首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Bergman  G. R. Iason  A. J. Hester 《Oikos》2005,109(3):513-520
The location of a plant and its association with the surrounding vegetation may be a strong determinant of herbivore foraging decisions. The attractiveness of a food plant may be reduced if associated with a less preferred one (repellent–plant hypothesis) or, conversely, it may escape herbivory via association with a more preferred species (attractant–decoy hypothesis). In this study we tested the hypothesis that selection of the same food plants by two herbivore species with different body mass, i.e. roe deer and rabbits, is affected by the spatial disposition of preferred plants in relation to less preferred ones. We planted willows, birches and pines, representing food species of higher, intermediate and lower preference, respectively, in different spatial arrangements, to manipulate patch quality and accessibility to herbivores. Contrasting patches were constructed by planting willows or pines in the midst of birches and single-species arrays of all three species, in a blocked design, replicated six times in an area occupied by both roe deer and rabbits. Preference patterns were studied by recording browsing on current years' shoots and older plant parts. Across all trees in the experiment, we confirmed that roe deer clearly preferred willow over birch, pine was not browsed at all. There was greater herbivory by roe deer on birches occurring peripherally in an array, when the associated central species was willow or pine, as compared to birches in a single-species birch patch. Therefore food choices by roe deer appear to be determined by both patch and individual level selection. The rabbits only showed preference at a species level and did not respond to spatial arrangement of trees. The results from this study indicate that the location and association of trees can strongly affect foraging patterns of roe deer, but not in a manner wholly consistent with the repellent–plant or the attractant–decoy hypotheses.  相似文献   

2.
Large mammalian herbivores are keystone species in different ecosystems. To mediate the effects of large mammalian herbivores on ecosystems, it is crucial to understand their habitat selection pattern. At finer scales, herbivore patch selection depends strongly on plant community traits and therefore its understanding is constrained by patch definition criteria. Our aim was to assess which criteria for patch definition best explained use of meadows by wild, free-ranging, red deer (Cervus elaphus) in a study area in Northeast Portugal. We used two clustering criteria types based on floristic composition and gross forage classes, respectively. For the floristic criteria, phytosociological approach was used to classify plant communities, and its objectivity evaluated with a mathematical clustering of the floristic relevés. Cover of dominant plant species was tested as a proxy for the phytosociological method. For the gross forage classes, the graminoids/forbs ratio and the percentage cover of legumes were used. For assessing deer relative use of meadows we used faecal accumulation rates. Patches clustered according to floristic classification better explained selection of patches by deer. Plant community classifications based on phytosociology, or proxies of this, used for characterizing meadow patches resulted useful to understand herbivore selection pattern at fine scales and thus potentially suitable to assist wildlife management decisions.  相似文献   

3.
Ecological release from herbivory due to chemical novelty is commonly predicted to facilitate biological invasions by plants, but has not been tested on a community scale. We used metabolomics based on mass spectrometry molecular networks to assess the novelty of foliar secondary chemistry of 15 invasive plant species compared to 46 native species at a site in eastern North America. Locally, invasive species were more chemically distinctive than natives. Among the 15 invasive species, the more chemically distinct were less preferred by insect herbivores and less browsed by deer. Finally, an assessment of invasion frequency in 2,505 forest plots in the Atlantic coastal plain revealed that, regionally, invasive species that were less preferred by insect herbivores, less browsed by white‐tailed deer, and chemically distinct relative to the native plant community occurred more frequently in survey plots. Our results suggest that chemically mediated release from herbivores contributes to many successful invasions.  相似文献   

4.
1. Community assembly is affected by four processes: dispersal, filtering effects (selection), ecological drift and evolution. The role of filtering relative to dispersal and drift should decline with patch size, hampering possibilities to predict which organisms will be observed within small‐sized patches. However, vegetation structure is known to have a marked impact on species assemblages, and plant quality may act as a biotic filter. This challenges the assumption of unpredictable species assemblages in small‐sized vegetation patches. 2. Using 32 stands of five shrub species in south‐west Finland, this study investigated whether biotic filtering effects caused by patch‐forming plants are strong enough to overcome the mixing of mobile arthropod assemblages across small patches. 3. Stochastic variation did not hide the signals of biotic filtering and dispersal in the small shrub patches. Habitat richness around the patches explained a three times larger share of variation in the species composition than did the identity of the patch‐forming plant, but it had less effect on the abundance of arthropods. A radius of 50–100 m around a patch explained the species composition best. 4. Abundance patterns varied between the feeding guilds; the patch‐forming shrub influenced the abundances of detritivores and leaf‐feeding herbivores, whereas the abundances of flower‐visiting herbivores appeared to track the flowering phenology of the plants. Shrub identity had little effect on omnivores or predators. Predator abundances were correlated with the abundance of potential prey. 5. The results of this study suggest that community composition within a vegetation patch may be predictable even if dispersal overrides local filtering effects, as suggested by the mass‐effects paradigm.  相似文献   

5.
Consumption of a focal plant by herbivores depends, not only on the physical and chemical characteristics of that plant, but also on the characteristics of the neighbouring vegetation. Consumption of focal plants has been related to their own characteristics and to the quality of the neighbouring vegetation, but the two have not been combined to examine the relative importance of focal plant and neighbouring vegetation characteristics.
We conducted a series of feeding trials to examine the relative importance of focal plant and various characteristics of neighbouring vegetation to browsing of a focal plant within vegetation patches. We planted Eucalyptus nitens seedlings of high and low nutrient status amongst vegetation patches differing in palatability, abundance and height. Generalist mammalian herbivores, red-bellied pademelons ( Thylogale billardierii ), were allowed to feed in each of these patches one at a time, and seedling consumption was recorded. Results were considered in light of the attractant-decoy and apparency hypotheses, which focus on the outcome to plants, and in terms of foraging theory, which is process-focussed.
Seedling and vegetation characteristics were both important. Seedlings of high nutrient status were preferred over those of low nutrient status. The relative quality, abundance and height of neighbouring vegetation all influenced browsing of a focal plant. Seedlings were more vulnerable amongst vegetation that was of low palatability, of low abundance, or was short. Seedling and vegetation effects were additive in two of three trials.
Results were consistent with both the attractant-decoy and apparency hypotheses, and could be explained in terms of maximising foraging efficiency. They demonstrate the need to consider characteristics of both the focal plant and its neighbouring vegetation when predicting the vulnerability of the former to browsing by generalist herbivores.  相似文献   

6.
Browsing of tree saplings by deer hampers forest regeneration in mixed forests across Europe and North America. It is well known that tree species are differentially affected by deer browsing, but little is known about how different facets of diversity, such as species richness, identity, and composition, affect browsing intensity at different spatial scales. Using forest inventory data from the Hainich National Park, a mixed deciduous forest in central Germany, we applied a hierarchical approach to model the browsing probability of patches (regional scale) as well as the species‐specific proportion of saplings browsed within patches (patch scale). We found that, at the regional scale, the probability that a patch was browsed increased with certain species composition, namely with low abundance of European beech (Fagus sylvatica L.) and high abundance of European ash (Fraxinus excelsior L.), whereas at the patch scale, the proportion of saplings browsed per species was mainly determined by the species’ identity, providing a “preference ranking” of the 11 tree species under study. Interestingly, at the regional scale, species‐rich patches were more likely to be browsed; however, at the patch scale, species‐rich patches showed a lower proportion of saplings per species browsed. Presumably, diverse patches attract deer, but satisfy nutritional needs faster, such that fewer saplings need to be browsed. Some forest stand parameters, such as more open canopies, increased the browsing intensity at either scale. By showing the effects that various facets of diversity, as well as environmental parameters, exerted on browsing intensity at the regional as well as patch scale, our study advances the understanding of mammalian herbivore–plant interactions across scales. Our results also indicate which regeneration patches and species are (least) prone to browsing and show the importance of different facets of diversity for the prediction and management of browsing intensity and regeneration dynamics.  相似文献   

7.
Abstract: Moose (Alces alces) and roe deer (Capreolus pygargus) are sympatric in the forest region of northeastern China. Using univariate analyses of feeding sign data, we found the 2 species were positively associated, but there were distinctions between their use of forage resources across landscape, patch, and microhabitat scales. We used resource selection function models to predict the influence of environmental covariates on moose and roe deer foraging; we detected covariate effects at the landscape and microhabitat scales but not at the patch scale. Forage resources used by the 2 species were similar, but moose used wetter areas and more low-visibility habitats than did roe deer, which strongly avoided areas with sparse vegetation. Both species were influenced by forage abundance and distribution at the microhabitat scale but exhibited differences in intensity of use of plant species and microhabitats. Moose used areas with deeper snow and avoided hiding cover; roe deer avoided areas with higher total basal areas of tree stems and preferred areas with high plant species richness. For moose, there was a trade-off in the use of concealment cover between the landscape and microhabitat scales. We detected avoidance by moose of roads where roe deer occurred. Roe deer exhibited more capacity for coping with human disturbance and interspecific interaction. In areas similar to our study area, road closures and suppression of roe deer near roads within 3–5 years postlogging may benefit moose. Furthermore, a mosaic of areas with different logging intervals may contribute to spatial separation of moose and roe deer and promote their coexistence.  相似文献   

8.
We report evidence of hierarchical resource selection by large herbivores and plant neighbouring effects in a Mediterranean ecosystem. Plant palatability was assessed according to herbivore foraging decisions. We hypothesize that under natural conditions large herbivores follow a hierarchical foraging pattern, starting at the landscape scale, and then selecting patches and individual plants. A between- and within-patch selection study was carried out in an area formed by scrubland and pasture patches, connected by habitat edges. With regard to between-patch selection, quality-dependent resource selection is reported: herbivores mainly consume pasture in spring and woody plants in winter. Within-patch selection was also observed in scrub habitats, influenced by season, relative patch palatability and edge effect. We defined a Proximity Index (PI) between palatable and unpalatable plants, which allowed verification of neighbouring effects. In spring, when the preferred food resource (i.e. herbs) is abundant, we observed that in habitat edges large herbivores basically select the relatively scarce palatable shrubs, whereas inside scrubland, unpalatable shrub consumption was related to increasing PI. In winter, a very different picture was observed; there was low consumption of palatable species surrounded by unpalatable species in habitat edges, where the latter were more abundant. These outcomes could be explained though different plant associations described in the literature. We conclude that optimal foraging theory provides a conceptual framework behind the observed interactions between plants and large herbivores in Mediterranean ecosystems.  相似文献   

9.
The factors that affect resource selection by a foraging herbivore can vary according to the resources or conditions associated with particular levels of organization in the environment, and to the scales over which the herbivore perceives and responds to those resources and conditions. To investigate the role of forage in this hierarchical process, we studied resource selection by a mixed‐feeding large herbivore, the impala (Aepyceros melampus). We focussed on three spatial scales: plant species, feeding station and feeding patch. In paired sites where impala were and were not observed, we identified the plant species from which animals fed, the attributes of the plants, and the characteristics of the broader site. Across all three scales, plant species available as forage was central in determining resource selection by impala. At the species level, that effect was modified by the nutritional quality (greenness) and whether it was during a period of forage abundance or scarcity (season). At the feeding‐station level, overall greenness and biomass of the station were important, but their effects were modified by the season. At the feeding‐patch level, broader‐scale factors such as the type of vegetation cover had an important influence on resource selection. The grass Panicum maximum was a preferred forage species and a key resource determining the locations of feeding impala. Our findings support the idea that selection by a foraging herbivore at fine scales (i.e. diet selection) can have consequences for broader‐scale selection that result in observed patterns of habitat use and animal distribution.  相似文献   

10.
Summary The effects of host plant patch size on the abundances of two specialist herbivores (the chrysomelid beetle, Acalymma innubum and the pentatomid bug, Piezosternum subulatum) were investigated in a natural forest community in the Virgin Islands. Abundances were compared early and late in the season in different sized patches of the cucurbit host plant (Cayaponia americana) growing in open habitat (with no surrounding plant community) and forest habitat (with diverse surrounding plant community). For both herbivore species, adult abundances per patch were positively correlated with patch leaf area, but there was a significant patch size effect (i.e., correlation between herbivore density per unit plant and patch leaf area) only for beetles in the forest habitat. Both herbivore species were significantly affected by surrounding plant diversity, but in opposite ways: beetles were more abundant in open patches whereas bugs were more abundant in forest patches. Relationships between abundance and patch size in open and forest patches changed through the season for both herbivore species. These changing abundance patterns are discussed with respect to (1) increases in the diversity of the plant community surrounding host plant patches, and (2) differences in herbivore movement patterns.  相似文献   

11.
Joanne L.Denyer  S. E.Hartley  E. A.John 《Oikos》2007,116(7):1186-1192
Nutrient inputs to plant communities are often spatially heterogeneous, for example those deriving from the dung and urine of large grazing animals. The effect of such localised elevation of nutrients on plant growth and composition has been shown to be modified by the grazing of large herbivores. However, there has been little work on interactions between small mammalian herbivores and such patchy nutrient inputs, even though these interactions are potentially of major significance for plant performance and community structure.
We examined the effect of simulated cattle urine deposition on the vegetation structure, above-ground biomass and species composition of chalk grassland within enriched patches. Short-term exclosures were used to determine whether a small herbivore (rabbit) would preferentially graze the vegetation in enriched patches and what impact this interaction would have on the performance of plants in such patches. Rabbit grazing pressure determined whether nutrient inputs had a negative or positive effect on plant biomass. Nutrients increased plant biomass in the absence of grazing, but when exposed to grazing, plants in nutrient-rich patches had more biomass consumed by herbivores than neighbouring plants. Further, nutrients increased the relative palatability of a less preferred forage species ( Brachypodium pinnatum ), contributing to changes in plant community composition. We conclude that a small herbivore can drive plant responses to patchily distributed nutrients.  相似文献   

12.
Herbivores can dramatically diminish revegetation success, but associational refuge theory predicts that neighbouring plants could hinder browsing of planted seedlings. The key to strategic restoration using associational refuge is to define which patch variables are effective against the appropriate herbivores, at multiple scales, and to understand which stages of the foraging process these variables disrupt. Our study aimed to test the capacity of existing vegetation to act as associational refuge for planted seedlings by affecting search, detection and consumption decisions, and more generally influence herbivore foraging patterns. We conducted a field trial with free‐ranging, mammalian herbivores and nursery‐raised, native tree seedlings. We quantified seedling browsing damage over time in relation to a suite of existing patch variables at two spatial scales (100 m2 and 4 m2). After two months, 78% of seedlings were browsed, suffering mean foliage loss of 90.5%. Focal seedlings were almost exclusively consumed by swamp wallabies Wallabia bicolor, an abundant generalist browser. Once a swamp wallaby investigated a seedling, the probability of consumption was high (86%). At the large scale, browsing of seedlings was delayed in patches with lower canopy cover and fewer browsed plant species. Seedlings in fern‐dominated patches escaped browsing for longer than those in grass‐dominated patches. At the small scale, browsing was delayed with higher cover of understorey vegetation. Associational refuge was provided by vegetation with characteristics, and at spatial scales, consistent with disrupted search and detection of focal seedlings by herbivores. Thus strategic placement of seedlings in existing vegetation – based on understanding which herbivore species is responsible and how it responds to vegetation – can take advantage of associational refuge during restoration. However, given rapid seedling detection by herbivores, associational refuge may be inadequate in the long‐term under high browsing pressure unless high absolute numbers of seedlings are planted among refuge.  相似文献   

13.
Using an exclosure experiment in managed woodland in eastern England, we examined species and guild responses to vegetation growth and its modification by deer herbivory, contrasting winter and the breeding season over 4 years. Species and guild responses, in terms of seasonal presence recorded by multiple point counts, were examined using generalized linear mixed models. Several guilds or migrant species responded positively to deer exclusion and none responded negatively. The shrub‐layer foraging guild was recorded less frequently in older and browsed vegetation, in both winter and spring. Exclusion of deer also increased the occurrence of ground‐foraging species in both seasons, although these species showed no strong response to vegetation age. The canopy‐foraging guild was unaffected by deer exclusion or vegetation age in either season. There was seasonal variation in the responses of some individual resident species, including a significantly lower occurrence of Eurasian Wren Troglodytes troglodytes and European Robin Erithacus rubecula in browsed vegetation in winter, but no effect of browsing on those species in spring. Ordinations of bird assemblage compositions also revealed seasonal differences in response to gradients of vegetation structure generated by canopy‐closure and exclusion of deer. Positive impacts of deer exclusion in winter are probably linked to reduced thermal cover and predator protection afforded by browsed vegetation, whereas species that responded positively in spring were also dependent on a dense understorey for nesting. The effects on birds of vegetation development and its modification by herbivores extend beyond breeding assemblages, with different mechanisms implicated and different species affected in winter.  相似文献   

14.
Both the theory and the observations suggest that, there are strong links between herbivores and plants in terrestrial ecosystems; although, the effect of herbivores on plant community biomass is often attributed to variations in plant palatability. The existence of a strong link is commonly tested by constructing exclosures that exclude herbivores during a period of time. We here present data from two long-term (9 and 20 years, respectively) herbivore exclosure studies in lemming habitats on arctic tundra in northernmost Norway. The exclusion of all mammalian herbivores triggered strong increases in community level plant biomass and substantial changes in plant community composition. Palatable plants like graminoids and large bryophytes, as well as unpalatable plants like evergreen ericoids, deciduous shrubs, and lichens were all favored by excluding lemmings. These results reveal that a substantial increase in community biomass which occurs only when plant species capable of accumulating biomass are present, and palatability is a poor predictor of long-term responses of plants to excluding herbivores.  相似文献   

15.
Herbivores generally have strong structural and compositional effects on vegetation, which in turn determines the plant forage species available. We investigated how selected large mammalian herbivore assemblages use and alter herbaceous vegetation structure and composition in a southern African savanna in and adjacent to the Kruger National Park, South Africa. We compared mixed and mono-specific herbivore assemblages of varying density and investigated similarities in vegetation patterns under wildlife and livestock herbivory. Grass species composition differed significantly, standing biomass and grass height were almost twice as high at sites of low density compared to high density mixed wildlife species. Selection of various grass species by herbivores was positively correlated with greenness, nutrient content and palatability. Nutrient-rich Urochloa mosambicensis Hack. and Panicum maximum Jacq. grasses were preferred forage species, which significantly differed in abundance across sites of varying grazing pressure. Green grasses growing beneath trees were grazed more frequently than dry grasses growing in the open. Our results indicate that grazing herbivores appear to base their grass species preferences on nutrient content cues and that a characteristic grass species abundance and herb layer structure can be matched with mammalian herbivory types.  相似文献   

16.
The fact that herbivores and predators exert top-down effects to alter community composition and dynamics at lower trophic levels is no longer controversial, yet we still lack evidence of the full nature, extent, and longer-term effects of these impacts. Here, we use results from a set of replicated experiments on the local impacts of white-tailed deer to evaluate the extent to which such impacts could account for half-century shifts in forest plant communities across the upper Midwest, USA. We measured species'' responses to deer at four sites using 10–20 year-old deer exclosures. Among common species, eight were more abundant outside the exclosures, seven were commoner inside, and 16 had similar abundances in- and outside. Deer herbivory greatly increased the abundance of ferns and graminoids and doubled the abundance of exotic plants. In contrast, deer greatly reduced tree regeneration, shrub cover (100–200 fold in two species), plant height, plant reproduction, and the abundance of forbs. None of 36 focal species increased in reproduction or grew taller in the presence of deer, contrary to expectations. We compared these results to data on 50-year regional shifts in species abundances across 62 sites. The effects of herbivory by white-tailed deer accurately account for many of the long-term regional shifts observed in species'' abundances (R2 = 0.41). These results support the conjecture that deer impacts have driven many of the regional shifts in forest understory cover and composition observed in recent decades. Our ability to link results from shorter-term, local experiments to regional long-term studies of ecological change strengthens the inferences we can draw from both approaches.  相似文献   

17.
Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus) and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer.  相似文献   

18.
Browsing by ungulates may induce plant responses and affect subsequent plant food quality for other animals. Populations of many deer species have increased to unprecedented levels in Europe and North America. In Norway, population densities of red deer (Cervus elaphus) have increased over the past decades, but little is known about how increased deer browsing pressure may change the palatability of key food plants for other taxa in the boreal ecosystem. We conducted a cafeteria experiment to assess if long-term deer-browsing intensity affected the palatability of bilberry (Vaccinium myrtillus) leaves for leaf-eating larvae (mainly Lepidoptera). We found that leaf-eating insect larvae preferred bilberry leaves from the lightly browsed bilberry plants; the larvae consumed twice as much leaf biomass from the lightly browsed plants than from the unbrowsed and moderately browsed ones, and four times more than from highly browsed plants. Larvae never selected leaves from highly browsed plants as their first choice. Our study suggests that browsing-induced changes in the quality of shared food plants may be important in mediating indirect interactions between browsers of widely separated taxa. Whereas low levels of long-term red deer browsing increases the palatability of bilberry leaves for leaf-eating larvae, high browsing pressure reduces food consumption. Whether changes in palatability lead to changes in population densities of leaf-eating larvae remains to be studied, but any such adverse effects could have cascading ecological consequences for insectivorous birds and mammals.  相似文献   

19.
Remotely sensed vegetation indices are increasingly being used in wildlife studies but field‐based support for their utility as a measure of forage availability comes largely from open‐canopy habitats. We assessed whether normalized difference vegetation index (NDVI) represents forage availability for Asian elephants in a southern Indian tropical forest. We found that the number of food species was a small percentage of all plant species. NDVI was not a good measure of food abundance in any vegetation category partly because of (a) small to moderate proportional abundances of food species relative to the total abundance of all species in that category (herbs and shrubs), (b) abundant overstory vegetation resulting in low correlations between NDVI and food abundance, despite a high proportional abundance of food species and a concordance between total abundance and food species abundance (graminoids), and (c) the relevant variables measured and important as food at the ground level (count and GBH) not being related to primary productivity (trees and recruits). NDVI had a negative relationship with the total abundance of graminoids, which represent a bulk of elephant and other herbivore diet, because of negative interaction with other vegetation and canopy cover that positively explained NDVI. Spatially interpolated total graminoid abundance modeled from field data outperformed NDVI in predicting total graminoid abundance, although interpolation models of food graminoid abundance were not satisfactory. Our results reject the utility of NDVI in mapping elephant forage abundance in tropical forests, a finding that has implications for studies of other herbivores also. Abstract in Kannada is available with online material.  相似文献   

20.
Large herbivores play crucial ecological roles, affecting the structure and function of terrestrial ecosystems. Their effect, however, depend on how they select plants and vegetation patches for foraging. At the landscape scale, succession is one of the processes that should generate vegetation patches with different nutritional quality, affecting selection by herbivores. Earlier successional stages should be preferred as they are dominated by plants with nutritious and palatable leaves. Here, we investigate if the Lowland tapir prefers early compared to late successional forest patches, aiming at contributing to the understanding of the ecological role of the largest terrestrial South American herbivore, and to conservation strategies for this endangered species. We sampled 12 vegetation patches varying in successional stages across a 20.000-ha continuously-forested landscape in the Brazilian Atlantic Forest, recording tapirs through standardized camera trap and track surveys, and quantifying vegetation structure and treefall gaps. Whereas the number of individuals using each patch was not influenced by successional stage, intensity of use was higher in patches in earlier successional stages, in particular patches with higher density of smaller trees and higher cover of treefall gaps. Although inferences on the effects of tapir on plant community depends on future, smaller-scale studies, our results suggest herbivory by tapirs affects forest regeneration, potentially contributing to the maintenance of plant diversity. Results also point out to the potential of mosaics encompassing old-growth and secondary forests for the conservation of the Lowland tapir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号