首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 768 毫秒
1.
Chronic caloric restriction (CR) prevents the development of obesity and maintains health, slows aging processes, and prevents or substantially delays the development of non-insulin-dependent diabetes. Because changes in energy metabolism could be involved in all of these positive effects of CR, we examined glycogen synthase (GS) and glycogen phosphorylase (GP) activities and glucose 6-phosphate (G6P) and glycogen concentrations in skeletal muscle samples before and during a euglycemic hyperinsulinemic clamp in 6 older aged monkeys in which CR had been continued for 10.4 ± 2.1 years. Basal GS activity (fractional velocity and independent) was significantly higher in the CR monkeys than has been previously shown in normal, hyperinsulinemic and diabetic monkeys. The normal effect of insulin to activate GS was absent in the CR group due to the paradoxical finding in some of these monkeys of a reduction in GS activity by insulin. Insulin also had the unexpected effect of increasing the independent activity of GP above basal activity (p<0.05). There was an inverse relationship between the change (insulin-stimulated minus basal) in GS fractional velocity and GP activity ratio (r=-0.91, p<0.005). The basal independent activities of GS and GP were also inversely correlated (r=-0.79, p<0.05). The insulin-stimulated concentration of G6P tended to be higher than the basal concentration (p<0.06) and was significantly higher than that previously shown in normal monkeys (p<0.05). We suggest that long-term calorie restriction (1) results in alterations in glycogen metabolism that may be important to the anti-diabetogenic and anti-aging effects of CR and (2) unmasks early defects which may indicate the likelihood of ultimately developing obesity and diabetes.  相似文献   

2.
Thiazolidinediones (TZD) have been shown to have anti-diabetic effects including the ability to decrease fasting hyperglycemia and hyperinsulinemia, increase insulin-mediated glucose disposal rate (M) and decrease hepatic glucose production, but the mechanisms of action are not well established. To determine whether a TZD (R-102380, Sankyo Company Ltd., Tokyo, Japan) could improve insulin action on skeletal muscle glycogen synthase (GS), the rate-limiting enzyme in glycogen synthesis, 4 insulin-resistant obese monkeys were given I mg/kg/ day R-102380 p.o. for a 6-week period. Skeletal muscle GS activity and glucose 6-phosphate (G6P) content were compared between pre-dosing and dosing periods before and during the maximal insulin-stimulation of a euglycemic hyperinsulinemic clamp.Compared to pre-dosing, insulin-stimulated GS activity and G6P content were increased by this TZD: GS independent activity (p = 0.02), GS total activity (p = 0.005), GS fractional activity (p = 0.06) and G6P content (p = 0.02). The change in GS activity induced by in vivo insulin (insulin-stimulated minus basal) was also increased by this TZD: GS independent activity (p = 0.03) and GS fractional activity (p = 0.04).We conclude that the TZD R-102380 improves insulin action at the skeletal muscle in part by increasing the activity of glycogen synthase. This improvement in insulin sensitivity may be a key factor in the anti-diabetic effect of the thiazolidinedione class of agents.  相似文献   

3.
Since the glucose-lowering effects of vanadium could be related to increased muscle glycogen synthesis, we examined the in vivo effects of vanadium and insulin treatment on glycogen synthase (GS) activation in Zucker fatty rats. The GS fractional activity (GSFA), protein phosphatase-1 (PP1), and glycogen synthase kinase-3 (GSK-3) activity were determined in fatty and lean rats following treatment with bis(maltolato)oxovanadium(IV) (BMOV) for 3 weeks (0.2 mmol/kg/day) administered in drinking water. Skeletal muscle was freeze-clamped before or following an insulin injection (5 U/kg i.v.). In both lean and fatty rats, muscle GSFA was significantly increased at 15 min following insulin stimulation. Vanadium treatment resulted in decreased insulin levels and improved insulin sensitivity in the fatty rats. Interestingly, this treatment stimulated muscle GSFA by 2-fold (p < 0.05) and increased insulin-stimulated PP1 activity by 77% (p < 0.05) in the fatty rats as compared to untreated rats. Insulin resistance, vanadium and insulin in vivo treatment did not affect muscle GSK-3 activity in either fatty or lean rats. Therefore, an impaired insulin sensitivity in the Zucker fatty rats was improved following vanadium treatment, resulting in an enhanced muscle glucose metabolism through increased GS and insulin-stimulated PP1 activity.  相似文献   

4.
In vivo effects of insulin and vanadium treatment on glycogen synthase (GS), glycogen synthase kinase-3 (GSK-3) and protein phosphatase-1 (PP1) activity were determined in Wistar rats with streptozotocin (STZ)-induced diabetes. The skeletal muscle was freeze-clamped before or following an insulin injection (5 U/kg i.v.). Diabetes, vanadium, and insulin in vivo treatment did not affect muscle GSK-3 activity as compared to controls. Following insulin stimulation in 4-week STZ-diabetic rats muscle GS fractional activity (GSFA) was increased 3 fold (p < 0.05), while in 7-week diabetic rats it remained unchanged, suggesting development of insulin resistance in longer term diabetes. Muscle PP1 activity was increased in diabetic rats and returned to normal after vanadium treatment, while muscle GSFA remained unchanged. Therefore, it is possible that PP1 is involved in the regulation of some other cellular events of vanadium (other than regulation of glycogen synthesis). The lack of effect of vanadium treatment in stimulating glycogen synthesis in skeletal muscle suggests the involvement of other metabolic pathways in the observed glucoregulatory effect of vanadium.  相似文献   

5.
Insulin is able to produce two types of regulatory effects on muscles—metabolic and growth stimulating. Study of the effect of insulin and epidermal growth factor (EGF) on activity of cAMP-dependent protein kinase (PKA), glucose-6-phosphate dehydrogenase (G-6PDH), a starting enzyme of pentosephosphate pathway (PPP), and glycogen synthase (GS), a key enzyme of the glycogen synthesis, has shown that both types of the insulin effects do not arise simultaneously in the course of embryogenesis. The growth-stimulating effect mediated by adenylyl cyclase—cAMP is revealed since the 10th embryonal day. It was established for the first time that insulin could participate in growth stimulation by activating PKA in vivo and in vitro in muscles of the 10–14-day old embryos and the 8–10-day old chickens. The stimulating effect of insulin on G-6PDH activity is revealed since the same embryonal period and gradually increases. Insulin in vivo and in vitro simulates the glycogen synthase activity by increasing its conversion from non-active to active (GS-I) form only in the 15-day old embryos and in chickens. The stimulating effects of insulin and EGF on both G-6PDH activity (in embryos and chickens) and GS (in chickens) was shown to blocked by selective inhibitors of tyrosine kinases, thyrphostin 47 and genestein, in the dose-dependent manner, which indicates involvement of receptor of the tyrosine kinase type in these effects. The complex of the established facts permits concluding that insulin at early embryonal stages stimulates in the chicken muscles the PKA and G-6PDH activities involved in action of this hormone on growth, which is especially pronounced at the stage of myoblast proliferation. Meanwhile, the metabolic insulin effect (stimulation of the glycogen synthase system) appears in the second half of embryonal period and coincides in time with the period of muscle cell differentiation and active muscle contractures.  相似文献   

6.
PTG and GL are hepatic protein phosphatase-1 (PP1) glycogen-targeting subunits, which direct PP1 activity against glycogen synthase (GS) and/or phosphorylase (GP). The C-terminal 16 amino residues of GL comprise a high affinity binding site for GP that regulates bound PP1 activity against GS. In this study, a truncated GL construct lacking the GP-binding site (GLtr) and a chimeric PTG molecule containing the C-terminal site (PTG-GL) were generated. As expected, GP binding to glutathione S-transferase (GST)-GLtr was reduced, whereas GP binding to GST-PTG-GL was increased 2- to 3-fold versus GST-PTG. In contrast, PP1 binding to all proteins was equivalent. Primary mouse hepatocytes were infected with adenoviral constructs for each subunit, and their effects on glycogen metabolism were investigated. GLtr expression was more effective at promoting GP inactivation, GS activation, and glycogen accumulation than GL. Removal of the regulatory GP-binding site from GLtr completely blocked the inactivation of GS seen in GL-expressing cells following a drop in extracellular glucose. As a result, GLtr expression prevented glycogen mobilization under 5 mm glucose conditions. In contrast, equivalent overexpression of PTG or PTG-GL caused a similar increase in glycogen-targeted PP1 levels and GS dephosphorylation. Surprisingly, GP dephosphorylation was significantly reduced in PTG-GL-overexpressing cells. As a result, PTG-GL expression permitted glycogenolysis under 5 mm glucose conditions that was prevented in PTG-expressing cells. Thus, expression of constructs that contained the high affinity GP-binding site (GL and PTG-GL) displayed reduced glycogen accumulation and enhanced glycogenolysis compared with their respective controls, albeit via different mechanisms.Hepatic glycogen metabolism plays a central role in the maintenance of circulating plasma glucose levels under various physiological conditions. The rate-controlling enzymes in glycogen metabolism, glycogen synthase (GS)2 and glycogen phosphorylase (GP), are subject to multiple levels of regulation, including allosteric binding of activators and inhibitors, protein phosphorylation, and changes in subcellular localization. GS is phosphorylated on up to 9 residues by a variety of kinases, although site 2 appears to be the most important regulator of hepatic GS (1). In contrast, GP is phosphorylated on a single N-terminal serine residue by phosphorylase kinase, which increases GP activity and its sensitivity to allosteric activators. Both GS and GP are in turn also regulated by protein phosphatases, most notably PP1. Although PP1 is a cytosolic protein, a family of five molecules has been reported that targets the enzyme to glycogen particles (27), whereas another two glycogen-targeting subunits have been putatively identified based on sequence homology (8). Published work has indicated that each targeting subunit confers differential regulation of PP1 activity by extracellular hormonal signals and/or intracellular changes in metabolites (911).Four PP1-glycogen-targeting proteins are expressed in rodent liver, although GL and PTG/R5 have been most extensively studied (9, 1215). GL is present at higher levels in rat liver than PTG (12), but the expression of both proteins is subject to coordinate regulation by fasting/refeeding and insulin (12, 13). Previous studies indicated that the PTG-PP1 complex is primarily responsible for GP dephosphorylation and regulation of glycogenolysis (13, 16), whereas the GL-PP1 complex preferentially mediates the activation of GS upon elevation of extracellular glucose (9, 13). However, the molecular mechanisms underlying these differential properties of PTG and GL have not been completely defined.Both PTG and GL directly bind to specific PP1 substrates involved in glycogen metabolism, albeit for different physiological reasons. The extreme C-terminal 16 amino acids of GL comprises a unique, high affinity binding site for phosphorylated GP (GPa (17)), which has been further delineated to two critical tyrosine residues (18, 37). Interaction of PP1 with GL reduces phosphatase activity against GPa (3). In turn, GPa binding to the GL-PP1 complex potently inhibits phosphatase activity against GS in vitro (3, 19) and regulates glycogen-targeted PP1 activity in liver cells and extracts (2022). PTG contains a single substrate-binding site that interacts with GS and GP (5, 23). In contrast to the regulatory role of the GPa binding to GL, interaction of substrates with PTG increases PP1 activity against these proteins (24). Indeed, disruption of the substrate-binding site by point mutagenesis abrogated the ability of mutant PTG expression to increase cellular glycogen levels (23), indicating an important role for substrate binding to the PTG-PP1 complex.Previous work has comprehensively compared the metabolic impact of PTG versus GL overexpression in hepatocytes and thus was not the goal of this study (9, 10). Instead, two novel PP1 targeting constructs were generated in which the high affinity GPa-binding site was removed from GL or added to the C terminus of PTG. The effects of expressing wild-type and mutant constructs on GS and GP activities and on the regulation of glycogen metabolism by extracellular glucose were investigated using primary mouse hepatocytes.  相似文献   

7.
Glycogen content and contraction strongly regulate glycogen synthase (GS) activity, and the aim of the present study was to explore their effects and interaction on GS phosphorylation and kinetic properties. Glycogen content in rat epitrochlearis muscles was manipulated in vivo. After manipulation, incubated muscles with normal glycogen [NG; 210.9 +/- 7.1 mmol/kg dry weight (dw)], low glycogen (LG; 108.1 +/- 4.5 mmol/ kg dw), and high glycogen (HG; 482.7 +/- 42.1 mmol/kg dw) were contracted or rested before the studies of GS kinetic properties and GS phosphorylation (using phospho-specific antibodies). LG decreased and HG increased GS K(m) for UDP-glucose (LG: 0.27 +/- 0.02 < NG: 0.71 +/- 0.06 < HG: 1.11 +/- 0.12 mM; P < 0.001). In addition, GS fractional activity inversely correlated with glycogen content (R = -0.70; P < 0.001; n = 44). Contraction decreased K(m) for UDP-glucose (LG: 0.14 +/- 0.01 = NG: 0.16 +/- 0.01 < HG: 0.33 +/- 0.03 mM; P < 0.001) and increased GS fractional activity, and these effects were observed independently of glycogen content. In rested muscles, GS Ser(641) and Ser(7) phosphorylation was decreased in LG and increased in HG compared with NG. GSK-3beta Ser(9) and AMPKalpha Thr(172) phosphorylation was not modulated by glycogen content in rested muscles. Contraction decreased phosphorylation of GS Ser(641) at all glycogen contents. However, contraction increased GS Ser(7) phosphorylation even though GS was strongly activated. In conclusion, glycogen content regulates GS affinity for UDP-glucose and low affinity for UDP-glucose in muscles with high glycogen content may reduce glycogen accumulation. Contraction increases GS affinity for UDP-glucose independently of glycogen content and creates a unique phosphorylation pattern.  相似文献   

8.
Protein phosphatase 1 (PP1) is one of the major protein phosphatases in eukaryotic cells. It plays a key role in regulating glycogen synthesis, by dephosphorylating crucial enzymes involved in glycogen homeostasis such as glycogen synthase (GS) and glycogen phosphorylase (GP). To play this role, PP1 binds to specific glycogen targeting subunits that, on one hand recognize the substrates to be dephosphorylated and on the other hand recruit PP1 to glycogen particles. In this work we have analyzed the functionality of the different protein binding domains of one of these glycogen targeting subunits, namely PPP1R3D (R6) and studied how binding properties of different domains affect its glycogenic properties. We have found that the PP1 binding domain of R6 comprises a conserved RVXF motif (R102VRF) located at the N-terminus of the protein. We have also identified a region located at the C-terminus of R6 (W267DNND) that is involved in binding to the PP1 glycogenic substrates. Our results indicate that although binding to PP1 and glycogenic substrates are independent processes, impairment of any of them results in lack of glycogenic activity of R6. In addition, we have characterized a novel site of regulation in R6 that is involved in binding to 14-3-3 proteins (RARS74LP). We present evidence indicating that when binding of R6 to 14-3-3 proteins is prevented, R6 displays hyper-glycogenic activity although is rapidly degraded by the lysosomal pathway. These results define binding to 14-3-3 proteins as an additional pathway in the control of the glycogenic properties of R6.  相似文献   

9.
《Free radical research》2013,47(11):1291-1299
Abstract

Various studies indicate a relationship between increased oxidative stress and hypertension, resulting in increased DNA damage and consequent excretion of 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG). The aim of this study was to compare urinary 8-oxodG levels in African and Caucasian men and to investigate the association between ambulatory blood pressure (BP) and pulse pressure (PP) with 8-oxodG in these groups.

We included 98 African and 92 Caucasian men in the study and determined their ambulatory BP and PP. Biochemical analyses included, urinary 8-oxodG, reactive oxygen species (ROS) (measured as serum peroxides), ferric reducing antioxidant power (FRAP), total glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GR) activity.

The African men had significantly higher systolic (SBP) and diastolic blood pressure (DBP) (both p < 0.001). Assessment of the oxidative stress markers indicated significantly lower 8-oxodG levels (p < 0.001) in the African group. The African men also had significantly higher ROS (p = 0.002) with concomitant lower FRAP (p < 0.001), while their GSH levels (p = 0.013) and GR activity (p < 0.001) were significantly higher. Single and partial regression analyses indicated a negative association between urinary 8-oxodG levels with SBP, DBP and PP only in African men. These associations were confirmed in multiple regression analyses (SBP: R2 = 0.41; β = ?0.25; p = 0.002, DBP: R2 = 0.30; β = ?0.21; p = 0.022, PP: R2 = 0.30; β = ?0.19; p = 0.03).

Our results revealed significantly lower urinary 8-oxodG in African men, accompanied by a negative association with BP and PP. We propose that this may indicate a dose-response relationship in which increased oxidative stress may play a central role in the up-regulation of antioxidant defence and DNA repair mechanisms.  相似文献   

10.
Glycogen synthase (GS) is considered the rate-limiting enzyme in glycogenesis but still today there is a lack of understanding on its regulation. We have previously shown phosphorylation-dependent GS intracellular redistribution at the start of glycogen re-synthesis in rabbit skeletal muscle (Prats, C., Cadefau, J. A., Cussó, R., Qvortrup, K., Nielsen, J. N., Wojtaszewki, J. F., Wojtaszewki, J. F., Hardie, D. G., Stewart, G., Hansen, B. F., and Ploug, T. (2005) J. Biol. Chem. 280, 23165–23172). In the present study we investigate the regulation of human muscle GS activity by glycogen, exercise, and insulin. Using immunocytochemistry we investigate the existence and relevance of GS intracellular compartmentalization during exercise and during glycogen re-synthesis. The results show that GS intrinsic activity is strongly dependent on glycogen levels and that such regulation involves associated dephosphorylation at sites 2+2a, 3a, and 3a + 3b. Furthermore, we report the existence of several glycogen metabolism regulatory mechanisms based on GS intracellular compartmentalization. After exhausting exercise, epinephrine-induced protein kinase A activation leads to GS site 1b phosphorylation targeting the enzyme to intramyofibrillar glycogen particles, which are preferentially used during muscle contraction. On the other hand, when phosphorylated at sites 2+2a, GS is preferentially associated with subsarcolemmal and intermyofibrillar glycogen particles. Finally, we verify the existence in human vastus lateralis muscle of the previously reported mechanism of glycogen metabolism regulation in rabbit tibialis anterior muscle. After overnight low muscle glycogen level and/or in response to exhausting exercise-induced glycogenolysis, GS is associated with spherical structures at the I-band of sarcomeres.The desire to understand metabolism and its regulation dates back several centuries, but it has exponentially increased during the last decades in an effort to treat or prevent type 2 diabetes mellitus (T2DM).3 Defective muscle glycogen synthesis has been repeatedly reported in patients with T2DM (13). Several studies have shown impairments of insulin-induced glycogen synthase (GS) activation in skeletal muscle from T2DM patients and in healthy subjects at increased risk for T2DM, such as healthy obese and first-degree relatives of patients with T2DM (49).The first scientific studies on GS date from the 1960s, but still today there is a lack of understanding on its regulation. GS is the rate-limiting enzyme in glycogenesis and is classically used as an example of an allosterically and covalently regulated enzyme. It is well accepted that GS is complexly regulated by sequences of hierarchal phosphorylations (10) in at least nine sites and by its allosteric activator, glucose 6-phosphate (G6P) (11, 12). However, the exact effects of GS phosphorylation at different sites on its regulation are still not clear. GS phosphorylation sites are distributed between the NH2- and the COOH-terminal domains. The NH2 terminus domain contains two sites, 2 (Ser7) and 2a (Ser10), that are phosphorylated in a hierarchal mode. Phosphorylation of site 2 is needed as a recognition motif for casein kinase 1 to phosphorylate site 2a (13, 14). Several protein kinases have been reported to phosphorylate site 2 in vitro, among them PKA, CaMKII, PKC, AMPK, GPhK, and MAPKAPKII (1517). At the COOH terminus of muscle GS, there are at least seven phosphorylation sites; sites 3a (Ser640), 3b (Ser644), 3c (Ser648), 4 (Ser652), 5 (Ser656), 1a (Ser697), and 1b (Ser710). Sites 3, 4, and 5 are phosphorylated in a hierarchal mode. Casein kinase II phosphorylates site 5, establishing a recognition motif for GSK-3 to phosphorylate sequentially sites 4, 3c, 3b, and 3a (1821). Dephosphorylation of sites 2 and 3 increase GS intrinsic activity much more than dephosphorylation of the remaining sites, which have little or no effect on the enzyme activity (22). The effect of GS phosphorylation at sites 1a and 1b remains elusive. G6P binding reverses covalent inactivation of GS by phosphorylation (11) and increases susceptibility of the enzyme to be activated by the action of protein phosphatases (23), mainly by glycogen-targeted protein phosphatase 1.Intracellular compartmentalization of GS has been reported in several studies. In isolated hepatocytes, incubation with glucose induces GS activation and intracellular translocation to the cell periphery (24). In contrast, in the absence of glucose, GS has been shown to be mainly located inside the nucleus of both cultured liver and muscle cells; however, following addition of glucose GS translocates to the cytosol (25). In a previous study, we reported a novel regulatory mechanism of skeletal muscle glycogen metabolism (26). We showed that severe glycogen depletion induced by muscle contraction leads to rearrangement of cytoskeleton actin filaments to form dynamic intracellular compartments. Both GS and phosphorylase associate with such compartments to start glycogen re-synthesis. Furthermore, we showed that GS phosphorylated at site 1b (P-GS1b) was located at the cross-striations, the I-band of sarcomeres, whereas when phosphorylated at sites 2+2a (P-GS2+2a), GS formed some clusters homogeneously distributed along muscle fibers. In the present study we investigate the existence and relevance of such regulatory mechanism in human muscle metabolism.  相似文献   

11.
Objective: In humans, low plasma adiponectin concentrations precede a decrease in insulin sensitivity and predict type 2 diabetes independently of obesity. However, it is possible that the contribution of adiponectin to insulin sensitivity is not equally strong over the whole range of obesity. Research Methods and Procedures: We investigated the cross‐sectional association between plasma adiponectin levels and insulin sensitivity in different ranges of body fat content [expressed as percentage of body fat (PFAT)] in a large cohort of normal glucose‐tolerant subjects (n = 900). All individuals underwent an oral glucose tolerance test (OGTT), and 299 subjects additionally a euglycemic hyperinsulinemic clamp. In longitudinal analyses, the association of adiponectin at baseline with change in insulin sensitivity was investigated in a subgroup of 108 subjects. Results: In cross‐sectional analyses, the association between plasma adiponectin and insulin sensitivity, adjusted for age, gender, and PFAT, depended on whether subjects were lean or obese [p for interaction adiponectin × PFAT = <0.001 (OGTT) and 0.002 (clamp)]. Stratified by quartiles of PFAT, adiponectin did not correlate significantly with insulin sensitivity in subjects in the lowest PFAT quartile (R2 = 0.10, p = 0.13, OGTT; and R2 = 0.10, p = 0.57, clamp), whereas the association in the upper PFAT quartile was rather strong (R2 = 0.36, p < 0.0001, OGTT; and R2 = 0.48, p = 0.003, clamp). In longitudinal analyses, plasma adiponectin at baseline preceded change in insulin sensitivity in obese (n = 54, p = 0.03) but not in lean (n = 54, p = 0.68) individuals. Discussion: These data suggest that adiponectin is especially critical in sustaining insulin sensitivity in obese subjects. Thus, interventions to reduce insulin resistance by increasing adiponectin concentrations may be effective particularly in obese, insulin‐resistant individuals.  相似文献   

12.
The purpose of this research was to use inline real-time near-infrared (NIR) to measure the moisture content of granules manufactured using a commercial production scale continuous twin-screw granulator fluid-bed dryer milling process. A central composite response surface statistical design was used to study the effect of inlet air temperature and dew point on granule moisture content. The NIR moisture content was compared to Karl Fischer (KF) and loss on drying (LOD) moisture determinations. Using multivariate analysis, the data showed a statistically significant correlation between the conventional methods and NIR. The R 2 values for predicted moisture content by NIR versus KF and predicted moisture values by NIR versus LOD were 0.94 (p < 0.00001) and 0.85 (p < 0.0002), respectively. The adjusted R 2 for KF versus LOD correlation was 0.85 (p < 0.0001). Analysis of the response surface design data showed that inlet air temperature over a range of 35–55°C had a significant linear impact on granule moisture content as measured by predicted NIR (adjusted R 2 = 0.84, p < 0.02), KF (adjusted R 2 = 0.91, p < 0.0001), and LOD (adjusted R 2 = 0.85, p < 0.0006). The inlet air dew point range of 10–20°C did not have a significant impact on any of the moisture measurements.  相似文献   

13.
Objective: To quantify the impact of obesity on the number of visits to both primary and secondary care teams. Research Methods and Procedures: The adult populations of 80 general practices throughout the United Kingdom were classified according to their BMI. We undertook a cross‐sectional survey of computer‐generated and handwritten records of 6150 obese people (BMI ≥ 30 kg/m2) and 1150 normal weight (BMI = 18.5 to 24.9 kg/m2) control subjects over an 18‐month retrospective period. Results: Obese patients made significantly more visits to the general practitioner (GP), practice nurse (PN), and hospital outpatient units than normal weight patients (all p < 0.001), and they were admitted to the hospital more often (p = 0.034). For both GP and PN visits, the relationship remained after adjusting for age, sex, social deprivation category, country, and number of comorbidities. Among obese patients, there was an increasing relationship between frequent GP visits (at least four appointments) and greater BMI, which remained significant after adjustment had been made for age, sex, deprivation, country, and number of comorbidities. Discussion: The human resource burden to general practice is significantly higher in the obese population than in the normal weight population, even when adjusted for confounding factors. The increase in prevalence of obesity will continue to put pressure on GP and PN time unless appropriate action is taken.  相似文献   

14.
Activity of glycogen synthase (GS) in the muscle tissue of the lamprey Lampetra fluviatilis is studied in dynamics of the pre-spawning period as well as under effects of insulin and IGF-1. It is shown that GS exists in the muscles in two forms, the active (I-form) and inactive (D-form), the I-form prevailing during all studied time periods. With approaching the spawning, the GS activity fell 1.5–2 times due to a decrease of the I-form activity. From October to January, both insulin and IGF-1 stimulated GS at concentrations of 10–10–10–8 M and 10–9–10–8 M, respectively. The maximally effective concentrations (10–9 M insulin, 10–8 M IGF-1) produced a 2.5–3-fold rise of the I-form activity of GS at the period from October to December. In January the stimulating effect of these peptides decreased. In March the GS was insensitive both to insulin and to IGF-1. The obtained data indicate participation of insulin and IGF-1 in regulation of glycogen synthesis in lamprey skeletal muscles, the ability of IGF-1 to stimulate the enzyme activity being shown in the lower vertebrates for the first time. It is concluded that IGF-1 takes part in regulation of the carbohydrate metabolism already at early stages of evolution of vertebrates.  相似文献   

15.
Glucocorticoids initiate whole body insulin resistance and the aim of the present study was to investigate effects of dexamethasone on protein expression and insulin signalling in muscle and fat tissue. Rats were injected with dexamethasone (1 mg/kg/day, i.p.) or placebo for 11 days before insulin sensitivity was evaluated in vitro in soleus and epitrochlearis muscles and in isolated epididymal adipocytes. Dexamethasone treatment reduced insulin-stimulated glucose uptake and glycogen synthesis by 30-70% in epitrochlearis and soleus, and insulin-stimulated glucose uptake by ∼40% in adipocytes. 8-bromo-cAMP-stimulated lipolysis was ∼2-fold higher in adipocytes from dexamethasone-treated rats and insulin was less effective to inhibit cAMP-stimulated lipolysis. A main finding was that dexamethasone decreased expression of PKB and insulin-stimulated Ser473 and Thr308 phosphorylation in both muscles and adipocytes. Expression of GSK-3 was not influenced by dexamethasone treatment in muscles or adipocytes and insulin-stimulated GSK-3β Ser9 phosphorylation was reduced in muscles only. A novel finding was that glycogen synthase (GS) Ser7 phosphorylation was higher in both muscles from dexamethasone-treated rats. GS expression decreased (by 50%) in adipocytes only. Basal and insulin-stimulated GS Ser641 and GS Ser645,649,653,657 phosphorylation was elevated in epitrochlearis and soleus muscles and GS fractional activity was reduced correspondingly. In conclusion, dexamethasone treatment (1) decreases PKB expression and insulin-stimulated phosphorylation in both muscles and adipocytes, and (2) increases GS phosphorylation (reduces GS fractional activity) in muscles and decreases GS expression in adipocytes. We suggest PKB and GS as major targets for dexamethasone-induced insulin resistance.  相似文献   

16.
We investigated the subcellular localization of glycogen synthase (GS) in the adductor muscle of anesthetized rabbits injected intravenously with propranolol. Under these experimental conditions, glycogen content was about 10 mmol/kg of fresh tissue. Immunofluorescent and fractionation studies showed that GS associated with sarcoplasmic reticulum (SR) membranes. Glycogen and GS always co-sedimented, suggesting a predominant role of glycogen in targeting of GS to SR. SR-associated GS was phosphorylated in vitro by SR-bound Ca2+-calmodulin dependent protein kinase (CaMKII) and dephosphorylated by endogenous protein phosphatase 1 (PP1c). Based on measurements of GS activity ratio, in vitro phosphorylation of GS by CaMKII did not significantly affect GS activity per se. However, GS activity ratio was slightly reduced, when SR membranes were further incubated with ATP after prior phosphorylation by CaMKII, suggesting that CaMKII might act sinergistically with other protein kinases. We propose that SR-bound CaMKII plays a role in regulation of glycogen metabolism in skeletal muscle, when intracellular Ca2+ is raised.  相似文献   

17.
On entering a cold environment, people react by increasing insulation and energy expenditure (EE). However, large interindividual differences exist in the relative contribution of each mechanism. Short‐term studies revealed that obese subjects increase EE (i.e., adaptive thermogenesis) less than lean subjects, which might have implications for the predisposition to obesity. In this study, we validate the differences in adaptive thermogenesis between lean and obese upon midterm mild cold exposure. Therefore, 10 lean and 10 obese subjects were exposed for 48 h to mild cold (16 °C) in a respiration chamber. The preceding 36 h they stayed in the same chamber at a neutral temperature (22 °C) for the baseline measurements. EE, physical activity, skin temperature, and core temperature have been measured for the last 24 h of both parts. Mean daytime EE increased significantly in the lean subjects (P < 0.01), but not in the obese. Physical activity decreased significantly in the lean (P < 0.01) and the obese (P < 0.001) subjects. The change in EE was related to the change in physical activity in both groups (respectively R2 = 0.673, P < 0.01 and R2 = 0.454, P < 0.05). Upon mild cold exposure, lean subjects decreased proximal skin temperature less, but distal skin temperature more than obese. In conclusion, the interindividual differences in cold‐induced thermogenesis were related to changes in physical activity in both lean and obese, pointing at the existence of individual variation in physical activity to compensate for cold‐induced thermogenesis. Furthermore, although a large part of the lean subjects counteracted the cold by increasing EE, most obese subjects changed temperature distribution, and therefore, increased insulation.  相似文献   

18.
Objective: To evaluate the relationship between fasting plasma concentrations of ghrelin and gastric emptying in obese individuals compared with lean subjects. Research Methods and Procedures: We included 20 obese patients (9 men and 11 women, BMI > 30 kg/m2) and 16 nonobese control subjects (7 men and 9 women, BMI ≤ 25 kg/m2). Gastric emptying of solids (egg sandwich labeled with radionuclide) was measured at 120 minutes with (99m)Tc‐single photon emission computed tomography imaging. Ghrelin and leptin were analyzed by radioimmunoassay and ELISA methods, respectively. Results: The gastric half‐emptying time was similar in obese men and women (67.8 ± 14.79 vs. 66.6 ± 13.56 minutes) but significantly shorter (p < 0.001) than in the control population (men: 88.09 ± 11.72 minutes; women: 97.25 ± 10.31 minutes). Ghrelin levels were significantly lower in obese subjects (131.37 ± 47.67 vs. 306.3 ± 45.52 pg/mL; p < 0.0001 in men and 162.13 ± 32.95 vs. 272.8 ± 47.77 pg/mL; p < 0.0001 in women). A negative correlation between gastric emptying and fasting ghrelin levels was observed only in lean subjects (y = ?0.2391x + 157.9; R2 = 0.95). Also, in the lean group, ghrelin was the only significant independent determinant of gastric emptying, explaining 98% of the variance (adjusted R2) in a multiple regression analysis. Discussion: This report shows that, in humans, gastric emptying is faster in obese subjects than in lean controls and that, whereas ghrelin is the best determinant of gastric kinetics in healthy controls, this action is lost in obesity.  相似文献   

19.
WEYER, CHRISTIAN AND RICHARD E. PRATLEY. Fasting and postprandial plasma concentrations of acylation-stimulation protein (ASP) in lean and obese Pima Indians compared to Caucasians. Obes Res. Objective: ASP stimulates the clearance of free fatty acids (FFA) from the circulation and the synthesis of triglycerides (TG) in adipose tissue. We tested whether fasting and post-prandial plasma ASP concentrations are increased in Pima Indians, a population with a very high prevalence of obesity, but a remarkably low prevalence of dyslipidemia. Research Methods and Procedures: Plasma concentrations of ASP, TG, FFA, total cholesterol (CHOL), and insulin (INS) were measured in 15 Pima Indians (P) and 15 Caucasians (C) closely matched for age, sex, and body weight [7 lean and 8 obese subjects, body mass index (BMI) cut-off 30 kg/m2], before and for 4 hours after a standard mixed meal (20% of daily caloric requirements, 41% carbohydrate, 44% fat, 15% protein). Results: Fasting ASP was positively related to percent body fat (dual energy X-ray absorptiometry; r=0. 49, p<0. 01) and to TG and FFA, independently of percent body fat (partial r = 0. 42 and 0. 46, respectively, both p <0. 05). There were no differences in fasting TG, FFA, CHOL, INS, or ASP between lean C and lean P. In contrast, obese P had lower TG, lower CHOL, higher INS and, on average, 27% lower ASP compared to obese C. The ethnic difference in ASP remained after adjustment for TG, FFA, and percent body fat. ASP decreased in response to the meal in all four groups with no differences between groups. There was a significant inverse correlation between preprandial ASP and the change in FFA 60 minutes after the meal (r = ?0. 56, p<0. 001). Discussion: Pima Indians do not have higher plasma ASP concentrations than Caucasians. Whether other alterations in the ASP-pathway, such as increased sensitivity of adipocytes to ASP, contribute to the high prevalence of obesity and low prevalence of dyslipidemia in Pima Indians, remains to be elucidated.  相似文献   

20.
To investigate the role of liver-specific expression of glucokinase (GCK) in the pathogenesis of hyperglycemia and to identify candidate genes involved in mechanisms of the onset and progression of maturity onset diabetes of the young, type 2 (MODY-2), we examined changes in biochemical parameters and gene expression in GCK knockout (gckw/–) and wild-type (gckw/w) mice as they aged. Fasting blood glucose levels were found to be significantly higher in the gckw/– mice, compared to age-matched gckw/w mice, at all ages (P < 0.05), except at 2 weeks. GCK activity of gckw/– mice was about 50% of that of wild type (gckw/w) mice (P < 0.05). Glycogen content at 4 and 40 weeks of age was lower in gckw/– mice compared to gckw/w mice. Differentially expressed genes in the livers of 2 and 26 week-old liver-specific GCK knockout (gckw/–) mice were identified by suppression subtractive hybridization (SSH), which resulted in the identification of phosphoenolpyruvatecarboxykinase (PEPCK, also called PCK1) and Sterol O-acyltransferase 2 (SOAT2) as candidate genes involved in pathogenesis. The expressions of PEPCK and SOAT2 along with glycogen phosphorylase (GP) and glycogen synthase (GS) were then examined in GCK knockout (gckw/–) and wild-type (gckw/w) mice at different ages. Changes in PEPCK mRNA levels were confirmed by real-time RT-PCR, while no differences in the levels of expression of SOAT2 or GS were observed in age-matched GCK knockout (gckw/–) and wild-type (gckw/w) mice. GP mRNA levels were decreased in 40-week old gckw/– mice compared to age-matched gckw/w mice. Changes in gluconeogenesis, delayed development of GCK and impaired hepatic glycogen synthesis in the liver potentially lead to the onset and progression of MODY2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号