首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 775 毫秒
1.
The standard genetic code is known to be much more efficient in minimizing adverse effects of misreading errors and one-point mutations in comparison with a random code having the same structure, i.e. the same number of codons coding for each particular amino acid. We study the inverse problem, how the code structure affects the optimal physico-chemical parameters of amino acids ensuring the highest stability of the genetic code. It is shown that the choice of two or more amino acids with given properties determines unambiguously all the others. In this sense the code structure determines strictly the optimal parameters of amino acids or the corresponding scales may be derived directly from the genetic code. In the code with the structure of the standard genetic code the resulting values for hydrophobicity obtained in the scheme “leave one out” and in the scheme with fixed maximum and minimum parameters correlate significantly with the natural scale. The comparison of the optimal and natural parameters allows assessing relative impact of physico-chemical and error-minimization factors during evolution of the genetic code. As the resulting optimal scale depends on the choice of amino acids with given parameters, the technique can also be applied to testing various scenarios of the code evolution with increasing number of codified amino acids. Our results indicate the co-evolution of the genetic code and physico-chemical properties of recruited amino acids.  相似文献   

2.
Based on previous considerations published in J. theor. Biol., new analyses of the organization of the genetic system are reported in this paper. We show that theoretical considerations about the order observed in the genetic code table support the idea of a primitive self-aminoacylation process achieved by primordial tRNAs. The physico-chemical constraints connected with this process may explain why a primitive genetic system predominantly uses sequences with the codonic pattern RNN (R=purine; Y=pyrimidine; N=any of the four bases) to polymerize the amino acids into peptides through translation. These considerations lead us to propose the Translation --> Translation/Replication hypothesis, which may explain why only RNA sequences with the pattern RNY, instead of less restrictive RNN, are susceptible to amplification. Using these ideas, supported by properties of symmetry, features of the genetic code may be connected with the replication of specific RNA sequences in the RNA world.  相似文献   

3.
Protein evolution can be seen as the successive replacement of amino acids by other amino acids. In general, it is a very slow process which is triggered by point mutations in the nucleotide sequence. These mutations can transform into single nucleotide polymorphisms (SNPs) within populations and diverging proteins between species. It is well known that in many cases amino acids can be replaced by others without impeding the functioning of the protein, even if these are of quite different physico-chemical character. In some cases, however, almost any replacement would result in a functionally deficient protein. Based upon comprehensive published SNP data and applying correlation analysis we quantified the two antagonist factors controlling the process of amino acid replacement and thus protein evolution: First, the degenerate structure of the genetic code which facilitates the exchange of certain amino acids and, second, the physico-chemical forces which limit the range of possible exchanges to maintain a functional protein. We found that the observed frequencies of amino acid exchanges within species are best explained by the genetic code and that the conservation of physico-chemical properties plays a subordinate role, but has nevertheless to be considered as a key factor. Between moderately diverged species genetic code and physico-chemical properties exert comparable influence on amino acid exchanges. We furthermore studied amino acid exchanges in more detail for six species (four mammals, one bird, and one insect) and found that the profiles are highly correlated across all examined species despite their large evolutionary divergence of up to 800 million years. The species specific exchange profiles are also correlated to the exchange profile observed between different species. The currently available huge body of SNP data allows to characterize the role of two major shaping forces of protein evolution more quantitatively than before.  相似文献   

4.
shCherbak VI 《Bio Systems》2003,70(3):187-209
The first information system emerged on the earth as primordial version of the genetic code and genetic texts. The natural appearance of arithmetic power in such a linguistic milieu is theoretically possible and practical for producing information systems of extremely high efficiency. In this case, the arithmetic symbols should be incorporated into an alphabet, i.e. the genetic code. A number is the fundamental arithmetic symbol produced by the system of numeration. If the system of numeration were detected inside the genetic code, it would be natural to expect that its purpose is arithmetic calculation e.g., for the sake of control, safety, and precise alteration of the genetic texts. The nucleons of amino acids and the bases of nucleic acids seem most suitable for embodiments of digits. These assumptions were used for the analyzing the genetic code.

The compressed, life-size, and split representation of the Escherichia coli and Euplotes octocarinatus code versions were considered simultaneously. An exact equilibration of the nucleon sums of the amino acid standard blocks and/or side chains was found repeatedly within specified sets of the genetic code. Moreover, the digital notations of the balanced sums acquired, in decimal representation, the unique form 111, 222, …, 999. This form is a consequence of the criterion of divisibility by 037. The criterion could simplify some computing mechanism of a cell if any and facilitate its computational procedure. The cooperative symmetry of the genetic code demonstrates that possibly a zero was invented and used by this mechanism. Such organization of the genetic code could be explained by activities of some hypothetical molecular organelles working as natural biocomputers of digital genetic texts.

It is well known that if mutation replaces an amino acid, the change of hydrophobicity is generally weak, while that of size is strong. The antisymmetrical correlation between the amino acid size and the degeneracy number is known as well. It is shown that these and some other familiar properties may be a physicochemical effect of arithmetic inside the genetic code.

The “frozen accident” model, giving unlimited freedom to the mapping function, could optimally support the appearance of both arithmetic symbols and physicochemical protection inside the genetic code.  相似文献   


5.
《BBA》2022,1863(8):148597
The origin of the genetic code is an abiding mystery in biology. Hints of a ‘code within the codons’ suggest biophysical interactions, but these patterns have resisted interpretation. Here, we present a new framework, grounded in the autotrophic growth of protocells from CO2 and H2. Recent work suggests that the universal core of metabolism recapitulates a thermodynamically favoured protometabolism right up to nucleotide synthesis. Considering the genetic code in relation to an extended protometabolism allows us to predict most codon assignments. We show that the first letter of the codon corresponds to the distance from CO2 fixation, with amino acids encoded by the purines (G followed by A) being closest to CO2 fixation. These associations suggest a purine-rich early metabolism with a restricted pool of amino acids. The second position of the anticodon corresponds to the hydrophobicity of the amino acid encoded. We combine multiple measures of hydrophobicity to show that this correlation holds strongly for early amino acids but is weaker for later species. Finally, we demonstrate that redundancy at the third position is not randomly distributed around the code: non-redundant amino acids can be assigned based on size, specifically length. We attribute this to additional stereochemical interactions at the anticodon. These rules imply an iterative expansion of the genetic code over time with codon assignments depending on both distance from CO2 and biophysical interactions between nucleotide sequences and amino acids. In this way the earliest RNA polymers could produce non-random peptide sequences with selectable functions in autotrophic protocells.  相似文献   

6.
The genetic code has evolved from its initial non-degenerate wobble version until reaching its present state of degeneracy. By using the stereochemical hypothesis, we revisit the problem of codon assignations to the synonymy classes of amino-acids. We obtain these classes with a simple classifier based on physico-chemical properties of nucleic bases, like hydrophobicity and molecular weight. Then we propose simple RNA (or more generally XNA, with X for D, P or R) ring structures that present, overlap included, one and only one codon by synonymy class as solutions of a combinatory variational problem. We compare these solutions to sequences of present RNAs considered as relics, with a high interspecific invariance, like invariant parts of (t)RNAs and micro-RNAs. We conclude by emphasizing some optimal properties of the genetic code.  相似文献   

7.
Information theoretic analysis of genetic languages indicates that the naturally occurring 20 amino acids and the triplet genetic code arose by duplication of 10 amino acids of class-II and a doublet genetic code having codons NNY and anticodons GNN. Evidence for this scenario is presented based on the properties of aminoacyl-tRNA synthetases, amino acids and nucleotide bases.  相似文献   

8.
9.
10.
Two ideas have essentially been used to explain the origin of the genetic code: Crick's frozen accident and Woese's amino acid-codon specific chemical interaction. Whatever the origin and codon-amino acid correlation, it is difficult to imagine the sudden appearance of the genetic code in its present form of 64 codons coding for 20 amino acids without appealing to some evolutionary process. On the contrary, it is more reasonable to assume that it evolved from a much simpler initial state in which a few triplets were coding for each of a small number of amino acids. Analysis of genetic code through information theory and the metabolism of pyrimidine biosynthesis provide evidence that suggests that the genetic code could have begun in an RNA world with the two letters A and U grouped in eight triplets coding for seven amino acids and one stop signal. This code could have progressively evolved by making gradual use of letters G and C to end with 64 triplets coding for 20 amino acids and three stop signals. According to proposed evidence, DNA could have appeared after the four-letter structure was already achieved. In the newborn DNA world, T substituted U to get higher physicochemical and genetic stability.  相似文献   

11.
M Pieber  J Tohá 《Origins of life》1983,13(2):139-146
The frequency of amino acid replacements in families of typical proteins has been elegantly analyzed by Argyle (1980) showing that the most frequent replacements involve a conservation of the amino acid chemical properties. The cyclic arrangement of the twenty amino acids resulting from the most frequent replacements has been described as an amino acid chemical ring. In this work, a novel amino acid replacement frequency ring is proposed, for which a conservation of over 90% of the most general physico-chemical properties can be deduced. The amino acid chemical similarity ring is also analyzed in terms of the genetic code base probability changes, showing that the discrepancy that exists between the standard deviation value of the amino acid replacement frequency matrix and its respective ideal value is almost equal to that deduced from the corresponding base codon replacement probability matrices. These differences are finally evaluated and discussed in terms of the restrictions imposed by the structure of the genetic code and the physico-chemical dissimilarities between some codons of amino acids which are chemically similar.  相似文献   

12.
The nucleotide frequencies in the second codon positions of genes are remarkably different for the coding regions that correspond to different secondary structures in the encoded proteins, namely, helix, beta-strand and aperiodic structures. Indeed, hydrophobic and hydrophilic amino acids are encoded by codons having U or A, respectively, in their second position. Moreover, the beta-strand structure is strongly hydrophobic, while aperiodic structures contain more hydrophilic amino acids. The relationship between nucleotide frequencies and protein secondary structures is associated not only with the physico-chemical properties of these structures but also with the organisation of the genetic code. In fact, this organisation seems to have evolved so as to preserve the secondary structures of proteins by preventing deleterious amino acid substitutions that could modify the physico-chemical properties required for an optimal structure.  相似文献   

13.
The laws governing degeneration of the genetic code are discussed below. Of fundamental importance in this context is the classification of the amino acids into groups on the basis of the physicochemical behaviour of their residues. From this, it is possible to formulate arithmetic relationships between the number of amino acids in the same group and the number of coding triplets.It is found that the degeneration of the genetic code obeys certain laws, the reasons for this being related to the number and the qualitative properties of the amino acids and triplets. The fact that the three bases of a coding triplet have different priorities must also be a critical factor.  相似文献   

14.
Summary We lay new foundations to the hypothesis that the genetic code is adapted to evolutionary retention of information in the antisense strands of natural DNA/RNA sequences. In particular, we show that the genetic code exhibits, beyond the neutral replacement patterns of amino acid substitutions, optimal properties by favoring simultaneous evolution of proteins encoded in DNA/RNA sense-antisense strands. This is borne out in the sense-antisense transformations of the codons of every amino acid which target amino acids physicochemically similar to each other. Moreover, silent mutations in the sense strand generate conservative ones in its antisense counterpart and vice versa. Coevolution of proteins coded by complementary strands is shown to be a definite possibility, a result which does not depend on any physical interaction between the coevolving proteins. Likewise, the degree to which the present genetic code is dedicated to evolutionary sense-antisense tolerance is demonstrated by comparison with many randomized codes. Double-strand coding is quantified from an information-theoretical point of view.  相似文献   

15.
We consider a model of the origin of genetic code organization incorporating the biosynthetic relationships between amino acids and their physicochemical properties. We study the behavior of the genetic code in the set of codes subject both to biosynthetic constraints and to the constraint that the biosynthetic classes of amino acids must occupy only their own codon domain, as observed in the genetic code. Therefore, this set contains the smallest number of elements ever analyzed in similar studies. Under these conditions and if, as predicted by physicochemical postulates, the amino acid properties played a fundamental role in genetic code organization, it can be expected that the code must display an extremely high level of optimization. This prediction is not supported by our analysis, which indicates, for instance, a minimization percentage of only 80%. These observations can therefore be more easily explained by the coevolution theory of genetic code origin, which postulates a role that is important but not fundamental for the amino acid properties in the structuring of the code. We have also investigated the shape of the optimization landscape that might have arisen during genetic code origin. Here, too, the results seem to favor the coevolution theory because, for instance, the fact that only a few amino acid exchanges would have been sufficient to transform the genetic code (which is not a local minimum) into a much better optimized code, and that such exchanges did not actually take place, seems to suggest that, for instance, the reduction of translation errors was not the main adaptive theme structuring the genetic code.  相似文献   

16.
Two forces are in general, hypothesized to have influenced the origin of the organization of the genetic code: the physicochemical properties of amino acids and their biosynthetic relationships. In view of this, we have considered a model incorporating these two forces. In particular, we have studied the optimization level of the physicochemical properties of amino acids in the set of amino acid permutation codes that respects the biosynthetic relationships between amino acids. Where the properties of amino acids are represented by polarity and molecular volume we obtain indetermination percentages in the organization of the genetic code of approximately 40%. This indicates that the contingent factor played a significant role in structuring the genetic code. Furthermore, this result is in agreement with the genetic code coevolution hypothesis, which attributes a merely ancillary role to the properties of amino acids while it suggests that it was their biosynthetic relationships that organized the code. Furthermore, this result does not favor the stereochemical models proposed to explain the origin of the genetic code. On the other hand, where the properties of amino acids are represented by polarity alone, we obtain an indetermination percentage of at least 21.5%. This might suggest that the polarity distances played an important role and would therefore provide evidence in favor of the physicochemical hypothesis of genetic code origin. Although, overall, the analysis might have given stronger support to the latter hypothesis, this did not actually occur. The results are therefore discussed in the context of the different theories proposed to explain the origin of the genetic code. Received: 10 September 1996 / Accepted: 3 March 1997  相似文献   

17.
The frequency of amino acid replacements in families of typical proteins has been elegantly analyzed by Argyle (1980) showing that the most frequent replacements involve a conservation of the amino acid chemical properties. The cyclic arrangement of the twenty amino acids resulting from the most frequent replacements has been described as an amino acid chemical ring.In this work, a novel amino acid replacement frequency ring is proposed, for which a conservation of over 90% of the most general physico-chemical properties can be deduced.The amino acid chemical similarity ring is also analyzed in terms of the genetic code base probability changes, showing that the discrepancy that exists between the standard deviation value of the amino acid replacement frequency matrix and its respective ideal value is almost equal to that deduced from the corresponding base codon replacement probability matrices. These differences are finally evaluated and discussed in terms of the restrictions imposed by the structure of the genetic code and the physico-chemical dissimilarities between some codons of amino acids which are chemically similar.This work was partially supported by OEA and Departamento de Desarrollo de la Investigación.  相似文献   

18.
During translation, some +1 frameshift mRNA sites are decoded by frameshift suppressor tRNAs that contain an extra base in their anticodon loops. Similarly engineered tRNAs have been used to insert nonnatural amino acids into proteins. Here, we report crystal structures of two anticodon stem-loops (ASLs) from tRNAs known to facilitate +1 frameshifting bound to the 30S ribosomal subunit with their cognate mRNAs. ASL(CCCG) and ASL(ACCC) (5'-3' nomenclature) form unpredicted anticodon-codon interactions where the anticodon base 34 at the wobble position contacts either the fourth codon base or the third and fourth codon bases. In addition, we report the structure of ASL(ACGA) bound to the 30S ribosomal subunit with its cognate mRNA. The tRNA containing this ASL was previously shown to be unable to facilitate +1 frameshifting in competition with normal tRNAs (Hohsaka et al. 2001), and interestingly, it displays a normal anticodon-codon interaction. These structures show that the expanded anticodon loop of +1 frameshift promoting tRNAs are flexible enough to adopt conformations that allow three bases of the anticodon to span four bases of the mRNA. Therefore it appears that normal triplet pairing is not an absolute constraint of the decoding center.  相似文献   

19.
20.
The genetic code has a high level of error robustness. Using values of hydrophobicity scales as a proxy for amino acid character, and the mean square measure as a function quantifying error robustness, a value can be obtained for a genetic code which reflects the error robustness of that code. By comparing this value with a distribution of values belonging to codes generated by random permutations of amino acid assignments, the level of error robustness of a genetic code can be quantified. We present a calculation in which the standard genetic code is shown to be optimal. We obtain this result by (1) using recently updated values of polar requirement as input; (2) fixing seven assignments (Ile, Trp, His, Phe, Tyr, Arg, and Leu) based on aptamer considerations; and (3) using known biosynthetic relations of the 20 amino acids. This last point is reflected in an approach of subdivision (restricting the random reallocation of assignments to amino acid subgroups, the set of 20 being divided in four such subgroups). The three approaches to explain robustness of the code (specific selection for robustness, amino acid–RNA interactions leading to assignments, or a slow growth process of assignment patterns) are reexamined in light of our findings. We offer a comprehensive hypothesis, stressing the importance of biosynthetic relations, with the code evolving from an early stage with just glycine and alanine, via intermediate stages, towards 64 codons carrying todays meaning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号