首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
2.
Dynamic aspects of apical zonation in the angiosperm pollen tube   总被引:2,自引:0,他引:2  
Summary In the apical 10–20 m of actively extending pollen tubes of Epilobium angustifolium, in a zone where the polysaccharide-containing wall precursor bodies (P-particles) dominate and where their movements on superficial observation seem to be random, there is in fact a concerted flux, acropetal movement taking place along the flanks of the tip zone, with a basipetal return flow along the centre. Detailed tracking of individuals shows that lipid globuli (diameters up to 1.5 m) and amyloplasts (dimensions up to 5.5 × 2.5 m) follow similar patterns of movement, but are sorted out in the sub-apical region, the smaller bodies penetrating further towards the apex. The findings are interpreted as indicating that the well-documented apical zonation of the pollen tube is maintained in the fluid circumstances of the growing tube by the filtering of cytoplasmic inclusions through the actin cytoskeleton, which, in conformity with recent fine-structural and other observations, is envisaged as consisting of a network of cross-linked microfilaments and microfilament aggregates at the tube tip giving place progressively to a system of more ordered, longitudinally oriented fibrils in the older parts of the tube. The implications for the operation of the actomyosin motility system and the tip growth mechanism are discussed.  相似文献   

3.
4.
It has been reported that in species of Plumbaginaceae, Chenopodiaceae,Cruciferae and Amaryllidaceae a ‘male germ unit’is formed in which the two male gametes remain inter-connected,with one of the pair linked intimately to the vegetative nucleus.In two species the unit has been shown to remain intact in thepollen tube, and some accounts imply that it is polarized inits movement, the vegetative nucleus leading in the tube. Evidence given in this paper indicates that such a unit is unlikelyto be present in Helleborus foetidus L. (Ranunculaceae). Applicationof an optical sectioning technique has shown that at no timeis there a persistent linkage between the generative cell andthe vegetative nucleus in unhydrated, hydrated and germinatingpollen, nor is one present in the early pollen tube. Furthermore,no inter-connections between the two entities were seen in protoplastsfrom living, hydrated and incipiently germinating grains isolatedmechanically in an osmotically balancing medium. Following germination,the vegetative nucleus leaves the grain in advance of the generativecell in most instances, but in the samples examined the generativecell led in about 30 per cent of the tubes. Assembling a polarisedmale germ unit in these circumstances would require (a) theformation of an inter-connection between the vegetative nucleusand the generative cell or one of the gametes derived from itduring passage through the tube, and (b) where the generativecell initially leads in the tube, an exchange in relative positions.It is considered improbable that these conditions could consistentlybe met. Mature, incipiently germinating pollen of H. foetidus releasesa fibrillar component when extruded into suitable media. Websor clusters of fibrils are commonly seen to be associated withboth the vegetative nucleus and the generative cell. The possibilitythat the fibrils are composed of aggregates of microfilamentsis considered. Helleborus foetidus L., pollen germination, generative cell, vegetative nucleus, male germ unit  相似文献   

5.
In angiosperm pollen, the vegetative cell is assumed to function as a gametophytic cell in pollen germination and growth of the pollen tube. The chromatin in the nucleus of the vegetative cell gradually disperses after microspore mitosis, whereas the chromatin in the nucleus of the other generative cell remains highly condensed during the formation of two sperm nuclei. In order to explain the difference in chromatin condensation between the vegetative and generative nuclei, we analyzed the histone composition of each nucleus in Lilium longiflorum Thunb. and Tulipa gesneriana immunocytochemically, using specific antisera raised against histones H1 and H2B of Lilium. We found that the level of histone H1 decreased gradually only in the vegetative nucleus during the development of pollen within anthers and that the vegetative nucleus in mature pollen after anther dehiscence contained little histone H1. By contrast, the vegetative nucleus contained the same amount or more of histone H2B than the generative nucleus. The preferential decrease in the level of histone H1 occurred in anomalous pollen with one nucleus (uninucleate pollen) or with two similar nuclei (equally divided pollen), which had been induced by treatment with colchicine. The nuclei in the anomalous pollen resembled vegetative nuclei in terms of structure and staining properties. The anomalous pollen was able to germinate and extend a pollen tube. From these results, it is suggested that the preferential decrease in level of histone H1 in pollen nuclei is essential for development of the male gametophytic cell through large-scale expression of genes that include pollen-specific genes, which results in pollen germination and growth of the pollen tube. Received: 9 May 1998 / Accepted: 4 June 1998  相似文献   

6.
土麦冬离体萌发花粉管中生殖细胞与营养核的动态变化   总被引:7,自引:0,他引:7  
主要报道了土麦冬人工培养萌发花粉管中生殖细胞与营养核的动态变化。多数花粉管中,生殖细胞与营养核贴合后,开始进行有丝分裂,贴合时,营养核略呈弥散状态。在分裂早中期,生殖细胞与营养核分开,从贴合到分开大约经历3-5h,精子形成后,不与营养核连接。DAPI对生殖细胞的有丝分裂有抑制作用。少数花粉管中,生殖细胞核进行无丝分裂,有缢裂和劈裂两种方式。生殖细胞核发生缢裂的花粉管中,未观察到生殖细胞与营养核的贴  相似文献   

7.
Generative and sperm cells were examined at four stages of development from generative cell formation to sperm cell maturation using serial transmission electron microscopy. The generative cell and vegetative nucleus are associated in a male germ unit association during pollen maturation and tube elongation, except for generative cell mitosis. At late stages of prophase, this association loosens; the generative cell separates from the vegetative nucleus at metaphase. Slender, unbranched, or occasionally branched projections may be found at one or both ends of the generative cell, or they may be single, blunt, and short. Slender projections are rare during anaphase and telophase. The vegetative nucleus moves back into apposition with one sperm cell at the end of mitosis. During the re-establishment of the association, the vegetative nucleus first touches the end of the leading sperm cell and then moves next to the middle of the sperm nucleus. As the sperm cells enter interphase, a conventional association is re-established between one cell and the vegetative nucleus through one or more long and slender cytoplasmic extensions; these associations are maintained throughout later passage in the pollen tube. During maturation, a significant increase occurs in the surface area of the sperm cells (particularly in the sperm cell in association with the vegetative nucleus), and a lesser increase in nuclear volume and surface area. Other sperm cell parameters, including those of heritable organelles, remain unchanged during sperm cell maturation.  相似文献   

8.
Summary The structure of the generative cell and its association with the vegetative nucleus in the pollen tube ofCyphomandra betacea Sendt. were observed with the electron microscope. The generative cell, bounded by its own plasma membrane and the inner plasma membrane of the vegetative cell, possesses the cytoplasmic extension which lies within the embayments of a vegetative nucleus. The generative cell contains the normal complement of organelles and, especially, microtubules which cluster into several groups adjacent to the plasma membrane, oriented along the longitudinal axis of the cell. In the pollen tube reaching the lower end of the style aftersemivivo pollination, both of the sperm cells are elongated and polyribosomes and microtubules are the outstanding feature in the cytoplasm. The two sperm cells are connected by a common transverse cell wall, while cytoplasmic channels exist in both the periplasm of the two sperm cells and the transverse wall. The leading sperm cell (Svn) is closely associated with the vegetative nucleus. Thus the present study demonstrates the existence of the male germ unit in the pollen tube ofC. betacea. The possible cytoplasmic continuity between the sperm cells and between the gametes and vegetative cell is considered.Abbreviations Svn sperm cell physically associated with the vegetative nucleus - Sua sperm cell unassociated with the vegetative nucleus - RER rough endoplasmic reticulum - SER smooth endoplasmic reticulum  相似文献   

9.
This paper deals with the comportmem of the vegetative nucleus and its spatial association with the generative cell and sperm cells in the artificially germinated pollen tubes of Zephyranthes candida (Lindl.) Herb. before and after generative cell mitosis with the use of DNA-specific fluochrome 4′,6-diamidino-2-phenylindole (DAPI). The induction of amitosis and abnormal mitosis of generative cell nuclei by cold-pretreatment of the pollen prior to germination was studied in particular. In normal case, the generative cell, after appressing to the vegetative nucleus for certain time, underwent mitosis to form two sperms, while the vegetative nucleus became markedly elongated, diffused, and exhibited blurring of its fluorescence. After division, a pair of sperms remained shortly in close connexion with the vegetative nucleus. Then the vegetative nucleus returned to its original state. In the pollen tubes germinated from cold-pretreated pollen, amitosis of some generative cell nuclei were frequently observed. Amitosis took place via either equal or unequal division with a mode of constriction. During amitosis, the dynamic change of vegetative nucleus and its intimate association with generative cell afore described did not occur. Sperm nuclei produced from amitosis could farther undergo amitisis resulting in micronnclei. Factors affecting the amitosic rate of generative cells, such as pollen developmental stage, temperature and duration of cold-pretreatment, were studied. Besides amitosis, cold-pretreatment also induced some abnormal mitotic behavior leading to the formation of micronuclei. Based on our observations and previously reported facts in other plant materials, it is inferred that the vegetative nucleus plays an important role in normal mitosis of generative cell and development of sperms.  相似文献   

10.
In this study, polyclonal anti-myosin antibodies were used for immunogold labeling of ultrathin sections of pollen tubes ofNicotiana tabacum L. to unravel the ultrastructural localization of myosin associated with the generative cells. Clusters of immunogold particles were consistently found in association with the area of the outer surface of the vegetative cell plasma membrane present around the generative cell. Compared to the generative cell cytoplasm, the nucleoplasm showed higher numbers of gold particles. This is the first direct evidence demonstrating the presence of myosin in the nuclei of the generative cell of flowering plants. The possible implications of these findings are discussed in relation to movement of the generative cell in the pollen tube cytoplasm.  相似文献   

11.
Generative and vegetative nuclei of mature and germinated pollen grains from Hippeastrum belladonna were separated in a continuous Ficoll gradient. Less than 3% contamination was observed between the generative and vegetative nuclear fractions. The vegetative nuclei were composed of two populations; the larger population consisted of nuclei with 1C levels of DNA and the smaller with 2C levels. The generative nuclei consisted of a homogeneous population composed of nuclei possessing 2C levels of DNA. Histone synthesis did not occur in vegetative nuclei. Changes appeared in the gel-electrophoretic banding patterns of the F1 histones of vegetative nuclei during germination. Changes were not observed in the generative nuclei. A reduction of general proteins and RNA was observed in vegetative nuclei by 20 h of germination. The phenol-soluble nuclear proteins of vegetative nuclei revealed transitions in electrophoretic banding patterns during pollen germination that were greater than those shown by the histones. These changes in the PSNP primarily involved reduced concentrations of certain proteins rather than synthesis of new ones. However, a new band was observed in the electrophoretic pattern of the PSNP of vegetative nuclei after 12 h of pollen tube growth. No transition was seen in the PSNP of generative nuclei during pollen germination and tube growth. The regulatory role of the PSNP in cell differentiation is discussed in the light of these findings.  相似文献   

12.
The growth of pollen tubes is characterized by an intense cytoplasmic streaming, during which the movements of smaller organelles (like secretory vesicles) and larger ones (including the generative cell and vegetative nucleus) are precisely coordinated. A well-characterized cytoskeletal apparatus is likely responsible for these intracellular movements. In recent years both microfilament and microtubule-based motor proteins have been identified and assumed to be the translocators of the several organelle categories. Their precise function during pollen tube growth is not yet clear, but apparently an actomyosin-based system is mainly responsible for pollen tube elongation. On the other hand, microtubules and microtubule-based motors have been thought to play a role in the maintenance of cell polarity. Both cytoskeletal systems (and their respective motor activities) could cooperate to ensure a precise regulation of pollen tube growth.  相似文献   

13.
The movement of organelles in the germinated pollen of Oenothera odorata was studied in detail by video microscopy. The image of the organelle movement was processed by computergation. The pollen grain of Oenothera odorata is large and easy to germinate in vitro and is suitable for the study of organelle movement . The motion of organelles in the germinated pollen grains and pollen tubes is very vigorous. But the movement of organelles in the pollen tubes is more vigorous than that in the germinating pollen grains. Some of their motion is saltatory. A kind of fibrils was observed in the germinated pollen grains. They are supposed to be made up of actin filaments. Some of the fibrils have one end connected to the plasma membrane and others have both ends linked to the plasma membrane , forming a network. Organelles move along the fibrils continuosely and the speed changes constantly . The speed of movement of organelles is not related to their dimensions. Cytochalasin B can inhibit the movement of organelles. Our results suggest that the movement of organelles is independent of the cytoplasmic streaming in the germinated pollen grains and pollen tubes.  相似文献   

14.
The freeze-etch technique has been used to expose surface views of vegetative and generative nuclear envelopes in both ungerminated and germinated pollen of Tradescantia paludosa. A comparison of the density and total numbers of nuclear pores on the two nuclei indicates that vegetative nuclei have at least twice as many pores as generative nuclei. These findings are compatible with the concept that the vegetative nucleus plays a more active role in pollen tube development than the generative nucleus.  相似文献   

15.
The present study of the formation of the generative and vegetative cells in wheat has demonstrated some cytological details at the ultrastructural level. The phragmoplast formed in telophase of the first microsporic mitosis extended centrifugally until it connected with the intine of the pollen grain. A new cell wall was then formed to separate the generative and the vegetative cells. By unequal cytokinesis the former is small and the latter large. In early developmental stage of male gametophyte, the organelles in the cytoplasm of the generaVive cell and the vegetative cells are similar, including mitochondria, dictyosomes, rough endoplasmic retieulum, free and clustered ribosomes and plastids, but microtubules were observed only in the early cytokinesis stage. In the further developmental stage of the male gemetophyte, the generative cell gradually detached from the intine of pollen grain and grew inward to the cytoplasm of the vegetation cell. When the generative cell became round and free in the cytoplasm of the vegetative cell, the wall materials between plasma membranes of the cytoplasm of the generative and the vegetative cells disappeared completely, so that it was a naked cell with a double-layer membrane at this time. The heterogeneity between both cells was then very conspiceous. The organelles in the cytoplasm of the generative cell have hardly any changed besides the degeneration of plastids, but in vegetative cytoplasm the mitochondria and plastids increased dramatically both in number and size. The rapid deposition of starch in the plastids of the cytoplasm of the vegetative cell made the most conspicuous feature of the vegetative cell in mature pollen grain. The significance of the presence of a temporary cell wall in generative cell and heterogeneity between generative and vegetative cells are discussed.  相似文献   

16.
运用透射电镜对杜仲花粉发育进程进行了观察研究。结果显示,杜仲小孢子的第一次分裂为不等分裂,形成小的生殖细胞和大的营养细胞。分裂开始前小孢子的营养极形成许多小液泡,建立细胞极性;然后随着核膜的解体核周围的细胞器逐渐向纺锤体区靠近,围绕在纺锤体周围。花粉第一次有丝分裂完成后,生殖细胞所获得的细胞器开始分布在细胞的两侧,后来移向生殖细胞的营养极,而紧贴花粉壁的生殖极无细胞器分布。这种生殖细胞早期的细胞极性,可能为进一步分裂形成精细胞奠定基础。  相似文献   

17.
The monocolpate pollen grain of Narcissus pseudonarcissus L.has two preferred sites for tube emergence, one at each endof the colpus. While the cellulosic microfibnls of the innerlayer of the intine are disposed circumferentially in the centreof the grain, the microfibrils in these terminal sites are shorterand randomly oriented Soon after the beginning of hydration,inclusions of the vegetative cell begin movement, firstly ina rotatory manner, and then in a pattern focused on one or bothgermination sites, where the intine bulges as hydration progresses.These changes are associated with the evolution of the actincytoskeleton. Actin is present in the unactivated grain in theform of fusiform bodies. During hydration these dissociate toform finer fibrils, initially randomly disposed. Then, correlatedwith the change of the pattern of movement in the vegetativecell, the actin fibril system becomes polarized towards thegermination sites, where shorter fibrils accumulate. Callose,absent from the ungerminated grain, is deposited within thecellulosic wall in these locations, forming a shallow dome whicheventually develops into an annulus subtending the inner calloselining of the emerging tube. The transition to cylindrical growthis associated firstly with the development of zonation in thecytoplasm of the vegetative cell, with the tip occupied by apopulation of wall precursor bodies (P-particles) and a denseaggregate of short actin fibrils; and then with the establishmentof the ‘inverse fountain’ pattern of movement characteristicof the apical part of the extending tube. Narcissus pseudonarcissus L, pollen activation, pollen germination, actin cytoskeleton, tip-growth system, pollen-tube wall development  相似文献   

18.
利用绿色荧光蛋白基因结合鼠Talin基因表达技术及水稻转基因技术,在未成熟花粉发育期(即生殖细胞在形成后从靠壁部位移向中央部位的阶段)的水稻(Oryza sativa L.)内发现了一系列前人未曾报道过的微丝骨架的形成和多变过程。在这一发育阶段,未成熟花粉内的生殖细胞呈圆形,中央部位存有一个大液泡,大量微丝在细胞的中央胞质内形成。微丝首先在营养核的核膜表面形成两个集结中心,中心内的微丝呈短粗状。尔后,中心微丝不断瞎长,最终在细胞中央的胞质内形成一个非常 类似多个纺锤体结合在一起的网络结构。这一网络的中间部位经常包围着营养核和生殖细胞,网络的部分微丝则与存在周缘细胞质(或称周质)的微丝网络形成连接,在连接点部位则形成一些由微丝环状组成的结构。未成熟花粉中央的微丝网络可能与营养核和生殖细胞在未成熟花粉内的运动有密切关系。  相似文献   

19.
Summary Both the internal anatomy and the external morphology of the mature pollen grain of Aloe ciliaris have been studied, together with the cytological changes occurring during pollen activation. In mature pollen, the generative cell (GC) and the vegetative nucleus (VN) are closely associated with each other, and both can be found in the central part of the grain. In the generative cytoplasm, some organelles and microtubular bundles are present. In the vegetative cell, dictyosomes, stacks of rough endoplasmic reticulum, mitochondria, plastids, vacuoles, ribosomes, and masses of fibrillar material have been described. During pollen activation, important changes occur in both the generative and vegetative cells (VC). In the GC, the microtubular bundles become clearly visible, and the GC and VC gradually move towards the germ pore. The RER cisterns become free from the stacks, and organelles, such as dictyosomes, become very active. The fibrillar masses gradually decrease in number, and the individual fibrils become more evident and clearer in resolution.This research was carried out in the framework of contract no. BAP-0204-I of the Biotechnology Action Programme of the Commission of the European Communities  相似文献   

20.
玉竹(Polygonatum simizui Kitag)小孢子在分裂前,质体极性分布导致分裂后形成的生殖细胞不含质体,而营养细胞包含了小孢子中全部的质体。生殖细胞发育至成熟花粉时期,及在花粉管中分裂形成的两个精细胞中始终不含质体。虽然生殖细胞和精细胞中都存在线粒体,但细胞质中无DNA类核。玉竹雄性质体的遗传为单亲母本型。在雄配子体发育过程中,营养细胞中的质体发生明显的变化。在早期的营养细胞质中,造粉质体增殖和活跃地合成淀粉。后期,脂体增加而造粉质体消失。接近成熟时花粉富含油滴。对百合科的不同属植物质体被排除的机理及花粉中贮藏的淀粉与脂体的转变进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号