首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Platelet-derived growth factor BB induced cyclin D1 expression in a time- and nuclear factor of activated T cells (NFAT)-dependent manner in human aortic smooth muscle cells (HASMCs), and blockade of NFATs prevented HASMC DNA synthesis and their cell cycle progression from G1 to S phase. Selective inhibition of NFATc1 by its small interfering RNA also blocked HASMC proliferation and migration. Characterization of the cyclin D1 promoter revealed the presence of several NFAT binding sites, and the site at nucleotide −1333 was found to be sufficient in mediating platelet-derived growth factor BB-induced cyclin D1 promoter-luciferase reporter gene activity. In addition to its role in cell cycle progression, cyclin D1 mediated HASMC migration in an NFATc1-dependent manner. Balloon injury-induced cyclin D1-CDK4 activity requires NFAT activation, and adenovirus-mediated transduction of cyclin D1 was found to be sufficient to overcome the blockade effect of NFATs by VIVIT on balloon injury-induced vascular wall remodeling events, including smooth muscle cell migration from the medial to luminal region, their proliferation in the intimal region, and neointima formation. Together, these results provide more mechanistic evidence for the role of NFATs, particularly NFATc1, in the regulation of HASMC proliferation and migration as well as vascular wall remodeling. NFATc1 could be a potential therapeutic target against the renarrowing of artery after angioplasty.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
The bone remodelling process is closely related to bone health. Osteoblasts and osteoclasts participate in the bone remodelling process under the regulation of various factors inside and outside. Excessive activation of osteoclasts or lack of function of osteoblasts will cause occurrence and development of multiple bone‐related diseases. Ca2+/Calcineurin/NFAT signalling pathway regulates the growth and development of many types of cells, such as cardiomyocyte differentiation, angiogenesis, chondrogenesis, myogenesis, bone development and regeneration, etc. Some evidences indicate that this signalling pathway plays an extremely important role in bone formation and bone pathophysiologic changes. This review discusses the role of Ca2+/Calcineurin/NFAT signalling pathway in the process of osteogenic differentiation, as well as the influence of regulating each component in this signalling pathway on the differentiation and function of osteoblasts, whereby the relationship between Ca2+/Calcineurin/NFAT signalling pathway and osteoblastogenesis could be deeper understood.  相似文献   

12.
13.
14.
Otis JP  Sahoo D  Drover VA  Yen CL  Carey HV 《PloS one》2011,6(12):e29111
Hibernating mammals cease feeding during the winter and rely primarily on stored lipids to fuel alternating periods of torpor and arousal. How hibernators manage large fluxes of lipids and sterols over the annual hibernation cycle is poorly understood. The aim of this study was to investigate lipid and cholesterol transport and storage in ground squirrels studied in spring, summer, and several hibernation states. Cholesterol levels in total plasma, HDL and LDL particles were elevated in hibernators compared with spring or summer squirrels. Hibernation increased plasma apolipoprotein A-I expression and HDL particle size. Expression of cholesterol 7 alpha-hydroxylase was 13-fold lower in hibernators than in active season squirrels. Plasma triglycerides were reduced by fasting in spring but not summer squirrels. In hibernators plasma β-hydroxybutyrate was elevated during torpor whereas triglycerides were low relative to normothermic states. We conclude that the switch to a lipid-based metabolism during winter, coupled with reduced capacity to excrete cholesterol creates a closed system in which efficient use of lipoproteins is essential for survival.  相似文献   

15.
In preparation for hibernation, golden-mantled ground squirrels (Spermophilus lateralis) must deposit sufficient amounts of lipid during the summer to survive winter hibernation. We conducted an experiment from May 1998 to February 1999 to examine the effects of caloric restriction on the body composition (lipid and fat-free mass) and hibernation of golden-mantled ground squirrels. Ground squirrels were either provided with food ad lib. (controls) or with only enough food to maintain a constant body mass throughout the experiment (calorically restricted). Changes in body composition were followed using total body electrical conductivity (TOBEC). Implanted data loggers that recorded body temperature were used to determine when ground squirrels entered their first torpor bout and the lengths of torpor bouts. Body composition did not change in the calorically restricted ground squirrels between May and September, while both lipid and fat-free mass increased in the controls. However, from September to February, calorically restricted ground squirrels lost only fat-free mass, not lipid mass, but controls lost both lipid and fat-free mass. Calorically restricted ground squirrels entered their first torpor bout about 4 wk after controls, but the torpor bout duration (or length) during hibernation did not differ between the two groups. These results show that ground squirrels maintain body composition during caloric restriction, and the limited quantities of stored lipid have an effect on when hibernation begins but not on torpor bout length.  相似文献   

16.
During torpor, the metabolic rate (MR) of thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is considerably lower relative to euthermia, resulting in part from temperature-independent mitochondrial metabolic suppression in liver and skeletal muscle, which together account for ~40 % of basal MR. Although heart accounts for very little (<0.5 %) of basal MR, in the present study, we showed that respiration rates were decreased up to 60 % during torpor in both subsarcolemmal (SS) and intermyofibrillar (IM) mitochondria from cardiac muscle. We further demonstrated pronounced seasonal (summer vs. winter [i.e., interbout] euthermia) changes in respiration rates in both mitochondrial subpopulations in this tissue, consistent with a shift in fuel use away from carbohydrates and proteins and towards fatty acids and ketones. By contrast, these seasonal changes in respiration rates were not observed in either SS or IM mitochondria isolated from hind limb skeletal muscle. Both populations of skeletal muscle mitochondria, however, did exhibit metabolic suppression during torpor, and this suppression was 2- to 3-fold greater in IM mitochondria, which provide ATP for Ca2+- and myosin ATPases, the activities of which are likely quite low in skeletal muscle during torpor because animals are immobile. Finally, these changes in mitochondrial respiration rates were still evident when standardized to citrate synthase activity rather than to total mitochondrial protein.  相似文献   

17.
Mammalian hibernation is characterized by prolonged torpor bouts interspersed by brief arousal periods. Adequate antioxidant defenses are needed both to sustain cell viability over weeks of deep torpor and to defend against high rates of oxyradical formation associated with massive oxygen-based thermogenesis during arousal. The present study shows that up-regulation of peroxiredoxins contributes to antioxidant defense during torpor in thirteen-lined ground squirrels, Spermophilus tridecemlineatus. Expression levels of three isozymes of the 2-Cys peroxiredoxin (Prdx) family were quantified by Western blotting, the results showing 4.0- and 12.9-fold increases in Prdx1 protein in brown adipose tissue (BAT) and heart, respectively, during hibernation compared with euthermia. Comparable increases in Prdx2 were 2.4- and 3.7-fold whereas Prdx3 rose by 3.1-fold in heart of torpid animals. Total 2-Cys peroxiredoxin enzymatic activity also rose during hibernation by 1.5-fold in heart and 3.5-fold in BAT. Furthermore, RT-PCR showed that prdx2 mRNA levels increased by 1.7- and 3.7-fold in BAT and heart, respectively, during hibernation. A partial nucleotide sequence of prdx2 from ground squirrels was obtained by PCR amplification, the deduced amino acid sequence showing 96-97% identity with Prdx2 from other mammals. Some unique amino acid substitutions were identified that might contribute to stabilizing Prdx2 conformation at the near 0 degrees C body temperatures during torpor.  相似文献   

18.
Summary Observations described here provide the first demonstration that calpain (Ca2+-dependent cysteine protease) can degrade proteins of skeletal muscle plasma membranes. Frog muscle plasma membrane vesicles were incubated with calpain preparations and alterations of protein composition were revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Calpain II (activated by millimolar concentrations of Ca2+) was isolated from frog skeletal muscle, but the activity of calpain I (activated by micromolar concentrations of Ca2+) was lost during attempts at fractionation. Calpain I obtained from skeletal muscle and erythrocytes of rats was tested instead, and exerted effects similar to those of frog muscle calpain on the membrane proteins. All of the calpain preparations caused striking losses of a major membrane protein of molecular mass of approximately 97 kDa, designated band c, and diminution of a thinner band of approximately 200 kDa. There were concomitant increases in 83-and 77-kDa polypeptides. These effects were absolutely dependent on the presence of free Ca2+, and were completely blocked by calpastatin, a specific inhibitor of calpain action. Frog muscle calpain differed only in being relatively more active at 0°C than were the calpains from rat tissues. Experimental observations suggest that calpain acts at the cytoplasmic surface of the plasma membrane.  相似文献   

19.
The perforated patch clamp method was used to study the effect of the agonist of beta-adrenoreceptors isoproterenol on L-type Ca2+ current in cardiocytes of rats and ground squirrels in two states: active and hibernating. It is shown that isoproterenol exerts a dual effect on Ca2+ currents of rats and ground squirrels in the active state: at V h = –50 mV, the current increases, whereas at V h = –30 mV, it decreases. In hibernating ground squirrels, the dual effect of isoproterenol is not observed: isoproterenol increases Ca2+ current at any V h values. The hypothesis is put forward that, during the entrance of ground squirrels into hibernation, the phosphorylation of one of the sites (not cAMP-dependent) of L-type Ca2+ channels is blocked.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号