, which, in Western blots, did not give rise to defined fragments bands but merely to smears.  相似文献   

16.
An amino acid based and bidentate Schiff base, (E)-methyl 2-((2-oxonaphthalen-1(2H)-ylidene)methylamino)acetate (ligand), was synthesized from the reaction of glycine-methyl ester hydrochloride with 2-hydroxy-1-naphthaldehyde. Characterization of the ligand was carried out using theoretical quantum–mechanical calculations and experimental spectroscopic methods. The molecular structure of the compound was confirmed using X-ray single-crystal data, NMR, FTIR and UV–Visible spectroscopy, which were in good agreement with the structure predicted by the theoretical calculations using density functional theory (DFT). Antimicrobial activity of the ligand was investigated for its minimum inhibitory concentration (MIC) to several bacteria and yeast cultures. UV–Visible spectroscopy studies also shown that the ligand can bind calf thymus DNA (CT-DNA) electrostatic binding. In addition, DNA cleavage study showed that the ligand cleaved DNA without the need for external agents. Energetically most favorable docked structures were obtained from the rigid molecular docking of the compound with DNA. The compound binds at the active site of the DNA proteins by weak non-covalent interactions. The colorimetric response of the ligand in DMSO to the addition of equivalent amount of anions (F, Br, I, CN, SCN, ClO4, HSO4, AcO, H2PO4, N3 and OH) was investigated and the ligand was shown to be sensitive to CN anion.  相似文献   

17.
Extracellular ATP (eATP) has been implicated in mediating plant growth and antioxidant defense; however, it is largely unknown whether eATP might mediate salinity tolerance. We used confocal microscopy, a non-invasive vibrating ion-selective microelectrode, and quantitative real time PCR analysis to evaluate the physiological significance of eATP in the salt resistance of cell cultures derived from a salt-tolerant woody species, Populus euphratica. Application of NaCl (200 mM) shock induced a transient elevation in [eATP]. We investigated the effects of eATP by blocking P2 receptors with suramin and PPADS and applying an ATP trap system of hexokinase-glucose. We found that eATP regulated a wide range of cellular processes required for salt adaptation, including vacuolar Na+ compartmentation, Na+/H+ exchange across the plasma membrane (PM), K+ homeostasis, reactive oxygen species regulation, and salt-responsive expression of genes related to K+/Na+ homeostasis and PM repair. Furthermore, we found that the eATP signaling was mediated by H2O2 and cytosolic Ca2+ released in response to high salt in P. euphratica cells. We concluded that salt-induced eATP was sensed by purinoceptors in the PM, and this led to the induction of downstream signals, like H2O2 and cytosolic Ca2+, which are required for the up-regulation of genes linked to K+/Na+ homeostasis and PM repair. Consequently, the viability of P. euphratica cells was maintained during a prolonged period of salt stress.  相似文献   

18.
Lithium pollution may seriously influence the metabolic and signalling processes of plants. In the present paper, we investigate the effect of lithium chloride on fungal elicitor-triggered H2O2 generation in Rubia tinctorum L. cell cultures. Our results show that Li+ strongly influences elicitor-induced H2O2 formation and time-course in the cells nad culture medium. Neomycin, a phospholipase C inhibitor, and 2-APB, an inositol-1,4,5-triphosphate (IP3) receptormediated Ca2+ release blocker, strongly affected the elicitor-induced H2O2 production and had a similar effect on elicitor-triggered H2O2 formation as Li+. We monitored changes in H2O2 location at subcellular level and our observations confirmed the changes measured by quantitative methods. The obtained results enabled us to deduce that the IP3 pathway might be involved in the early signalling events leading to the moderation of elicitor-induced reactive oxygen species generation.  相似文献   

19.
Using confocal microscopy, X‐ray microanalysis and the scanning ion‐selective electrode technique, we investigated the signalling of H2O2, cytosolic Ca2+ ([Ca2+]cyt) and the PM H+‐coupled transport system in K+/Na+ homeostasis control in NaCl‐stressed calluses of Populus euphratica. An obvious Na+/H+ antiport was seen in salinized cells; however, NaCl stress caused a net K+ efflux, because of the salt‐induced membrane depolarization. H2O2 levels, regulated upwards by salinity, contributed to ionic homeostasis, because H2O2 restrictions by DPI or DMTU caused enhanced K+ efflux and decreased Na+/H+ antiport activity. NaCl induced a net Ca2+ influx and a subsequent rise of [Ca2+]cyt, which is involved in H2O2‐mediated K+/Na+ homeostasis in salinized P. euphratica cells. When callus cells were pretreated with inhibitors of the Na+/H+ antiport system, the NaCl‐induced elevation of H2O2 and [Ca2+]cyt was correspondingly restricted, leading to a greater K+ efflux and a more pronounced reduction in Na+/H+ antiport activity. Results suggest that the PM H+‐coupled transport system mediates H+ translocation and triggers the stress signalling of H2O2 and Ca2+, which results in a K+/Na+ homeostasis via mediations of K+ channels and the Na+/H+ antiport system in the PM of NaCl‐stressed cells. Accordingly, a salt stress signalling pathway of P. euphratica cells is proposed.  相似文献   

20.
Soil-N (NO3 ?) initiates as far as a threshold concentration is surpassed manifold physiological reactions on N2-fixation. Organic N and ammonium oxidised to NO3 ? means oxygen depletion. Plants suffering under O2 or infection stress start to excrete ethylene (C2H4). C2H4 widens the root intercellulars that O2-respiration will continue. Now microbes may more easily enter the plant interior by transforming the reached methionine into C2H4. Surplus nitrate and C2H4 inhibit nodulation of leguminous plants. Excess NO3 ? in the nodulesphere could be diminished by N2-fixing bacteria which in addition can denitrify or ammonify nitrate. Consequently, it was asked whether C2H4 interferes with the potential of N2-fixing bacteria to reduce nitrate. The groundnut-nodule isolate TNAU 14, from which it was known that it denitrifies and ammonifies nitrate, served as inoculum of a KNO3-mannitol-medium that was incubated under N2-, 1% (v/v) N2?C2H4-, and 1% (v/v) N2?C2H2-atmosphere in the laboratory. C2H2 was included into the experiments because it is frequently used to quantify N2-fixing potentials (acetylene reduction array, ARA). Gene-16S rDNA-sequencing and physiological tests revealed a high affiliation of strain TNAU 14 toRhizobium radiobacter andRhizobium tumefaciens. Strain TNAU 14 released N2O into the bottle headspace in all treatments, surprisingly significantly less in presence of C2H2. Nitrate-ammonification was even completely blocked by C2H2. C2H4, in contrast rather stimulated growth, denitrification, and nitrate-ammonification of strain TNAU 14 which consumed the released NH4 + during continuing incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号