首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ghrelin, an endogenous ligand of the growth hormone (GH) secretagogue (GHS) receptor, stimulates GH release, appetite, and weight gain in humans and rodents. Synthetic GHSs modulate sleep electroencephalogram (EEG) and nocturnal hormone secretion. We studied the effect of 4 x 50 microg of ghrelin administered hourly as intravenous boluses between 2200 and 0100 on sleep EEG and the secretion of plasma GH, ACTH, cortisol, prolactin, and leptin in humans (n = 7). After ghrelin administration, slow-wave sleep was increased during the total night and accumulated delta-wave activity was enhanced during the second half of the night. Rapid-eye-movement (REM) sleep was reduced during the second third of the night, whereas all other sleep EEG variables remained unchanged. Furthermore, GH and prolactin plasma levels were enhanced throughout the night, and cortisol levels increased during the first part of the night (2200-0300). The response of GH to ghrelin was most distinct after the first injection and lowest after the fourth injection. In contrast, cortisol showed an inverse pattern of response. Leptin levels did not differ between groups. Our data show a distinct action of exogenous ghrelin on sleep EEG and nocturnal hormone secretion. We suggest that ghrelin is an endogenous sleep-promoting factor. This role appears to be complementary to the already described effects of the peptide in the regulation of energy balance. Furthermore, ghrelin appears to be a common stimulus of the somatotropic and hypothalamo-pituitary-adrenocortical systems. It appears that ghrelin is a sleep-promoting factor in humans.  相似文献   

3.
Ghrelin, an acylated 28 amino acid gastric peptide, was isolated from the stomach as an endogenous ligand for growth hormone (GH) secretagogue receptor in 1999. Circulating ghrelin is mainly produced by specific cells in the stomach's oxyntic glands. Ghrelin potently stimulates GH release and food intake and exhibits diverse effects, including ones on glucose metabolism and on secretion and motility of the gastrointestinal tract. Besides these effects on food intake and energy homeostasis, ghrelin is also involved in controlling reproductive functions, and a role for it as a novel regulator of the hypothalamic-pituitary gonadal axis is clearly emerging.We review recent ghrelin research with emphasis on its roles in the reproductive axis.  相似文献   

4.
Ghrelin and adiponectin are recently discovered peptides that are both associated with energy homeostasis and insulin action. In addition, circulating levels of both peptides are altered in obese populations and are associated with poor health. Moreover, expression of ghrelin and adiponectin returns to normal levels following weight loss in obese patients. Because exercise training improves the health status of obese individuals and is associated with reduction of body weight, there is interest in the effects of exercise on adiponectin and ghrelin and whether these peptides may provide better understanding of how exercise improves health. Ghrelin levels do not increase in response to acute running and cycling in humans, and therefore ghrelin does not appear to regulate growth hormone (GH) release during exercise. There is some evidence that ghrelin levels are suppressed following resistance exercise of moderate intensity and are lower with higher GH concentrations during aerobic exercise. It has been suggested that negative feedback from elevated GH produces the reductions, but why these responses have not been consistently found in other studies and whether postexercise reduction in ghrelin affects appetite warrants further investigation. There are a few studies (but not all) that suggest long-term chronic exercise produces increases in ghrelin levels when weight loss is produced. Ghrelin levels are much higher in amenorrheic athletes than in ovulating exercisers or in female exercisers with a luteal phase defect, suggesting an association with reproductive function. Adiponectin concentrations do not change in response to moderate and strenuous running or low- and moderate- intensity cycling. Most studies have revealed that chronic exercise that improves fitness levels, increases insulin sensitivity, and reduces body weight, will increase resting adiponectin levels. However, it does not appear that changes in insulin sensitivity brought about by moderate exercise training are attributable to adiponectin.  相似文献   

5.
BACKGROUND: Ghrelin has been reported to be the natural ligand of growth hormone (GH) secretagogue receptor, and it is known that exogenous ghrelin administration strongly stimulates GH release in humans. However, the effects of endogenous ghrelin on GH secretion and changes in ghrelin levels during dynamic changes in GH levels are not well understood. METHODS: Therefore, we measured circulating acylated ghrelin concentrations during oral glucose tolerance tests (OGTTs) in patients with active acromegaly (AA, n = 9) and in age/sex/BMI-matched group A controls (n = 12), and during insulin tolerance testing (ITT) in patients with GH deficiency (GHD, n = 10) and in group B controls (n = 10). Plasma acylated ghrelin, serum GH, insulin and glucose levels were measured during each test. RESULTS: Fasting plasma ghrelin levels correlated negatively with serum insulin levels in both group A and B controls (r = -0.665; p < 0.05) but not in patients with AA or GHD. During OGTTs, circulating ghrelin levels decreased significantly with a nadir at 30 min in both patients with AA (p < 0.05) and group A controls (p < 0.01). Also, ITTs were followed by a significant decrease in circulating ghrelin levels with a nadir at 30 min in patients with GHD (p < 0.05) and in group B controls (p < 0.05). CONCLUSION: The results of the study show that at baseline acylated ghrelin levels do not differ with respect to the GH status (GH excess or GH deficiency) and, furthermore, the suppression of acylated ghrelin levels during OGTT or ITT is independent of the GH response to the tests.  相似文献   

6.
Ghrelin is a recently discovered stomach hormone that stimulates pituitary growth hormone (GH) secretion potently. The purpose of these experiments was to test the hypothesis that a stomach-ghrelin-pituitary-GH axis exists in which either an elevation or reduction in systemic GH levels will exert a negative or positive feedback action, respectively, on stomach ghrelin homeostasis. In rats, GH administration decreased stomach ghrelin mRNA levels and plasma ghrelin levels significantly. In GH-releasing hormone (GHRH) transgenic mice, GHRH overexpression decreased stomach ghrelin peptide levels when compared with control mice. In aged rats (25 months) stomach ghrelin mRNA and peptide levels and plasma ghrelin levels were decreased when compared with young rats (5 months). Because GH secretion is reduced in aged rats, the elevated stomach ghrelin production and secretion may reflect a decreased GH feedback on stomach ghrelin, homeostasis, and secretion. Together, these findings suggest that endogenous pituitary GH exerts a feedback action on stomach ghrelin homeostasis and support the hypothesis that a stomach-ghrelin-pituitary GH axis exists.  相似文献   

7.
Ghrelin--not just another stomach hormone   总被引:14,自引:0,他引:14  
Growth hormone (GH) secretagogues (GHSs) are non-natural, synthetic substances that stimulate GH secretion via a G-protein-coupled receptor called the GHS-receptor (GHS-R). The natural ligand for the GHS-R has been identified recently; it is called ghrelin. Ghrelin and its receptor show a widespread distribution in the body; the greatest expression of ghrelin is in stomach endocrine cells. Administration of exogenous ghrelin has been shown to stimulate pituitary GH secretion, appetite, body growth and fat deposition. Ghrelin was probably designed to be a major anabolic hormone. Ghrelin also exerts several other activities in the stomach. The findings that ghrelin is produced in mucosal endocrine cells of the stomach and intestine, and that ghrelin is measurable in the general circulation indicate its hormonal nature. A maximal expression of ghrelin in the stomach suggests that there is a gastrointestinal hypothalamic-pituitary axis that influences GH secretion, body growth and appetite that is responsive to nutritional and caloric intakes.  相似文献   

8.
Ghrelin, a novel endogenous growth hormone (GH) secretagogue, has been shown to exert very potent and specific GH-releasing activity in rats and humans. However, little is known about its GH-releasing activity and endocrine effects in domestic animals. To clarify the effect of ghrelin on GH secretion in vivo in ruminants, plasma GH responses to intra-arterial and intra-hypothalamic injections of rat ghrelin (rGhrelin) were examined in goats and cattle. The intra-arterial injection of 1 microg/kg BW of rGhrelin in ovariectomized goats failed to stimulate GH release, however, a dosage of 3 microg/kg BW significantly increased plasma GH concentrations (P<0.05). GH levels peaked at 15 min after the injection, then decreased to basal concentrations within 1 h after the injection. However, the secretory response to 3 microg/kg BW of rGhrelin was weaker than that of growth hormone-releasing hormone (GHRH) (0.25 microg/kg BW) (P<0.05). An infusion of 10 nmol of ghrelin into the medial basal hypothalamus (arcuate nucleus) significantly stimulated the release of GH in male calves (P<0.05). GH levels began to rise just after the infusions and peaked at 10 min, then decreased to the basal concentrations within 1 h after the injection. The present results show that ghrelin stimulates GH release in ruminants.  相似文献   

9.
Ghrelin is a novel peptide that acts on the growth hormone (GH) secretagogue receptor in the pituitary and hypothalamus. It may function as a third physiological regulator of GH secretion, along with GH-releasing hormone and somatostatin. In addition to the action of ghrelin on the GH axis, it appears to have a role in the determination of energy homeostasis. Although feeding suppresses ghrelin production and fasting stimulates ghrelin release, the underlying mechanisms controlling this process remain unclear. The purpose of this study was to test the hypotheses, by use of a stepped hyperinsulinemic eu- hypo- hyperglycemic glucose clamp, that either hyperinsulinemia or hypoglycemia may influence ghrelin production. Having been stable in the period before the clamp, ghrelin levels rapidly fell in response to insulin infusion during euglycemia (baseline ghrelin 207 +/- 12 vs. 169 +/- 10 fmol/ml at t = 30 min, P < 0.001). Ghrelin remained suppressed during subsequent periods of hypoglycemia (mean glucose 53 +/- 2 mg/dl) and hyperglycemia (mean glucose 163 +/- 6 mg/dl). Despite suppression of ghrelin, GH showed a significant rise during hypoglycemia (baseline 4.1 +/- 1.3 vs. 28.2 +/- 3.9 microg/l at t = 120 min, P < 0.001). Our data suggest that insulin may suppress circulating ghrelin independently of glucose, although glucose may have an additional effect. We conclude that the GH response seen during hypoglycemia is not regulated by circulating ghrelin.  相似文献   

10.
Ghrelin is an acyl-peptide gastric hormone acting on the pituitary and hypothalamus to stimulate growth hormone (GH) release, adiposity, and appetite. Ghrelin endocrine activities are entirely dependent on its acylation and are mediated by GH secretagogue (GHS) receptor (GHSR)-1a, a G protein-coupled receptor mostly expressed in the pituitary and hypothalamus, previously identified as the receptor for a group of synthetic molecules featuring GH secretagogue (GHS) activity. Des-acyl ghrelin, which is far more abundant than ghrelin, does not bind GHSR-1a, is devoid of any endocrine activity, and its function is currently unknown. Ghrelin, which is expressed in heart, albeit at a much lower level than in the stomach, also exerts a cardio protective effect through an unknown mechanism, independent of GH release. Here we show that both ghrelin and des-acyl ghrelin inhibit apoptosis of primary adult and H9c2 cardiomyocytes and endothelial cells in vitro through activation of extracellular signal-regulated kinase-1/2 and Akt serine kinases. In addition, ghrelin and des-acyl ghrelin recognize common high affinity binding sites on H9c2 cardiomyocytes, which do not express GHSR-1a. Finally, both MK-0677 and hexarelin, a nonpeptidyl and a peptidyl synthetic GHS, respectively, recognize the common ghrelin and des-acyl ghrelin binding sites, inhibit cell death, and activate MAPK and Akt.These findings provide the first evidence that, independent of its acylation, ghrelin gene product may act as a survival factor directly on the cardiovascular system through binding to a novel, yet to be identified receptor, which is distinct from GHSR-1a.  相似文献   

11.
BACKGROUND: Glucagon stimulation is routinely used as a provocative test to assess growth hormone (GH) sufficiency in pediatrics. Ghrelin also markedly stimulates GH secretion. Because glucagon stimulates the promoter of the ghrelin gene in vitro as well as ghrelin secretion by the perfused rat stomach, we sought to determine whether ghrelin mediates glucagon-induced GH secretion. METHODS: We compared ghrelin, GH, insulin and glucose responses following administration of 0.03 mg/kg intravenously (iv; max. 1 mg) and 0.1 mg/kg intramuscularly (im; max. 2 mg) of glucagon in two groups (n = 10-11/group) of GH-sufficient children. We also measured ghrelin before and 6 min after iv administration of 1 mg glucagon in 21 adult subjects. RESULTS: In children, glucagon caused a 26% decrease in ghrelin and a 72% increase in glucose concentrations that were independent of the dose or administration route of glucagon. In contrast, the insulin response was 2-3 times higher following administration of 0.1 mg/kg im compared to 0.03 mg/kg of glucagon iv. There was a significant correlation between the maximum decrease in ghrelin and increases in glucose (p = 0.03) but not in insulin. There was a significant correlation between ghrelin and GH area under the curve after controlling for the dose of glucagon (p = 0.03) but not for the maximum increase in glucose.In normal adults, glucagon administration caused a 7% decrease in ghrelin concentrations after 6 min (p = 0.0002). CONCLUSION: Ghrelin does not play a causal role in the GH response to pharmacological glucagon administration, which suppresses ghrelin levels starting a few minutes after injection.  相似文献   

12.
Ghrelin is a native ligand for the growth hormone secretagogue (GHS) receptor that stimulates pulsatile GH secretion markedly. At present, no formal construct exists to unify ensemble effects of ghrelin, GH-releasing hormone (GHRH), somatostatin (SRIF), and GH feedback. To model such interactions, we have assumed that ghrelin can stimulate pituitary GH secretion directly, antagonize inhibition of pituitary GH release by SRIF, oppose suppression of GHRH neurons in the arcuate nucleus (ArC) by SRIF, and induce GHRH secretion from ArC. The dynamics of such connectivity yield self-renewable GH pulse patterns mirroring those in the adult male and female rat and explicate the following key experimental observations. 1) Constant GHS infusion stimulates pulsatile GH secretion. 2) GHS and GHRH display synergy in vivo. 3) A systemic pulse of GHS stimulates GH secretion in the female rat at any time and in the male more during a spontaneous peak than during a trough. 4) Transgenetic silencing of the neuronal GHS receptor blunts GH pulses in the female. 5) Intracerebroventricular administration of GHS induces GH secretion. The minimal construct of GHS-GHRH-SRIF-GH interactions should aid in integrating physiological data, testing regulatory hypotheses, and forecasting innovative experiments.  相似文献   

13.
Ghrelin, a novel growth-hormone-releasing acylated peptide, was recently isolated from rat stomach by the search of an endogenous ligand to an "orphan" G-protein-coupled-receptor. Ghrelin neuron is present in the arcuate nucleus of rat hypothalamus, but its central effect on growth hormone (GH) release has yet to be clarified. We determined the plasma GH concentration and GH mRNA level in the pituitary in response to central administration of ghrelin. A single intracerebroventricular (ICV) administration of ghrelin to rats increased the plasma GH concentration dose-dependently. A continuous ICV administration of ghrelin via osmotic pump for 12 days increased the plasma GH concentration on day 6, but did not keep the high GH concentration on day 12. The GH mRNA levels in both groups of single and continuous administration of ghrelin were not significantly different from those of controls. A single administration of growth-hormone secretagogue also did not stimulate GH synthesis. Central ghrelin stimulated GH release but did not augment GH synthesis. In addition to gastric ghrelin, hypothalamic ghrelin functions to regulate GH release.  相似文献   

14.
Ghrelin, identified as an endogenous ligand for the growth hormone secretagogue receptor, is a 28 amino acid peptide hormone possessing an unusual octanoyl group on the serine in position 3, crucial for its biological activity. Ghrelin is predominantly produced by the stomach but also by many other tissues such as pituitary, hypothalamus, duodenum, jejunum, ileum, colon, lung, heart, pancreas, kidney, and testis. In addition to stimulation of GH release, ghrelin stimulates appetite and food intake, enhancing fat mass deposition and weight gain. Besides these main actions, ghrelin regulates gastric motility and acid secretion, exerts cardiovascular and anti-inflammatory effects, modulates cell proliferation and influences endocrine and exocrine pancreatic secretion, as well as glucose and lipid metabolism. Therefore, ghrelin agonists and antagonists might be valuable for some clinical aspects.  相似文献   

15.
Obesity is characterized by markedly decreased ghrelin and growth hormone (GH) secretion. Ghrelin is a GH-stimulating, stomach-derived peptide that also has orexigenic action. Ghrelin supplement may restore decreased GH secretion in obesity, but it may worsen obesity by its orexigenic action. To reveal effects of ghrelin administration on obese animals, we first examined acute GH and orexigenic responses to ghrelin in three different obese and/or diabetic mouse models: db/db mice, mice on a high-fat diet (HFD mice), and Akita mice for comparison. GH responses to ghrelin were significantly suppressed in db/db, HFD, and Akita mice. Food intake of db/db and Akita mice were basally higher, and further stimulation of food intake by ghrelin was suppressed. Pituitary GH secretagogue receptor mRNA levels in db/db and HFD mice were significantly decreased, which may partly contribute to decreased GH response to ghrelin in these mice. In Akita mice for comparison, decreased hypothalamic GH-releasing hormone (GHRH) mRNA levels may be responsible for decreased GH response, since maximum GH response to ghrelin needs GHRH. When ghrelin was injected into HFD mice with GHRH coadministrated, GH responses to ghrelin were significantly emphasized. HFD mice injected with low-dose ghrelin and GHRH for 10 days did not show weight gain. These results indicate that low-dose ghrelin and GHRH treatment may restore decreased GH secretion in obesity without worsening obesity.  相似文献   

16.
Ghrelin, a recently discovered peptide hormone, is produced by endocrine cells in the stomach, the so-called A-like cells. Ghrelin binds to the growth hormone (GH) secretagogue receptor and releases GH. It is claimed to be orexigenic and to control gastric acid secretion and gastric motility. In this study, we examined the effects of ghrelin, des-Gln14-ghrelin, des-octanoyl ghrelin, ghrelin-18, -10 and -5 (and motilin) on gastric emptying in mice and on gastric acid secretion in chronic fistula rats and pylorus-ligated rats. We also examined whether ghrelin affected the activity of the predominant gastric endocrine cell populations, G cells, ECL cells and D cells. Ghrelin and des-Gln14-ghrelin stimulated gastric emptying in a dose-dependent manner while des-octanoyl ghrelin and motilin were without effect. The C-terminally truncated ghrelin fragments were effective but much less potent than ghrelin itself. Ghrelin, des-Gln14-ghrelin and des-octanoyl ghrelin neither stimulated nor inhibited gastric acid secretion, and ghrelin, finally, did not affect secretion from either G cells, ECL cells or D cells.  相似文献   

17.
The acylated peptide hormone ghrelin impacts a wide range of physiological processes but is most well known for controlling hunger and metabolic regulation. Ghrelin requires a unique posttranslational modification, serine octanoylation, to bind and activate signalling through its cognate GHS-R1a receptor. Ghrelin acylation is catalysed by ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase (MBOAT) enzyme family. The ghrelin/GOAT/GHS-R1a system is defined by multiple unique aspects within both protein biochemistry and endocrinology. Ghrelin serves as the only substrate for GOAT within the human proteome and, among the multiple hormones involved in energy homeostasis and metabolism such as insulin and leptin, acts as the only known hormone in circulation that directly stimulates appetite and hunger signalling. Advances in GOAT enzymology, structural modelling and inhibitor development have revolutionized our understanding of this enzyme and offered new tools for investigating ghrelin signalling at the molecular and organismal levels. In this review, we briefly summarize the current state of knowledge regarding ghrelin signalling and ghrelin/GOAT enzymology, discuss the GOAT structural model in the context of recently reported MBOAT enzyme superfamily member structures, and highlight the growing complement of GOAT inhibitors that offer options for both ghrelin signalling studies and therapeutic applications.  相似文献   

18.
Recently, ghrelin (Ghr), a new peptide which specifically stimulates growth hormone (GH) release from the pituitary, was identified in the rat and human stomach. Ghrelin has been shown to stimulate GH release by acting through a growth hormone secretagogue (GHS) receptor in the rat. The present study describes the in vitro effect of rat Ghr on the release of GH and two forms of prolactin (PRL(177) and PRL(188)) in the tilapia, Oreochromis mossambicus. Rat Ghr stimulated the release of GH in a dose-related manner after 8 and 24 hr of incubation. Rat Ghr also significantly stimulated the release of PRL(177) and PRL(188) in a dose-related manner after 24 hr. Rat Ghr had no effect on the pituitary content of GH or PRL(188), but significantly increased PRL(177) content. These results show for the first time that rat Ghr significantly stimulates GH and PRL release in teleosts, and suggest that Ghr and a GHS receptor are present in fish.  相似文献   

19.
Ghrelin in growth and development   总被引:5,自引:0,他引:5  
Exogenous administration of ghrelin increases caloric intake and stimulates growth hormone (GH) secretion, two effects that are mediated through binding of ghrelin to the GH secretagogue receptor (GHS-R). In addition, ghrelin is thought to inhibit adipogenesis by GHS-R-independent mechanisms. In adults, ghrelin is mainly produced by the stomach. In contrast, in the fetal and early postnatal period, ghrelin gene expression is abundant in the pancreas but not in the stomach. While knockout animal studies demonstrate that ghrelin is not required for perinatal development under normal nutritional conditions, the characteristics of ghrelin metabolism during fetal development suggest that ghrelin could contribute to the programming of mechanisms involved in energy balance, such as beta-cell maturation, orexigenic pathways and adipogenesis. In humans, ghrelin concentrations progressively decrease during childhood and adolescence, as well as with advancing puberty. In adolescents, similar to adults, ghrelin concentrations are inversely related to body mass index and to circulating insulin. One notable exception is the presence of elevated ghrelin concentrations in subjects with Prader-Willi syndrome, raising the possibility that ghrelin could be part of the etiology of excess food intake in this condition. These data raise a number of fascinating questions on the potential physiologic role of this hormone during growth and development.  相似文献   

20.
Ghrelin is a brain-gut peptide known for its growth hormone (GH)-releasing and appetite-inducing activities. This natural GH secretagogue (GHS) was originally purified from rat stomach, but it is expressed widely in different tissues where it may have endocrine and paracrine effects. The central effects of ghrelin on adrenocorticotropic hormone (ACTH) cells, ACTH release and subsequent corticosterone release from adrenal glands remains to be clarified. The aim of this study was to specifically determine the morphological features of ACTH-producing pituicytes and blood concentration of ACTH and corticosterone after central administration of ghrelin. Five doses of rat ghrelin or PBS (n=10 per group) were injected every 24 h (1 microg of ghrelin in 5 muL PBS), into the lateral cerebral ventricle of male rats. Results showed that ghrelin increased (p<0.05) absolute and relative pituitary weights compared to controls (58% and 41% respectively). Morphometric parameters, i.e. the volume of the ACTH cells, nuclear volume, and volume density were all increased (p<0.05), by 17%, 6% and 13%, respectively, 2 h after the last ghrelin treatment. Ghrelin increased circulating concentrations of ACTH and corticosterone (p<0.05) by 62% and 66%, respectively. The data provide clear documentation that intracerebroventricular ghrelin stimulates ACTH cell hypertrophy and proliferation, and promotes ACTH and corticosterone release. Determining the role of ghrelin in physiological stress responses and whether control of the peptide's activity would be useful for prevention and/or treatment of stress-induced diseases remain important research goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号