首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A series of [XN5] (X=O, S, Se, Te) compounds has been examined with ab initio and Density Functional Theory (DFT) methods. The five-membered nitrogen ring series of structures are global minima and may exist or be characterized due to their significant dissociation barriers (29.7–32.7 kcal mol−1). Nucleus-independent chemical shifts (NICS) criteria and the presence of (4n+2) π-electrons confirmed that the five-membered nitrogen ring in their structures exhibits characteristics of aromaticity. Thus, the strong stability of the five-membered nitrogen ring structures may be attributed partially to their aromaticity.   相似文献   

2.
Molybdenum and tungsten complexes as models for the active sites of assimilatory or dissimilatory nitrate reductases (NR) were computed at the CPCM-B98/SDDp//B3LYP/Lanl2DZp* plus zero point energy level of density functional theory. The ligands were chosen on the basis of available experimental protein or small chemical model structures. A water molecule is found to bind to assimilatory NR models [(Me2C2S2)MO(YMe)] (−11.5 kcal mol−1 for M is Mo, Y is S) and may be replaced by nitrate (−4.5 kcal mol−1) (but a hydroxy group may not). Nature’s choice of M is Mo and Y is S for NR has the largest activation energy for protein-free models (13.3 kcal mol−1) and the least exothermic reaction energy for the nitrate reduction (−14.9 kcal mol−1) compared with M is W and Y is O or Se alternatives. Water binding to dissimilatory NR model complexes [(Me2C2S2)2M(YR)] is considerably endothermic (10.3 kcal mol−1); nitrate binding is only slightly so (1.5 kcal mol−1 for RY is MeS). The exchange of an oxo ligand (assimilatory NR) for a dithiolato ligand (dissimilatory NR model) reduces the exothermicity (−8.6 kcal mol−1 relative to the fivefold-coordinate reduced complex) and raises the barrier for oxygen atom transfer (OAT) in the nitrate complex (19.2 kcal mol−1). Not for the mono but only for the bisdithiolato complexes hydrogen bonding involving the coordinated substrate may significantly lower the OAT barrier as shown by explicitly adding water molecules. Substitution of tungsten for molybdenum generally lowers OAT activation energies and makes nitrate reduction reaction energies more negative. Bidentate carboxylato binding identified in Escherichia coli NarGHI is the preferred binding mode also for an acetato model. However, one dithiolato ligand folds when the MoVI center is bare of a good π-donor ligand, e.g., an oxo group. Computations on [(mnt)2MoIV(YR)(PPh3)] [mnt is (CN)2C2S2 2−] gave a smaller nitrate reduction activation energy for RY is Cl, compared with RY is PhS, although experimentally only the phenyl thiolato complex and not the chloro complex was found to be a functional NR model. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
A controlled growth chamber experiment was conducted to investigate the short-term water use and photosynthetic responses of 30-d-old carrot seedlings to the combined effects of CO2 concentration (50–1 050 μmol mol−1) and moisture deficits (−5, −30, −55, and −70 kPa). The photosynthetic response data was fitted to a non-rectangular hyperbola model. The estimated parameters were compared for effects of moisture deficit and elevated CO2 concentration (EC). The carboxylation efficiency (α) increased in response to mild moisture stress (−30 kPa) under EC when compared to the unstressed control. However, moderate (−55 kPa) and extreme (−70 kPa) moisture deficits reduced α under EC. Maximum net photosynthetic rate (P Nmax) did not differ between mild water deficit and unstressed controls under EC. Moderate and extreme moisture deficits reduced P Nmax by nearly 85 % compared to controls. Dark respiration rate (R D) showed no consistent response to moisture deficit. The CO2 compensation concentration (Γ) was 324 μmol mol−1 for −75 kPa and ranged 63–93 μmol mol−1 for other moisture regimes. Interaction between moisture deficit and EC was noticed for P N, ratio of intercellular and ambient CO2 concentration (C i/C a), stomatal conductance (g s ), and transpiration rate (E). P N was maximum and C i/C a was minimum at −30 kPa moisture deficit and at C a of 350 μmol mol−1. The g s and E showed an inverse relationship at all moisture deficit regimes and EC. Water use efficiency (WUE) increased with moisture deficit up to −55 kPa and declined thereafter. EC showed a positive influence towards sustaining P N and increasing WUE only under mild moisture stress, and no beneficial effects of EC were noticed at moderate or extreme moisture deficits.  相似文献   

4.
We have studied the influence of hydrogenation on the relative stability of the low-lying isomers of the anionic B7 cluster, computationally. It is known that the pure-boron B7 cluster has a doubly (σ- and π-) aromatic C6v (3A1) quasi-planar wheel-type triplet global minimum (structure 1), a low-lying σ-aromatic and π-antiaromatic quasi-planar singlet C2v (1A1) isomer 2 (0.7 kcal mol−1 above the global minimum), and a planar doubly (σ- and π-) antiaromatic C2v (1A1) isomer 3 (7.8 kcal mol−1 above the global minimum). However, upon hydrogenation, an inversion in the stability of the species occurs. The planar B7H2 (C2v, 1A1) isomer 4, originated from the addition of two hydrogen atoms to the doubly antiaromatic B7 isomer 3, becomes the global minimum structure. The second most stable B7H2 isomer 5, originated from the quasi-planar triplet wheel isomer 1 of B7, was found to be 27 kcal mol−1 higher in energy. The inversion in stability occurs due to the loss of the doubly aromatic character in the wheel-type global minimum isomer (C6v, 3A1) of B7 upon H2−addition. In contrast, the planar isomer of B7 (C2v, 1A1) gains aromatic character upon addition of two hydrogen atoms, which makes it more stable. Figure The B7H2-global minimum structure and its σ-aromatic and π-antiaromatic MOs Dedicated to Professor Dr. Paul von Ragué Schleyer on the occasion of his 75th birthday.  相似文献   

5.
The effects of salinity (sea water at 0 ‰ versus 30 ‰) on gross rates of O2 evolution (J O2) and net rates of CO2 uptake (P N) were measured in the halotolerant estuarine C4 grasses Spartina patens, S. alterniflora, S. densiflora, and Distichlis spicata in controlled growth environments. Under high irradiance, salinity had no significant effect on the intercellular to ambient CO2 concentration ratio (C i/C a). However, during photosynthesis under limiting irradiance, the maximum quantum efficiency of CO2 fixation decreased under salinity across species, suggesting there is increased leakage of the CO2 delivered to the bundle sheath cells by the C4 pump. Growth under salinity did not affect the maximum intrinsic efficiency of photosystem 2, PS2 (FV/FM) in these species, suggesting salinity had no effect on photosynthesis by inactivation of PS2 reaction centers. Under saline conditions and high irradiance, P N was reduced by 75 % in Spartina patens and S. alterniflora, whereas salinity had no effect on P N in S. densiflora or D. spicata. This inhibition of P N in S. patens and S. alterniflora was not due to an effect on stomatal conductance since the ratio of C i/C a did not decrease under saline conditions. In growth with and without salt, P N was saturated at ∼500 μmol(quantum) m−2 s−1 while J O2 continued to increase up to full sunlight, indicating that carbon assimilation was not tightly coupled to photochemistry in these halophytic species. This increase in alternative electron flow under high irradiance might be an inherent function in these halophytes for dissipating excess energy.  相似文献   

6.
Ab initio (MP2) and density functional theory (DFT) methods were used to examine nine isomers of the doublet BN4 species with the 6-311 + G(d) basis set. To our knowledge, these nine structures are all first reported here. Energy analysis indicates that the C 2v branched structure is the global minimum of potential energy surface. Research results show that the C 2v branched, the cis-linear, the C 4v pyramidal, and the C S five-membered ring structures are likely to be stable and to be observed experimentally. Among these four kinetically stable species, the last three are suitable to be used as potential precursors of HEDMs due to their high dissociation energies. However, the C 2v bent, the trans-linear, the D 2 bicyclic, the C 2v four-membered ring, and the C 2v cage structures are kinetically unstable due to their low dissociation or isomerization barriers. Two synthesis pathways of the C 2v branched isomer were located. It seems more feasible to synthesize this species by linear NBN and N2.  相似文献   

7.
The present study deals with the decomposition of CF3OCF2O radical formed from a hydrofluoroether, CF3OCHF2 (HFE-125), in the atmosphere. The study is performed using ab initio quantum mechanical methods. Two plausible pathways of decomposition of the titled species have been considered, one involving C-O bond scission and the other occurring via F atom elimination. The geometries of the reactant, products and transition states involved in the decomposition pathways are optimized and characterized at DFT (B3LYP) level of theory using 6-311G(d,p) basis set. Single point energy calculations have been performed at G2M(CC,MP2) level of theory. Out of the two prominent decomposition channels considered, the C-O bond scission is found to be dominant involving a barrier height of 15.3 kcal mol−1 whereas the F-elimination path proceeds with a barrier of 26.1 kcal mol−1. The thermal rate constants for the above two decomposition pathways are evaluated using canonical transition state theory (CTST) and these are found to be 1.78 × 106 s−1 and 2.83 × 10−7 s−1 for C-O bond scission and F-elimination respectively at 298 K and 1 atm pressure. Transition states are searched on the potential energy surfaces involved during the decomposition channels and each of the transition states is characterized. The existence of transition states on the corresponding potential energy surface is ascertained by performing intrinsic reaction coordinate (IRC) calculation.  相似文献   

8.
The structure and stability of endohedral X@C20F20 complexes (X = H, F, Cl, Br, H, He) have been computed at the B3LYP level of theory. All complexes in I h symmetry were found to be energy minimum structures. H@C20F20 and F@C20F20 complexes have negative inclusion energies, while other complexes have positive inclusion energies. Similarity between C20F20 and C20H20 has been found for X = H and He. On the basis of the computed nucleus independent chemical shift values at the cage center, both C20F20 and C20F20 are aromatic. Figure Endohedral X@C20F20 complexes  相似文献   

9.
This study examined the effects of season-long exposure of Chinese pine (Pinus tabulaeformis) to elevated carbon dioxide (CO2) and/or ozone (O3) on indole-3-acetic acid (IAA) content, activities of IAA oxidase (IAAO) and peroxidase (POD) in needles. Trees grown in open-top chambers (OTC) were exposed to control (ambient O3, 55 nmol mol−1 + ambient CO2, 350 μmol mol−1, CK), elevated CO2 (ambient O3 + high CO2, 700 μmol mol−1, EC) and elevated O3 (high O3, 80 ± 8 nmol mol−1 + ambient CO2, EO) OTCs from 1 June to 30 September. Plants grown in elevated CO2 OTC had a growth increase of axial shoot and needle length, compared to control, by 20% and 10% respectively, while the growth in elevated O3 OTC was 43% and 7% less respectively, than control. An increase in IAA content and POD activity and decrease in IAAO activity were observed in trees exposed to elevated CO2 concentration compared with control. Elevated O3 decreased IAA content and had no significant effect on IAAO activity, but significantly increased POD activity. When trees pre-exposed to elevated CO2 were transferred to elevated O3 (EC–EO) or trees pre-exposed to elevated O3 were transferred to elevated CO2 (EO–EC), IAA content was lower while IAAO activity was higher than that transferred to CK (EC–CK or EO–CK), the change in IAA content was also related to IAAO activity. The results indicated that IAAO and POD activities in Chinese pine needles may be affected by the changes in the atmospheric environment, resulting in the change of IAA metabolism which in turn may cause changes in Chinese pine’s growth. An erratum to this article can be found at  相似文献   

10.
The aim of this research was to test whether NH4 + and NO3 affect the growth, P demand, cell composition and N2 fixation of Cylindrospermopsis raciborskii under P limitation. Experiments were carried out in P-limited (200 μg l−1 PO4-P) chemostat cultures of C. raciborskii using an inflowing medium containing either 4,000 μg l−1 NH4-N, 4,000 μg l−1 NO3-N or no combined N. The results showed the cellular N:P and C:P ratios of C. raciborskii decreased towards the Redfield ratio with increasing dilution rate (D) due to the alleviation of P limitation. The cellular C:N and carotenoids:chlorophyll-a ratios also decreased with D, predominantly as a result of an increase in the chlorophyll-a and N content. The NH4 + and NO3 supply reduced the P maintenance cell quota of C. raciborskii. Consequently, the biomass yield of the N2-grown culture was significantly lower. The maximum specific growth rate of N2-grown culture was also the lowest observed. It is suggested that these differences in growth parameters were caused by the P and energy requirement for heterocyte formation, nitrogenase synthesis and N2 fixation. N2 fixation was partially inhibited by NO3 and completely inhibited by NH4 +. It was probably repressed through the high N content of cells at high dissolved N concentrations. These results indicate that C. raciborskii is able to grow faster and maintain a higher biomass under P limitation where a sufficient supply of NH4 + or NO3 is maintained. Information gained about the species-specific nutrient and pigment stoichiometry of C. raciborskii could help to access the degree of nutrient limitation in water bodies. Handling editor: Luigi Naselli-Flores  相似文献   

11.
In a combined field and laboratory study in the southwest of Burkina Faso, we quantified soil-atmosphere N2O and NO exchange. N2O emissions were measured during two field campaigns throughout the growing seasons 2005 and 2006 at five different experimental sites, that is, a natural savanna site and four agricultural sites planted with sorghum (n = 2), cotton and peanut. The agricultural fields were not irrigated and not fertilized. Although N2O exchange mostly fluctuated between −2 and 8 μg N2O–N m−2 h−1, peak N2O emissions of 10–35 μg N2O–N m−2 h−1 during the second half of June 2005, and up to 150 μg N2O–N m−2 h−1 at the onset of the rainy season 2006, were observed at the native savanna site, whereas the effect of the first rain event on N2O emissions at the crop sites was low or even not detectable. Additionally, a fertilizer experiment was conducted at a sorghum field that was divided into three plots receiving different amounts of N fertilizer (plot A: 140 kg N ha−1; plot B: 52.5 kg N ha−1; plot C: control). During the first 3 weeks after fertilization, only a minor increase in N2O emissions at the two fertilized plots was detected. After 24 days, however, N2O emission rates increased exponentially at plot A up to a mean of 80 μg N2O–N m−2 h−1, whereas daily mean values at plot B reached only 19 μg N2O–N m−2 h−1, whereas N2O flux rates at plot C remained unchanged. The calculated annual N2O emission of the nature reserve site amounted to 0.52 kg N2O–N ha−1 a−1 in 2005 and to 0.67 kg N2O–N ha−1 a−1 in 2006, whereas the calculated average annual N2O release of the crop sites was only 0.19 kg N2O–N ha−1 a−1 and 0.20 kg N2O–N ha−1 a−1 in 2005 and 2006, respectively. In a laboratory study, potential N2O and NO formation under different soil moisture regimes were determined. Single wetting of dry soil to medium soil water content with subsequent drying caused the highest increase in N2O and NO emissions with maximum fluxes occurring 1 day after wetting. The stimulating effect lasted for 3–4 days. A weaker stimulation of N2O and NO fluxes was detected during daily wetting of soil to medium water content, whereas no significant stimulating effect of single or daily wetting to high soil water content (>67% WHCmax) was observed. This study demonstrates that the impact of land-use change in West African savanna on N trace gas emissions is smaller—with the caveat that there could have been potentially higher N2O and NO emissions during the initial conversion—than the effect of timing and distribution of rainfall and of the likely increase in nitrogen fertilization in the future.  相似文献   

12.
Summary Explants of sugarcane, a C4 plant, were cultured in vitro for 18d on Floridalite (a solid cube consisting of vermiculite and cellulose fibers) used as supporting material with sugar-free Murashige and Skoog liquid medium with double-strength KH2PO4, MgSO4, FeSO4, and Na2-EDTA in the vessel with enhanced natural ventilation. CO2 concentration in the culture room was kept at 1500 μmol mol−1 (four times the atmospheric CO2 concentration) during the photoperiod. A factorial experiment was designed with two levels of photosynthetic photon flux (PPF) and three levels of N (number of air exchanges of the vessel). The results were compared with those in the control treatment (photomixotrophic culture using sugar-containing agar medium under low PPF and low N). PPF and N showed significant positive effects on the growth of sugarcane plantlets in vitro. In the photoautotrophic (using sugar-free medium) treatments with relatively high PPF (200–400 μmol m−2 s−1) and high N (2–10 h−1), the growth of plantlets was four to seven times greater than that in the control. Also, the culture period for multiplication and rooting was shortened from 30 d in the control to 18 d or less in the photoautotrophic, high PPF, and high N treatments. Use of porous supporting material in photoautotrophic treatments promoted rooting and plantlet growth significantly.  相似文献   

13.
The effect of drought stress (DS) on photosynthesis and photosynthesis-related enzyme activities was investigated in F. pringlei (C3), F. floridana (C3–C4), F. brownii (C4-like), and F. trinervia (C4) species. Stomatal closure was observed in all species, probably being the main cause for the decline in photosynthesis in the C3 species under ambient conditions. In vitro ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and stromal fructose 1,6-bisphosphatase (sFBP) activities were sufficient to interpret the net photosynthetic rates (P N), but, from the decreases in P N values under high CO2 (C a = 700 μmol mol− 1) it is concluded that a decrease in the in vivo rate of the RuBPCO reaction may be an additional limiting factor under DS in the C3 species. The observed decline in the photosynthesis capacity of the C3–C4 species is suggested to be associated both to in vivo decreases of RuBPCO activity and of the RuBP regeneration rate. The decline of the maximum P N observed in the C4-like species under DS was probably attributed to a decrease in maximum RuBPCO activity and/or to decrease of enzyme substrate (RuBP or PEP) regeneration rates. In the C4 species, the decline of both in vivo photosynthesis and photosynthetic capacity could be due to in vivo inhibition of the phosphoenolpyruvate carboxylase (PEPC) by a twofold increase of the malate concentration observed in mesophyll cell extracts from DS plants.  相似文献   

14.
Outdoor pot and field experiments were conducted to assess the role of growing plants in agricultural ecosystem N2O emissions. N2O emissions from plants were quantified as the difference in soil-crop system N2O emissions before and immediately after cutting plants during the main growth stages in 2001–02 and 2002–03 winter wheat seasons. Emissions of N2O from plants depended on biomass within the same plant developmental status. Field results indicated that the seasonal contribution of N2O emissions from plants to ecosystem fluxes averaged 25%, ranging from 10% at wheat tillering to 62% at the heading stage. The fluxes of N2O emissions from plants varied between 0.3 and 3.9 mg N2O-N m−2 day−1 and its seasonal amount was equivalent to 0.23% of plant N released as N2O. A N2O emission coefficient (N2OE, mg N2O-N g−1 C day−1), defined as N2O-N emission in milligrams from per gram carbon of plant dry matter within a day, was represented by a 5-fold variation ranging from 0.021 to 0.004 mg N2O-N g C−1 day−1. A linear relationship (y=0.4611x+0.0015, r 2=0.9352, p < 0.001) between N2OE (y) and plant dark respiration rate (x, mg CO2-C g C−1 day−1) suggested that in the absence of photosynthesis, some N2O production in plant N assimilation was associated with plant respiration. Although this study could not show whether N2O was produced or transferred by winter wheat plants, these results indicated an important role for higher plant in N2O exchange. Identifying its potential contribution is critical for understanding agricultural ecosystem N2O sources.  相似文献   

15.
In sunflower (Helianthus annuus L.) grown under controlled conditions and subjected to drought by withholding watering, net photosynthetic rate (P N) and stomatal conductance (g s) of attached leaves decreased as leaf water potential (Ψw) declined from −0.3 to −2.9 MPa. Although g s decreased over the whole range of Ψw, nearly constant values in the intercellular CO2 concentrations (C i) were observed as Ψw decreased to −1.8 MPa, but C i increased as Ψw decreased further. Relative quantum yield, photochemical quenching, and the apparent quantum yield of photosynthesis decreased with water deficit, whereas non-photochemical quenching (qNP) increased progressively. A highly significant negative relationship between qNP and ATP content was observed. Water deficit did not alter the pyridine nucleotide concentration but decreased ATP content suggesting metabolic impairment. At a photon flux density of 550 μmol m−2 s−1, the allocation of electrons from photosystem (PS) 2 to O2 reduction was increased by 51 %, while the allocation to CO2 assimilation was diminished by 32 %, as Ψw declined from −0.3 to −2.9 MPa. A significant linear relationship between mean P N and the rate of total linear electron transport was observed in well watered plants, the correlation becoming curvilinear when water deficit increased. The maximum quantum yield of PS2 was not affected by water deficit, whereas qP declined only at very severe stress and the excess photon energy was dissipated by increasing qNP indicating that a greater proportion of the energy was thermally dissipated. This accounted for the apparent down-regulation of PS2 and supported the protective role of qNP against photoinhibition in sunflower.  相似文献   

16.
The objective of this study was to evaluate the effect of N fertilization and the presence of N2 fixing leguminous trees on soil fluxes of greenhouse gases. For a one year period, we measured soil fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), related soil parameters (temperature, water-filled pore space, mineral nitrogen content, N mineralization potential) and litterfall in two highly fertilized (250 kg N ha−1 year−1) coffee cultivation: a monoculture (CM) and a culture shaded by the N2 fixing legume species Inga densiflora (CIn). Nitrogen fertilizer addition significantly influenced N2O emissions with 84% of the annual N2O emitted during the post fertilization periods, and temporarily increased soil respiration and decreased CH4 uptakes. The higher annual N2O emissions from the shaded plantation (5.8 ± 0.3 kg N ha−1 year−1) when compared to that from the monoculture (4.3 ± 0.1 kg N ha−1 year−1) was related to the higher N input through litterfall (246 ± 16 kg N ha−1 year−1) and higher potential soil N mineralization rate (3.7 ± 0.2 mg N kg−1 d.w. d−1) in the shaded cultivation when compared to the monoculture (153 ± 6.8 kg N ha−1 year−1 and 2.2 ± 0.2 mg N kg−1 d.w. d−1). This confirms that the presence of N2 fixing shade trees can increase N2O emissions. Annual CO2 and CH4 fluxes of both systems were similar (8.4 ± 2.6 and 7.5 ± 2.3 t C-CO2 ha−1 year−1, −1.1 ± 1.5 and 3.3 ± 1.1 kg C-CH4 ha−1 year−1, respectively in the CIn and CM plantations) but, unexpectedly increased during the dry season.  相似文献   

17.
Gross rates of N mineralization and nitrification, and soil–atmosphere fluxes of N2O, NO and NO2 were measured at differently grazed and ungrazed steppe grassland sites in the Xilin river catchment, Inner Mongolia, P. R. China, during the 2004 and 2005 growing season. The experimental sites were a plot ungrazed since 1979 (UG79), a plot ungrazed since 1999 (UG99), a plot moderately grazed in winter (WG), and an overgrazed plot (OG), all in close vicinity to each other. Gross rates of N mineralization and nitrification determined at in situ soil moisture and soil temperature conditions were in a range of 0.5–4.1 mg N kg−1 soil dry weight day−1. In 2005, gross N turnover rates were significantly higher at the UG79 plot than at the UG99 plot, which in turn had significantly higher gross N turnover rates than the WG and OG plots. The WG and the OG plot were not significantly different in gross ammonification and in gross nitrification rates. Site differences in SOC content, bulk density and texture could explain only less than 15% of the observed site differences in gross N turnover rates. N2O and NO x flux rates were very low during both growing seasons. No significant differences in N trace gas fluxes were found between plots. Mean values of N2O fluxes varied between 0.39 and 1.60 μg N2O-N m−2 h−1, equivalent to 0.03–0.14 kg N2O-N ha−1 y−1, and were considerably lower than previously reported for the same region. NO x flux rates ranged between 0.16 and 0.48 μg NO x -N m−2 h−1, equivalent to 0.01–0.04 kg NO x -N ha−1 y−1, respectively. N2O fluxes were significantly correlated with soil temperature and soil moisture. The correlations, however, explained only less than 20% of the flux variance.  相似文献   

18.
This work aimed to evaluate if gas exchange and PSII photochemical activity in maize are affected by different irradiance levels during short-term exposure to elevated CO2. For this purpose gas exchange and chlorophyll a fluorescence were measured on maize plants grown at ambient CO2 concentration (control CO2) and exposed for 4 h to short-term treatments at 800 μmol(CO2) mol−1 (high CO2) at a photosynthetic photon flux density (PPFD) of either 1,000 μmol m−2 s−1 (control light) or 1,900 μmol m−2 s−1 (high light). At control light, high-CO2 leaves showed a significant decrease of net photosynthetic rate (P N) and a rise in the ratio of intercellular to ambient CO2 concentration (C i/C a) and water-use efficiency (WUE) compared to control CO2 leaves. No difference between CO2 concentrations for PSII effective photochemistry (ΦPSII), photochemical quenching (qp) and nonphotochemical quenching (NPQ) was detected. Under high light, high-CO2 leaves did not differ in P N, C i/C a, ΦPSII and NPQ, but showed an increase of WUE. These results suggest that at control light photosynthetic apparatus is negatively affected by high CO2 concentration in terms of carbon gain by limitations in photosynthetic dark reaction rather than in photochemistry. At high light, the elevated CO2 concentration did not promote an increase of photosynthesis and photochemistry but only an improvement of water balance due to increased WUE.  相似文献   

19.
We determined the interactive effects of irradiance, elevated CO2 concentration (EC), and temperature in carrot (Daucus carota var. sativus). Plants of the cv. Red Core Chantenay (RCC) were grown in a controlled environmental plant growth room and exposed to 3 levels of photosynthetically active radiation (PAR) (400, 800, 1 200 μmol m−2 s−1), 3 leaf chamber temperatures (15, 20, 30 °C), and 2 external CO2 concentrations (C a), AC and EC (350 and 750 μmol mol−1, respectively). Rates of net photosynthesis (P N) and transpiration (E) and stomatal conductance (g s ) were measured, along with water use efficiency (WUE) and ratio of internal and external CO2 concentrations (C i/C a). P N revealed an interactive effect between PAR and C a. As PAR increased so did P N under both C a regimes. The g s showed no interactive effects between the three parameters but had singular effects of temperature and PAR. E was strongly influenced by the combination of PAR and temperature. WUE was interactively affected by all three parameters. Maximum WUE occurred at 15 °C and 1 200 μmol m−2 s− 1 PAR under EC. The C i /C a was influenced independently by temperature and C a. Hence photosynthetic responses are interactively affected by changes in irradiance, external CO2 concentration, and temperature. EC significantly compensates the inhibitory effects of high temperature and irradiance on P N and WUE.  相似文献   

20.
Gamma linolenic acid (GLA) degradation in Spirulina followed first-order reaction kinetics. At an accelerated temperature range of 45 to 55°C, the degradation rate constants (k r) of GLA obtained were 4.0 × 10−2 to 8.8 × 10−2 day−1. The energy of activation (E a) was 16.53 kcal mol−1, and the Q10 was 2.22. Based on 20% GLA degradation, the shelf life of sun-dried Spirulina at 30°C is 263 days or 8.6 months using the Arrhenius plot, and 258 days or 8.5 months using the Q 10 approach. Presented at the 6th Meeting of the Asia Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号