首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1. We studied variation in the composition of fatty acids in the seston of a small freshwater reservoir with changes in phytoplankton composition during four growth seasons. We focused on the dynamics of the ω3 fatty acids because of their potential importance for zooplankton nutrition. 2. Total diatoms were related to the 20:5ω3 fatty acid (eicosapentaenoic, EPA) content in seston. Among two dominant diatom genera, Cyclotella was not associated with EPA content. In contrast, there was a significant correlation between Stephanodiscus and the percentage contribution and content of EPA throughout the study. Hence, freshwater diatoms can differ strongly in content of the essential EPA. 3. We considered abundant cyanobacteria as a potential source of 18:3ω3 fatty acid (linolenic, ALA) to aquatic food webs. Among four dominant cyanobacteria species, two (Anabaena flos‐aquae and Planktothrix agardhii) showed significant correlation with the ALA content of the seston, while the other two (Aphanizomenon flos‐aquae and Microcystis aeruginosa) did not. 4. Dinophyta had a relatively high level of 22:6ω3 (docosahexaenoic, DHA) for freshwater species and can be also a source of EPA to aquatic food webs. 5. Our results show that various species of diatoms as well as cyanobacteria can be of contrasting nutritional value for zooplankton because of their different content of the essential PUFAs. Diatoms, which are low in EPA, could not be considered as a valuable food, while some field populations of cyanobacteria might be valuable sources of essential ALA.  相似文献   

2.
Resource distribution heterogeneity offers niche opportunities for species with different functional traits to develop and potentially coexist. Available light (photosynthetically active radiation or PAR) for suspended algae (phytoplankton) may fluctuate greatly over time and space. Species‐specific light acquisition traits capture important aspects of the ecophysiology of phytoplankton and characterize species growth at either limiting or saturating daily PAR supply. Efforts have been made to explain phytoplankton coexistence using species‐specific light acquisition traits under constant light conditions, but not under fluctuating light regimes that should facilitate non‐equilibrium coexistence. In the well‐mixed, hypertrophic Lake TaiHu (China), we incubated the phytoplankton community in bottles placed either at fixed depths or moved vertically through the water column to mimic vertical mixing. Incubations at constant depths received only the diurnal changes in light, while the moving bottles received rapidly fluctuating light. Species‐specific light acquisition traits of dominant cyanobacteria (Anabaena flos‐aquae, Microcystis spp.) and diatom (Aulacoseira granulata, Cyclotella pseudostelligera) species were characterized from their growth–light relationships that could explain relative biomasses along the daily PAR gradient under both constant and fluctuating light. Our study demonstrates the importance of interspecific differences in affinities to limiting and saturating light for the coexistence of phytoplankton species in spatially heterogeneous light conditions. Furthermore, we observed strong intraspecific differences in light acquisition traits between incubation under constant and fluctuating light – leading to the reversal of light utilization strategies of species. This increased the niche space for acclimated species, precluding competitive exclusion. These observations could enhance our understanding of the mechanisms behind the Paradox of the Plankton.  相似文献   

3.
Filament density of Aphanizomenon flos‐aquae (Lemmerm.) Ralfs, water temperature and soluble reactive phosphorus (SRP) were measured from April to August in 1993–1996 in Lake Barato, Hokkaido, Japan. In addition, growth characteristics and internal phosphorus (P) utilization of Aph. flos‐aquae were evaluated under P limitation at three temperatures (15, 20 and 25?C) to clarify the role of internal accumulated P for its growth in the incubation experiment. The filament density was highest in early July 1994, when SRP concentration had not yet decreased and the water temperature was high. These are important factors favoring an increase in abundance of this species in L. Barato. During batch culture, the time course of the stationary phase was shortest at 25?C and longest at 15?C; the cellular C:P molar ratio was 111 under P sufficiency and increased eight‐ to 12‐fold under P limitation. As the C:P ratio was significantly higher in the decreasing phase at 15?C, Aph. flos‐aquae may be more adaptable to Plimitation at 15?C than at 20?C and 25?C. However, the low temperatures did not favor the abundance of Aph. flos‐aquae in 1996. This indicates that the filament density of Aph. flos‐aquae decreases before it reaches the maximum value for some reason under P limitation in L. Barato.  相似文献   

4.
The chemical and biological characteristics of Lake Guiers (Senegal) have changed markedly since the impoundment of the Senegal River (Diama and Manantali dams) and subsequent development of irrigated agriculture in the nineteen eighties. On a longitudinal transect of 10 stations (from south to north), the environmental characteristics and the spatial variability of physicochemical variables, phytoplankton and zooplankton communities were studied. Within a marked south‐north gradient, the southern stations were characterized by the highest conductivity and pH and by the lowest values of suspended solids, chlorophyll‐a concentrations and phytoplankton abundance (mainly Chlorophycea, Cyanobacteria and Bacillariophycea). The spatial distribution of zooplankton showed a clear distinction between the southern zone, characterized by the presence of the rotifers Brachionus falcatus and Conochiloides sp., the cladoceran Bosmina longirostris, the cyclopoid Thermocyclops neglectus and the calanoid Pseudodiaptomus hessei. A co‐inertia analysis clearly showed that environmental factors and phytoplankton drives the spatial distribution of zooplankton communities. The comparison of our data with previous studies suggests a marked change in the biological communities since the impoundment of the Senegal River, with rarefaction of P. hessei and proliferation of the cyclopoid Mesocyclops ogunnus. Several hypotheses are discussed to explain these biological changes. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Zooplankton may at times graze cyanobacteria. However, their top-down effects are considered to be low, particularly in tropical regions dominated by small-size grazers that may be unable to consume efficiently filamentous or colonial species. Recently, cyanobacteria blooms were reported in the Senegal River hydrosystem. We conducted feeding experiments to assess the ability of copepods (Pseudodiaptomus hessei and Mesocyclops ogunnus), cladocerans (Moina micrura and Ceriodaphnia cornuta), and rotifers (Brachionus angularis, B. falcatus, and Keratella sp.) to control different cyanobacteria (Cylindrospermopsis raciborskii, Anabaena solitaria, A. flos-aquae, and Microcystis aeruginosa). None of the zooplankton species ingested M. aeruginosa. Mesocyclops ogunnus did not consume any of the cyanobacteria. Both cladocerans consumed the smallest filaments of cyanobacteria, whereas all the rotifers and P. hessei consumed a broader food-size spectrum. The functional feeding responses suggest that the concentration and size of the filaments are not the sole criteria for food consumption. The high zooplankton community grazing rates, estimated by applying the clearance rates measured in the laboratory to the in situ zooplankton abundance, indicate that grazing by zooplankton potentially constitutes an important controlling factor for the filamentous cyanobacteria in the tropics.  相似文献   

6.
To examine the seasonal succession of the entire zooplankton community in Lake Biwa, zooplankton biomass (on an areal basis) and its distribution patterns among crustaceans, rotifers and ciliates were studied in the north basin from April 1997 to June 1998. Seasonal changes in phytoplankton and population dynamics of Daphnia galeata were also examined to assess food condition and predation pressure by fish. From March to November, crustaceans dominated zooplankton biomass, but rotifers and ciliates were dominant from December to February. Among crustaceans, Eodiaptomus japonicus was the most abundant species, followed by D. galeata. Zooplankton biomass increased from January to a peak in early April, just before the spring bloom of phytoplankton, then decreased in mid-April when mortality rate of D. galeata increased. From mid-June, zooplankton increased and maintained a high level until the beginning of November. During this period, both birth and mortality rates of D. galeata were relatively high and a number of rotifer and crustacean species were observed. However, their abundances were very limited except for E. japonicus which likely preys on ciliates and rotifers. In Lake Biwa, food sources other than phytoplankton, such as resuspended organic matter from the sediments, seems to play a crucial role in zooplankton succession from winter to early spring, while zooplankton community seems to be regulated mainly by fish predation from summer to fall.  相似文献   

7.
Research on the diurnal distribution of physical and chemical parameters within a single macrophyte bed was carried out on the shallow Wielkowiejskie Lake (Poland). A non-parametric statistical analysis was used to compare the water quality features in different parts of a Chara hispida habitat including the middle, both edge (vertical and horizontal) parts of a macrophyte plant, and the open water next to-and above the stonewort stand. The obtained results showed a differentiation in the physical-chemical parameters of the environmental conditions within the Chara hispida stand. The greatest variability was found for dissolved oxygen. Its lowest concentrations were noted in the central part of the macrophyte stand, irrespective of the sampling time. The zooplankton communities within the examined Chara bed were strongly influenced by the concentration of dissolved oxygen. It was also found that two main components of zooplankton communities (rotifers and cladocerans) had a similar trend in their spatial and diurnal distribution within the stonewort stand.  相似文献   

8.
A taxonomic reevaluation of the paralytic shellfish toxin (saxitoxins) producing cyanobacterium Aphanizomenon flos‐aquae Ralfs ex Born. & Flah. LMECYA31 was done using morphology and 16S rRNA gene sequences. We found that strain LMECYA31 was incorrectly identified as Aph. flos‐aquae based on (a) lack of bundle formation in trichomes, (b) shape of terminal cells in the trichomes, (c) lower similarity (<97.5%) in the 16S rRNA gene sequences relative to those of Aph. flos‐aquae, and (d) comparison within a phylogenetic tree of 16S rRNA gene sequences. The shape of the terminal trichome cells and the shape and size of the vegetative cell, heterocyst, and akinete in strain LMECYA31 match characters of Aph. issatschenkoi (Ussachew) Proschkina‐Larvernko. 16S rRNA gene sequences and phylogenetic clusters constructed from 16S rRNA gene sequences support our conclusion that strain LMECYA31 should be Aph. issatschenkoi.  相似文献   

9.
Fifty‐three strains of the genus Aphanizomenon isolated from Chinese waters were employed to conduct morphological examination and sequencing of the 16S rRNA gene, rbcLX (RUBISCO), and cpcBA‐IGS gene regions. Based on morphological characteristics, the examined strains were divided into three morphotypes [Aph. flos‐aquae Bréb. ex Bornet et Flahault, Aph. gracile Lemmerm., and Aph. issatchenkoi (Usacer) Proshk.‐Lavr.]. Phylogenetic analysis based on 16S rRNA and rbcLX showed that Aphanizomenon strains could be divided into three main clades (Clade A of Aph. flos‐aquae, Clade B of Aph. gracile, and Clade C of Aph. issatchenkoi), but two additional clades formed by Aph. ovalisporum and Aph. aphanizomenoides were detected in the 16S rDNA‐based topology. All Aph. issatchenkoi strains contained an additional 175 nucleotides from the 779 to 954 nucleotide location in rbcLX region, compared with strains of Aph. flos‐aquae and Aph. gracile. The cpcBA‐IGS‐based phylogenetic tree revealed that Aph. issatchenkoi strains were not discriminated from Aph. flos‐aquae strains; however, a concatenated alignment of 16S rDNA, rbcLX, and cpcBA‐IGS led to the three distinct clades (Aph. flos‐aquae, Aph. gracile, and Aph. issatchenkoi, respectively). It is suggested that the taxonomic revision of Aphanizomenon and Anabaena genera is required to be performed by employing multilocus sequence analysis and polyphasic studies.  相似文献   

10.
1. Sedimentary akinetes (resting stages) may represent significant potential inocula for nuisance blooms of cyanobacteria. We studied the effects of salinity and sediment source on the germination and subsequent growth of Anabaena flos‐aquae akinetes from a shallow, tidally influenced lake. 2. Surface sediments collected from littoral and open‐water sites were used as inocula to culture A. flos‐aquae akinetes in four salinities (0.1, 2.2, 4.4 and 6.5) over 22 days. Akinete germination and development was followed by counting developmental stages every second day. 3. Filament growth, but not akinete germination, was inhibited by salinity and there were significantly fewer filaments at 6.5 than at 0.1 and 2.2. Cultures inoculated with littoral sediment had more akinetes, germlings and filaments than those inoculated with open‐water sediment. 4. Sediment is a potential source of inocula for Anabaena blooms in the lake, which potentially could develop solely from this source because germination and subsequent filament growth do not depend on the existence of an initial pelagic Anabaena population.  相似文献   

11.
Studies have shown a strong linkage between zooplankton and fisheries' potential in tropical lakes. High zooplankton production provides the basis for fish production, but knowledge of zooplankton production dynamics in African lakes is extremely limited. Crustacean zooplankton production and the biomass of dominant rotifers in Lake Bosumtwi were assessed over a 2‐year period. The crustaceans comprised an endemic and extremely abundant cyclopoid copepod, Mesocyclops bosumtwii and the cladoceran Moina micrura. Mean standing stock of the crustaceans was 429 mg dw m?3, whilst annual production averaged 2.1 g dw m?3 y?1. Production doubled from 1.4 g dw m?3 y?1 in 2005 to 2.8 g dw m?3 y?1 in 2006. Copepods accounted for 98.5% of crustacean production. The biomass of the dominant rotifers Brachionus calyciflorus and Hexarthra intermedia was less than 1% of total zooplankton biomass. Daily turnover rate and turnover time of the crustaceans was 0.19 day?1 and 6.2 days respectively. Crustacean production yielded no statistical relationship with phytoplankton biomass. Production was well within the range of tropical lakes. Peak crustacean production synchronized maximum rainfall, lake mixing and phytoplankton production. Most importantly, no one year's set of dynamics can be used to characterize zooplankton production in the lake.  相似文献   

12.
The water bloom‐forming cyanobacterium Aphanizomenon flos‐aquae Ralfs ex Bornet et Flahault (Nos‐tocales, Cyanophyceae) appeared in Lake Biwa and Lake Yogo in 1999 for the first time. The morphological characteristics were described using natural samples. In contrast to the other water bloom‐forming cyanobacteria such as Microcystis and Anabaena in Lake Biwa and Lake Yogo, the small summer population of A. flos‐aquae is apt to grow in winter, suggesting the low temperature preference or tolerance of this species. In order to clarify the effect of temperature on the growth, culture experiments were conducted using an axenic strain isolated from Lake Biwa. The strain could grow at above 8°C with an optimum temperature ranging from 23 to 29°C, and survived even at 5°C for at least 25days under low light conditions. Although these results confirmed the ability of the bloom formation during late autumn and winter, it is still unclear why the Aphanizomenon bloom occurred at temperatures of ca 10°C in December and not immediately after the disappearance of Microcystis and/or Anabaena bloom during autumn.  相似文献   

13.
1. The zooplankton often undergoes diel horizontal migration (DHM) from the open water to the littoral of shallow lakes, thus avoiding predators in the former. This behaviour has functional impacts within the lake, as it enhances zooplankton survival, increases their control of phytoplankton and tends to stabilise the clear water state. However, most of the evidence supporting this migration pattern comes from cold north temperate lakes, and more evidence from tropical and subtropical areas, as well as from southern temperate areas, is needed. 2. We conducted a field study of the diel horizontal and vertical migration of zooplankton, and the horizontal distribution of potential predatory macroinvertebrates and fish, over two consecutive days in the summer in a temperate lake in the southern hemisphere. We took zooplankton samples at two depths, at three sampling stations (inside beds of aquatic macrophytes, at their edge and in open water) along three transects running from the centre of a bed of Ceratophyllum demersum to open water. At each sampling station, we also took samples of macroinvertebrates and fish and measured physical and chemical environmental variables. 3. Zooplankton (pelagic cladocerans, calanoid copepods and rotifers) avoided the shore, probably because of the greater risk from predators there. Larger and more vulnerable cladocerans, such as Diaphanosoma brachyurum and Moina micrura, were two to four times more abundant in open water than at the edge of or inside beds of macrophytes, respectively, by both day and night. Less vulnerable zooplankton [i.e. of medium body size (Ceriodaphnia dubia) or with the ability to swim fast (calanoid copepods)] were distributed evenly between open water and the edge of the plant beds. Small zooplankton, Bosmina huaronensis and pelagic rotifers, showed an even distribution among the three sampling stations. Accordingly, no DHM of zooplankton occurred, although larger organisms migrated vertically inside C. demersum stands. 4. Macrophytes contained high densities of predatory macroinvertebrates and fish. The predator assemblage, composed of large‐bodied macroinvertebrates (including odonates and shrimps) and small littoral fish, was permanently associated with submerged macrophytes. None of these groups moved outside the plant beds or changed their population structure (fish) over the diel cycle. 5. Submerged macrophyte beds do not represent a refuge for zooplankton in lakes where predators are numerous among the plants, implying a weaker top‐down control of phytoplankton biomass by zooplankton and, consequently, a more turbid lake. The effectiveness of macrophytes as a refuge for zooplankton depends on the associated assemblage of predatory macroinvertebrates and fish among the plants.  相似文献   

14.
1. This study deals with the distribution of euglenoid morphospecies along the length of the Lower Paraná River floodplain. Six sites located in the Paraná River, Estevez stream and Montiel shallow lake were surveyed monthly from May 1995 to April 1996. 2. Eighty‐eight infrageneric taxa were registered though the total density percentage of euglenoids seldom exceeded 15% of total phytoplankton. The increasing species richness towards the lake is mostly the result of a high contribution of species of Trachelomonas and naked infrageneric taxa of Euglena, Lepocinclis and Phacus, while the distribution of Strombomonas species along the transect is fairly constant. 3. The richness of euglenoid morphospecies follows a pattern opposite to that found for the entire phytoplankton community. The distribution of euglenoids differs among the three habitats defined in this study: river, stream, shallow lake. These differences depend on the hydraulic condition of each habitat, as revealed by canonical correspondence analysis. 4. The degree of association with each type of aquatic habitat varied among the species and differed between water phases. Strombomonas fluviatilis was equally constant along the length of the ecotone, while S. girardiana and S. scabra were particularly associated with the Paraná River and P. longicauda, L. truncata, T. hispida and T. similis with the lake. 5. The flood pulse establishes a clear pattern both in species richness and abundance of euglenoids. The number of species recorded during high water was more than twice that recorded during low water.  相似文献   

15.
The diel vertical migration of planktonic rotifers in a small, hypereutrophic tarn was investigated on four occasions in 1983. When the tarn was isothermal the rotifers were distributed throughout the water column. After stratification, the rotifers were confined to the top 1–2 m of oxygenated water. On all four dates the rotifers were aggregated at specific depths in the water column. On some occasions, the pattern of aggregation changed as the animals performed distinct diurnal migrations. Keratella cochlearis, K. quadrata and Polyarthra vulgaris usually followed the reverse migrations of the phytoplankton. In contrast, the movements of Anuraeopsis fissa were less pronounced and were associated with variations in the depth of the oxycline.  相似文献   

16.
1. The major aim of this study was to test the hypothesis that nutrient enrichment and the introduction of the Nile tilapia (Oreochromis niloticus), an exotic omnivorous filter‐feeding fish, operate interdependently to regulate plankton communities and water transparency of a tropical reservoir in the semi‐arid northeastern Brazil. 2. A field experiment was performed for 5 weeks in 20 enclosures (9.8 m3) to which four treatments were randomly allocated: tilapia addition (F), nutrient addition (N), tilapia and nutrient addition (F + N) and a control treatment with no tilapia or nutrient addition (C). A two‐way repeated measures anova was undertaken to test for time, tilapia and nutrient effects and their interactions on water transparency, total phosphorus and total nitrogen concentrations, phytoplankton biovolume and zooplankton biomass. 3. Nutrient addition had no effect except on rotifer biomass, but there were significant fish effects on the biomass of total zooplankton, copepod nauplii, rotifers, cladocerans and calanoid copepods and on the biovolume of total phytoplankton, large algae (GALD ≥ 50 μm), Bacillariophyta and Zygnemaphyceae and on Secchi depth. In addition, we found significant interaction effects between tilapia and nutrients on Secchi depth and rotifers. Overall, tilapia decreased the biomass of most zooplankton taxa and large algae (diatoms) and decreased water transparency, while nutrient enrichment increased the biomass of rotifers, but only in the absence of tilapia. 4. In conclusion, the influence of fish on the reservoir plankton community and water transparency was significant and even greater than that of nutrient loading. This suggests that biomanipulation of filter‐feeding tilapias may be of importance for water quality management of eutrophic reservoirs in tropical semi‐arid regions.  相似文献   

17.
The community composition and the factors affecting seasonal and interannual dynamics of zooplankton in Lake Bosumtwi were studied biweekly at a central index station during 2005 and 2006. The lake zooplankton community was species poor. Mesocyclops bosumtwii was numerically superior seasonally and interannually and was endemic to the lake. Minor constituents included Moina micrura, six rotifer species (except for Hexarthra intermedia) and Chaoborus ceratopogones larvae. Low variance of cyanobacteria-dominated phytoplankton biomass underlined stable zooplankton community structure. Emergence of rare species of rotifers occurred seasonally. The climatic signature on the lake’s stratification and mixing regime was strongly influenced by atmospheric temperature, but weakly by wind strength, because of sheltering of the lake by high crater walls. Increasing mixing depth entrained high TP concentrations from below the thermocline seasonally, but reflected poorly in the phytoplankton biomass behaviour. Total zooplankton abundance did not differ seasonally, but varied markedly from year to year in its timing and magnitude. Herbivores were squeezed between food limitation and high predation pressure from Chaoborus all year round. The low fish planktivory (high fishing pressure) on Chaoborus may create a trophic bottleneck restricting energy transfer efficiency from zooplankton to fish.  相似文献   

18.
  • 1 The vertical and horizontal distribution of phytoplankton, zooplankton and fish in Loch Ness, Scotland, were monitored during one day‐time and one night‐time survey in July 1992. The vertical samples were collected at a site located at the northern end of the loch and the horizontal samples along a longitudinal transect.
  • 2 The vertical distribution surveys demonstrated that the phytoplankton, the zooplankton and the fish were concentrated in the top 30 m of water above the seasonal thermocline. Within this layer, Cyclops stayed much closer to the surface than Eudiaptomus but both species moved towards the surface at night.
  • 3 The most important factor influencing the horizontal distribution of the phytoplankton was the north‐ south gradient in productivity. The sub‐catchments surrounding the north basin contain a greater proportion of arable land than those to the south and the concentrations of nitrate‐nitrogen and phytoplankton chlorophyll increased systematically from south to north.
  • 4 Zooplankton distribution patterns were influenced by wind‐induced water movements and the dispersion of allochthonous material from the main inflows. The highest concentrations of Cyclops were recorded in the north, where there was more phytoplankton, and the highest concentrations of Eudiaptomus in the south, where there were higher concentrations of non‐algal particulates.
  • 5 There was no spatial correlation between total zooplankton and total fish abundance but the highest concentrations of small (1–5 cm) fish were recorded in the south where there was a large patch of Eudiaptomus. The number of Eudiaptomus at specific locations within this patch were, however, negatively correlated with the numbers of small fish. These results suggest that the fish were actively foraging within the patch and were depleting their zooplankton prey in the areas where they were most abundant.
  相似文献   

19.
1. Monitoring at fortnightly to monthly intervals of a very shallow, lowland lake over 24 years has enabled the time course of recovery from nutrient enrichment to be investigated after high external P loading of the lake (>10 g P m?2 year?1) was reduced between 1977 and 1980. 2. The lake showed a relatively rapid response during the spring and early summer, with a reduction in phytoplankton biomass occurring after 5 years when soluble reactive phosphorus concentration was <10 μg L?1. 3. However, during the later summer the response was delayed for 15 years because of sustained remobilisation of phosphorus from the sediment. The greater water clarity in spring and a gradual shift from planktonic to benthic algal growth may be related to the reduction in internal loading after 15 years. 4. Changes in the phytoplankton community composition were also observed. Centric diatoms became less dominant in the spring, and the summer cyanobacteria populations originally dominated by non‐heterocystous species (Limnothrix/Planktothrix spp.) almost disappeared. Heterocystous species (Anabaena spp. and Aphanizomenon flosaquae) were slower to decline, but after 20 years the phytoplankton community was no longer dominated by cyanobacteria. 5. There were no substantial changes in food web structure following re‐oligotrophication. Total zooplankton biomass decreased but body size of Daphnia hyalina, the largest zooplankton species in the lake, remained unchanged, suggesting that the fish population remained dominated by planktivorous species. 6. Macrophyte growth was still largely absent after 20 years, although during the spring water clarity may have become sufficient for macrophytes to re‐establish.  相似文献   

20.
Cyanobacterial blooms are found in many freshwater ecosystems around the world, but the effect of environmental factors on their growth and the proportion of species still require more investigation. In this study, the physiological responses of bloom‐forming cyanobacteria M icrocystis aeruginosa FACHB912, M icrocystis flos‐aquae FACHB1028 and P seudanabaena sp. FACHB1282 to iron deficiency were investigated. Their specific growth rates were found to decrease as the available iron concentration decreased. At low available iron concentrations of 1 × 10?7 M (pFe 21.3) and 5 × 10?8 M (pFe 21.6), M . aeruginosa had the lowest specific growth rate among three studied species. The cell sizes of M . flos‐aquae and Pseudanabaena sp. were significantly smaller under the lowest iron concentration. The chlorophyll a content of the three species decreased at the lowest iron concentration. The maximal relative electron transport rate, photosynthetic efficiency, and light‐saturation parameter of M . aeruginosa were lower than the other two cyanobacteria at pFe 21.3. Therefore, M . aeruginosa was the least able to adapt to iron deficiency. Under iron deficiency, the functional absorption cross‐section of PSII and electron transport rate on the acceptor side of PSII decreased in M . aeruginosa, while the connectivity factor between individual photosynthetic units increased in M . flos‐aquae, and the electron transport rate on the acceptor side of PSII and between PSII and PSI decreased in P seudanabaena sp. The ability to store iron was highest in M . flos‐aquae, followed by P seudanabaena sp. and M . aeruginosa. Thus, these results provide necessary information for detecting the role of iron in the succession of cyanobacterial species in Lake Taihu, the third largest freshwater lake in China, because all three species were isolated from this lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号