首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
In an attempt to further elucidate the mechanisms of fasting-depressed maximum thermogenesis and cold tolerance, norepinephrine (NE)-stimulated non-shivering thermogenesis (NST) in cold-acclimated rats was used as a functional index of possible alterations in adrenergic efficacy after fasting. Fasting decreased the magnitude of maximum NE-Stimulated NST by 18.2% [6.87±0.47 Kcal (Kg.75.min)?1 well-fed vs. 5.81±0.39 Kcal (Kg.75.min)?1 fasted], but the apparent adrenergic binding affinity was not affected [Ke=0.43 μg NE min?1 well-fed vs 0.55 μg NE min?1 fasted]. Pretreatment with aminophylline [15 mg Kg?1, i.p.], a phosphodiesterase inhibitor, restored the fasting-depressed NE-stimulated NST to the fed level. The results suggest that the depression of maximum thermogenesis after fasting is not due to changes in adrenergic binding characteristics but to alteration in cAMP production/degradation, resulting in decreased substrate mobilization for thermogenesis.  相似文献   

2.
The role of the renal nerves in the electrolyte excretion of rats fed or fasted overnight was determined in conscious rats and anesthetized (Inactin) and surgically prepared rats. In conscious rats sodium excretion, as measured in a 1-h urine collection period after feeding or fasting overnight, was decreased with fasting with or without renal nerves. Renal nerve activity, as measured by norepinephrine turnover (inhibition of tyrosine hydroxylase by alpha-methyl-p-tyrosine), was not different between conscious fed or fasted rats and increased to the same extent in fed and fasted rats when anesthetized and surgically prepared. Anesthetized, surgically prepared rats infused with 5.0% glucose showed a denervation natriuresis if rats were fed overnight, but not if they had been fasted overnight. Potassium excretion in conscious and anesthetized rats was lower in fasted rats than fed rats with or without renal nerves. These data suggest (i) renal nerves are not involved in the renal response to an overnight fast in conscious rats, and (ii) in anesthetized, surgically prepared rat renal sympathetic tone is enhanced and denervation natriuresis occurs if rats are fed but not if fasted. Potassium excretion is a reflection of whether rats are fed or fasted and not whether they have renal nerves.  相似文献   

3.
  • 1.1. Monoamine turnover and neuropeptide Y (NPY) levels were evaluated in the CNS of adult male rats either after fasting (72 hr) or refeeding.
  • 2.2. In the fasted group, an overall increase in NPY levels was observed except in the striatum where it was decreased. The serotoninergic turnover was decreased in the hippocampus, striatum and cortex.
  • 3.3. After refeeding, NPY decreased in the hypothalamus and cortex but was further increased in the hippocampus and decreased in the striatum. The serotoninergic turnover was still decreased in the hippocampus and cortex. The norepinephrine levels and the dopaminergic turnover increased in the hippocampus and cortex.
  • 4.4. No relationship appeared between NPY and monoamine changes suggesting that NPY can act independently in feeding behavior, and play, in different brain areas, an important role in its regulation.
  相似文献   

4.
The effect of fasting on energy utilization during running or swimming was studied in adult male Wistar rats. Compared with fed rats, fasted animals displayed a decreased contribution of carbohydrates in energy supply, with decreased liver and muscle glycogen contents and decreased rate of glycogen breakdown. This was compensated by an enhanced rate of beta-oxidation. In addition, fasting induced an exaggerated sympathoadrenal response during exercise, reflected by a greater epinephrine plasma level and a higher norepinephrine turnover rate in both liver and soleus. Nevertheless, endurance capacity was similar in fasted and fed animals. These results contrast with the impairment of endurance observed in fasting humans but also with the improvement of endurance in rats previously reported by Dohm et al. (J. Appl. Physiol. 55: 830-833, 1983). These data suggest that the metabolic responses to exercise subsequent to food deprivation depend not only on the considered species but also, in the same species (rat), on the age of the animals and the duration of the fast. These factors probably determine the hormonal secretion and substrate utilization during prolonged exercise in fasting conditions.  相似文献   

5.
The catecholamine (CA) depletion degree in rat adrenal medulla, the survival time (ST) and rectal temperature changes induced by combined thermal and immobilization stress were examined with the aim to prove tha alpha- and beta-adrenoreceptor sensitivity decrease implication in 24 hour fasting-induced changes of the above mentioned phenomena. The significant ST increase in strong stressful situations and the adrenal CA turnover augmentation in fed and fasted-propranolol or dihydroergotamine pretreated rats compared to untreated ones provided evidence that alpha- and beta adrenoceptor blockade causes adrenal CA turnover increase and ST prolongation similar to effects observed in our previous experiments. Thus the implication of fasting induced adrenoreceptor downregulation in adrenal CA turnover augmentation and ST prolongation of fasted rats in strong stressful conditions was suggested and the possible mechanisms of these phenomena have been discussed.  相似文献   

6.
Sarcolemmal CD36 facilitates myocardial fatty acid (FA) uptake, which is markedly reduced in CD36-deficient rodents and humans. CD36 also mediates signal transduction events involving a number of cellular pathways. In taste cells and macrophages, CD36 signaling was recently shown to regulate store-responsive Ca2+ flux and activation of Ca2+-dependent phospholipases A2 that cycle polyunsaturated FA into phospholipids. It is unknown whether CD36 deficiency influences myocardial Ca2+ handling and phospholipid metabolism, which could compromise the heart, typically during stresses. Myocardial function was examined in fed or fasted (18–22 h) CD36−/− and WT mice. Echocardiography and telemetry identified conduction anomalies that were associated with the incidence of sudden death in fasted CD36−/− mice. No anomalies or death occurred in WT mice during fasting. Optical imaging of perfused hearts from fasted CD36−/− mice documented prolongation of Ca2+ transients. Consistent with this, knockdown of CD36 in cardiomyocytes delayed clearance of cytosolic Ca2+. Hearts of CD36−/− mice (fed or fasted) had 3-fold higher SERCA2a and 40% lower phospholamban levels. Phospholamban phosphorylation by protein kinase A (PKA) was enhanced after fasting reflecting increased PKA activity and cAMP levels in CD36−/− hearts. Abnormal Ca2+ homeostasis in the CD36−/− myocardium associated with increased lysophospholipid content and a higher proportion of 22:6 FA in phospholipids suggests altered phospholipase A2 activity and changes in membrane dynamics. The data support the role of CD36 in coordinating Ca2+ homeostasis and lipid metabolism and the importance of this role during myocardial adaptation to fasting. Potential relevance of the findings to CD36-deficient humans would need to be determined.  相似文献   

7.
BACKGROUND: Although hormonal responses to exercise performed in fed state are well documented, far less in known about the effect of a single exercise bout, performed after overnight fasting, on cardio-respiratory responses and hormones secretion. It has been reported that recently discovered hormones as leptin and ghrelin may affect cardiovascular responses at rest. However, their effect on the cardiovascular responses to exercise is unknown. AIMS: This study was designed to determine the effect of overnight fasting on cardio- respiratory responses during moderate incremental exercise. We have hypothesised that fasting / exercise induced changes in plasma leptin / ghrelin concentrations may influence cardiovascular response. MATERIAL AND METHODS: Eight healthy non-smoking men (means +/- SE.: age 23.0 +/- 0.5 years; body mass 71.9 +/- 1.5 kg; height 179.1 +/- 0.8 cm; BMI 22.42 +/- 0.49 kg x m(-2) with VO2max of 3.71 +/- 0.10 l x min(-1)) volunteered for this study. The subjects performed twice an incremental exercise test, with the increase of power output by 30 W every 3 minutes. Tests were performed in a random order: once in the feed state--cycling until exhaustion and second, about one week later, after overnight fasting--cycling until reaching 150 W. RESULTS: In the present study we have compared the results obtained during incremental exercise performed only up to 150 W (59 +/- 2 % of VO2max) both in fed and fasted state. Heart rate measured during exercise at each power output, performed in fasted state was by about 10 bt x min(-1) (p = 0.02) lower then in fed subjects. Respiratory quotient and plasma lactate concentration in fasted state were also significantly (p<0.001) lower than in the fed state. Pre-exercise plasma leptin and ghrelin concentrations were not significantly different in fed and fasted state. Exercise induced increase in hGH was not accompanied by a significant changes in the studied gut hormones such as ghrelin, leptin, and insulin, except for plasma gastrin concentration, which was significantly (p = 0.008) lower in fasting subjects at the power output of 150 W. Plasma [IL-6] at rest before exercise performed in fasted state was significantly (p = 0.03) elevated in relation to the fed state. This was accompanied by significantly higher (p = 0.047) plasma noradrenaline concentration. Plasma IL-6 concentration at rest in fed subjects was negatively correlated with plasma ghrelin concentration (r = -0.73, p < 0.05) and positively correlated with plasma insulin concentration (r = 0.78, p < 0.05). Significant negative correlation (r = -0.90; p < 0.05) was found between plasma insulin and ghrelin concentration at rest in fed subjects. CONCLUSIONS: We have concluded that plasma leptin and ghrelin concentrations have no significant effect on the fasting-induced attenuation of heart rate during exercise. We have postulated that this effect is caused by increased plasma norepinephrine concentration, leading to the increase in systemic vascular resistance and baroreceptor mediated vagal stimulation. Moreover we believe, that the fasting-induced significant increase in plasma IL-6 concentration at rest, accompanied by higher plasma norepinephrine concentration and lower RQ, belongs to the physiological responses, maintaining energy homeostasis in the fasting state.  相似文献   

8.
The effects of norepinephrine on ketogenesis in isolated hepatocytes have been reported as ranging from stimulation to inhibition. The present work was planned with the aim of clarifying these discrepancies. The experimental system was the once-through perfused liver from fasted and fed rats. Fatty acids with chain lengths varying from 8-18 were infused. The effects of norepinephrine depended on the metabolic state of the rat and on the nature of the fatty acid. Norepinephrine clearly inhibited ketogenesis from long-chain fatty acids (stearate > palmitate > oleate), but had little effect on ketogenesis from medium-chain fatty acids (octanoate and laureate). With palmitate the decrease in oxygen uptake was restricted to the substrate stimulated portion; with stearate, the decrease exceeded the substrate stimulated portion; with oleate, oxygen uptake was transiently inhibited. Withdrawal of Ca2+ attenuated the inhibitory effects. 14CO2 production from [1-14C]oleate was inhibited. Net uptake of the fatty acids was not affected by norepinephrine. In livers from fed rats, oxygen uptake and ketogenesis from stearate were only transiently inhibited. The conclusions are: (a) in the fasted state norepinephrine reduces ketogenesis and respiration by means of a Ca2+-dependent mechanism; (b) the degree of inhibition varies with the chain length and the degree of saturation of the fatty acids; (c) norepinephrine favours esterification of the activated long-chain fatty acids in detriment to oxidation; (d) in the fed state the stimulatory action of norepinephrine on glycogen catabolism induces conditions which are able to reverse inhibition of ketogenesis and oxygen uptake.  相似文献   

9.
The uptake by liver slices of radioactive acetate, palmitate, stearate, linoleate and glycerol into glycerolipids was compared in fed and fasted (overnight, 16 hr) rats.

The incorporation of l-14C-acetate into long-chain fatty acids and glycerolipids was depressed by fasting. There was a considerable decrease in the incorporation of 1-14C-palmitate into triglyceride (TG) and that of l-14C-stearate into phosphatidylcholine (PC) in fasted liver slices. No such differences were observed with l-14C-linoleate. The incorporation of l-14C-glycerol into TG was slightly decreased, whereas that into PC and phosphatidylethanolamine (PE) was increased by fasting.

These observations, together with those with the incorporation of the precursors into molecular species of TG, PC and PE, suggested that the changes in the fatty acid composition of glycerolipids by fasting may be governed by the changes in the availability of acyl moieties as well as in the relative balance of the pathways participating to formation of TG and phospholipids.  相似文献   

10.
The hyperinsulinaemic-glucose-clamp technique, in combination with measurement of glucose turnover in conscious unrestrained rats, was used to assess the effects of nutritional status on insulin sensitivity in vivo and glucose metabolism. Liver, heart and quadriceps skeletal-muscle glycogen content and activities of pyruvate dehydrogenase (PDH) and glycogen synthase were measured both basally and at the end of a 2.5 h glucose clamp (insulin 85 munits/h) in rats 6, 24 and 48 h after food withdrawal. Clamp glucose requirement and glucose turnover were unchanged by fasting. Activation of glycogen synthase and glycogen deposition in liver and skeletal muscle during the clamps were also not impaired in rats after a prolonged fast. By contrast with skeletal muscle, activation of cardiac-muscle glycogen synthase and glycogen deposition during the clamps were markedly impaired by 24 h of fasting and were undetectable at 48 h. Skeletal-muscle PDH activity fell with more prolonged fasting (6 h, 15.3 +/- 3.4%; 24 h, 4.7 +/- 0.7%; 48 h, 4.3 +/- 0.6% active; P less than 0.005), but at 24 and 48 h was stimulated by the clamp to values unchanged by the duration of fasting. Stimulation of cardiac PDH activity by the clamp was, however, impaired in rats fasted for 24 or 48 h. Basal hepatic PDH did not change significantly with fasting (6 h, 5.3 +/- 1.1%; 24 h, 4.6 +/- 0.7%; 48 h, 3.9 +/- 0.5%), and, although it could be partly restored at 24 h, very little stimulation occurred at 48 h. Hepatic pyruvate kinase and acetyl-CoA carboxylase activity were both stimulated by the clamps, and this was not impaired with more prolonged fasting. During the glucose clamps, blood concentrations of lactate, pyruvate and alanine were increased to a greater extent in rats fasted for 24 and 48 h than in rats studied 6 h after food withdrawal. The findings suggest that, although sensitivity to insulin of whole-body glucose disposal is unchanged with fasting, there may be qualitative differences in the metabolism of glucose.  相似文献   

11.
Effect of prolonged maternal fasting on the fetal liver and heart glycogen and triglyceride content and on concentration of glucose, urea, uric acid and alpha amino-nitrogen in the amniotic fluid has been studied in rats. The animals were divided into four groups: fed (control), fasted for one day (from 20 to 21 day of pregnancy), fasted for two days (from 19 to 21 day) and fasted for three days (from 18 to 21 day). Maternal fasting for two and three days resulted in reduction in fetal growth. The fetal liver glycogen content was reduced already after one day of fasting, stabilized after two days and then further decreased after three days. The fetal heart glycogen content was reduced only after three days of fasting. The fetal liver triglyceride content increased gradually during the first two days of fasting and then stabilized. The content of triglycerides in the heart was elevated after two and three days of food deprivation. The amniotic fluid glucose concentration decreased after one day of fasting and then stabilized. Fasting did not effect the concentration of the nitrogenous compounds in the amniotic fluid. It is concluded that maternal fasting affects markedly metabolism of energy substrates stored in the fetal liver and the heart and the composition of the amniotic fluid.  相似文献   

12.
To clarify whether hyperinsulinemia accelerates sympathetic nervous system (SNS) activity, norepinephrine (NE) turnover, a reliable indicator of SNS activity, was measured in the interscapular brown adipose tissue (IBAT) and heart of hyperinsulinemic yellow KK and normoinsulinemic C57BL control mice at 12 weeks of age. The yellow KK mice were more obese and had higher levels of plasma glucose (about 2.3 times) and of plasma insulin (about 24 times) than did the control mice. In IBAT, the rate of NE turnover following blockade of NE synthesis with alpha-methyl-p-tyrosine (alpha-MPT) was significantly slower in yellow KK mice than in C57BL mice, although in heart, no significant difference between both groups was observed in NE turnover. These results suggest that hyperinsulinemia dose not always increase NE turnover, and furthermore that the reduced NE turnover in IBAT of yellow KK mice may be one of the important factors in the development of obesity of this animal, as it is recognized that brown adipose tissue is a main effector of diet-induced thermogenesis and its defect or absence would predispose to obesity.  相似文献   

13.
Summary The turnover of two plasma free fatty acids (FFA) were measured in 5 northern elephant seal pups (Mirounga angustirostris) after approximately 2 months of post-weaning fasting. Turnover was determined using simultaneous bolus injections of14C-palmitate,3H-oleate and Evans blue (EB) administered via an indwelling extradural intravertebral catheter. At this time in their natural fast, the seals exhibited plasma FFA levels and turnover values higher than reported for other marine mammals and most terrestrial carnivores. There was no consistent difference between plasma FFA turnover measured by palmitate or oleate tracers. The results imply that FFA metabolism is the primary source of energy during fasting. This is interesting in light of previous observations of minimal ketoacid accumulation and low levels of glucose and protein energy production during fasting in these juvenile seals.  相似文献   

14.
This study examined the effect of fasting on the neural control of ion transport and paracellular permeability in piglet jejunum. Muscle-stripped tissues from fed or 48-h fasted piglets were mounted in Ussing chambers. Neural blockade with tetrodotoxin (TTX) or antagonists of muscarinic or nicotinic receptors caused reductions in basal short-circuit current that were approximately threefold greater in fasted piglets. The TTX-induced reduction in short-circuit current in fasted piglets was due to a decrease in residual ion flux and was abolished in the absence of HCO(-)(3). Intestinal paracellular permeability, as indicated by tissue conductance (G(t)) and fluxes of inulin and mannitol, was significantly increased by fasting. TTX increased inulin flux and G(t) in fed but not fasted piglets. In fasted piglets, carbachol reduced G(t) by 29% and mannitol flux by 27% but had no effect on these parameters in the fed state. We conclude that fasting enhances enteric neural control of basal ion transport and increases paracellular permeability in piglet jejunum. Tonic release of enteric neurotransmitters regulates paracellular permeability in the fed state, and cholinergic stimulation restores fasting-induced elevations in paracellular permeability to fed levels.  相似文献   

15.
Overnight fasting of rodents is commonly adopted in protocols to obtain isolated liver mitochondria, but the effects of fasting itself on mitochondrial function are poorly characterized. In this study we show that overnight fasting (15?h) promotes a shift in the liver mitochondrial bioenergetic profile, with a reduction in ADP-stimulated and maximal respiration, lower membrane potentials and lower resistance to Ca2+-induced mitochondrial permeability transition. Short term fasting (4?h) promoted similar changes, suggesting that this is a physiological shift in mitochondrial function associated with fasting, but not torpor. Our results suggest that the widely adopted liver mitochondrial isolation technique using fasted animals should be reconsidered, and also uncover physiological changes in bioenergetic function associated to nutritional status.  相似文献   

16.
To assess whether glycolysis, Na+-H+ exchange and oxidation of fatty acid derived from endogenous lipolysis are involved in the beneficial effects of 24-h fasting on the ischaemic - reperfused heart, it was studied the effects of inhibiting Na+ - H+ exchange using 10 muM dimethylamiloride and fatty acid oxidation using 2 mM oxfenicine, on the functional activity, lactate production and cell viability measured with tetrazolium stain. Since fasting accelerates heart fatty acid oxidation, data were compared to those from fed rats; using Langendorff perfused (glucose 10 mM) hearts of 250-350 g Wistar rats exposed to 25 min ischaemia - 30 min reperfusion. Fasting reduced the ischaemic rise of end diastolic pressure (contracture), improved recovery of contraction and lowered lactate production in comparison with the fed whereas cellular viability was similar in both groups. Dimethylamiloride improved the recovery of contraction (fed control 24 +/- 9%, fed treated 68 +/- 11%, P < 0.05 at the end of reperfusion), attenuated the contracture (fed control 40 +/- 9%, fed treated 24 +/- 11%, P < 0.05 at the beginning of reperfusion) and reduced lactate production in the fed group and increased cellular viability in both groups (fed control 21 +/- 6%, fed treated 69 +/- 7%, P < 0.05, and fasted control 18 +/- 7%, fasted treated 53 +/- 8%, P < 0.05). Oxfenicine reduced the recovery of contraction (fasted control 88 +/- 6%, fasted treated 60 +/- 11%, P < 0.05) and increased lactate production of fasted group and attenuated the contracture in the fed. These data suggest that beneficial effects of fasting owe, at least in part, to a lowered glycolysis probably secondary to the increased fatty acid oxidation and to the accumulation of energy supplying acyl esters. Dimethylamiloride slowing of glycolysis might explain functional improvement, whereas it seems unrelated to the protection on cell viability.  相似文献   

17.
Liver receptor homolog-1 (LRH-1) has emerged as a regulator of hepatic glucose, bile acid, and mitochondrial metabolism. However, the functional mechanism underlying the effect of LRH-1 on lipid mobilization has not been addressed. This study investigated the regulatory function of LRH-1 in lipid metabolism in maintaining a normal liver physiological state during fasting. The Lrh-1f/f and LRH-1 liver-specific knockout (Lrh-1LKO) mice were either fed or fasted for 24 h, and the liver and serum were isolated. The livers were used for qPCR, western blot, and histological analysis. Primary hepatocytes were isolated for immunocytochemistry assessments of lipids. During fasting, the Lrh-1LKO mice showed increased accumulation of triglycerides in the liver compared to that in Lrh-1f/f mice. Interestingly, in the Lrh-1LKO liver, decreases in perilipin 5 (PLIN5) expression and genes involved in β-oxidation were observed. In addition, the LRH-1 agonist dialauroylphosphati-dylcholine also enhanced PLIN5 expression in human cultured HepG2 cells. To identify new target genes of LRH-1, these findings directed us to analyze the Plin5 promoter sequence, which revealed −1620/−1614 to be a putative binding site for LRH-1. This was confirmed by promoter activity and chromatin immuno-precipitation assays. Additionally, fasted Lrh-1f/f primary hepatocytes showed increased co-localization of PLIN5 in lipid droplets (LDs) compared to that in fasted Lrh-1LKO primary hepatocytes. Overall, these findings suggest that PLIN5 might be a novel target of LRH-1 to mobilize LDs, protect the liver from lipid overload, and manage the cellular needs during fasting.  相似文献   

18.
Abstract— The turnover of 5-hydroxytryptamine in the forebrain and of dopamine in the striatum was studied in mice fasted for 20 h. Such mice showed an increased tissue concentration of 5-hydroxyindoleacetic acid in the forebrain and an increased accumulation of this acid after probenecid. Fasted mice also showed a higher concentration of homovanillic acid in the striatum than fed mice. However, the administration of probenecid produced a smaller increase in homovanillic acid concentration in fasted than in fed mice. The decay of dopamine following α-methyl- p -tyrosine was reduced in fasted mice at 2 h, but not at 1 h or 6 h after administration of the inhibitor. The possibility that fasting increases the activity of some dopaminergic neurones while decreasing the activity of others is considered. The existence of a pool of homovanillic acid at a site within the striatum where the probenecid-sensitive transport is not effective is postulated.  相似文献   

19.
The control of hepatic metabolism by substrates and hormones was assessed in perfused liver from young Muscovy ducklings. Studies were performed in fed or 24-h fasted 5-week-old thermoneutral (25 degrees C; TN) or cold-acclimated ducklings (4 degrees C; CA) and results were compared with those obtained in rats. Basal oxygen uptake of perfused liver (LVO2) was higher after cold acclimation both in fed (+65%) and 24-h fasted (+29%) ducklings and in 24-h fasted rats (+34%). Lactate (2 mM), the main gluconeogenic substrate in birds, similarly increased LVO2 in both TN and CA ducklings and the effect was larger after fasting. Both glucagon and norepinephrine dose-dependently increased LVO2 in ducklings and rats, but cold acclimation did not improve liver response and liver sensitivity to norepinephrine in ducklings was even reduced in CA animals. Liver contribution to glucagon-induced thermogenesis in vivo was estimated to be 22% in TN and 12% in CA ducklings. Glucagon stimulated gluconeogenesis from lactate in duckling liver and the stimulation was 2.2-fold higher in CA than in TN fasted birds. These results indicate a stimulated hepatic oxidative metabolism in CA ducklings but hepatic glucagon-induced thermogenesis (as measured by LVO2) was not improved. A role of the liver is suggested in duckling metabolic acclimation to cold through an enhanced hepatic gluconeogenesis under glucagon control.  相似文献   

20.
Dopamine concentration in rat heart is normally very low, only a few percent of the concentration of norepinephrine. After treatment of rats with a dopamine beta-hydroxylase inhibitor, 1-cyclohexyl-2-mercapto-imidazole (CHMI), there was a rapid increase in dopamine concentration even before norepinephrine concentration had decreased perceptibility. This accumulation of dopamine was readily measured by liquid chromatography with electrochemical detection. Since the percentage change in dopamine was much greater than the percentage change in norepinephrine, especially at early times, measurement of dopamine accumulation rather than norepinephrine decline was considered as a useful measure of norepinephrine turnover. Drugs that act on noradrenergic receptors and are known to alter norepinephrine turnover were found to alter the rate of dopamine accumulation. Clonidine and guanabenz decreased dopamine accumulation after CHMI, whereas piperoxan (but not prazosin) increased dopamine accumulation after CHMI. Pergolide, a dopamine agonist whose lowering of blood pressure and cardiac rate has been suggested to be due to suppression of neurogenic release or norepinephrine, also decreased dopamine accumulation after CHMI. The results suggest that measuring dopamine accumulation may have advantages over measuring norepinephrine disappearance after dopamine beta-hydroxylase inhibition as an indicator of norepinephrine turnover in heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号