首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Background, aim, and scope  

Life cycle assessment (LCA) is becoming an increasingly widespread tool in support systems for environmental decision-making regarding the cleanup of contaminated sites. In this study, the use of LCA to compare the environmental impacts of different remediation technologies was reviewed. Remediation of a contaminated site reduces a local environmental problem, but at the same time, the remediation activities may cause negative environmental impacts on the local, regional, and global scale. LCA can be used to evaluate the inherent trade-off and to compare remediation scenarios in terms of their associated environmental burden.  相似文献   

2.

Background, aim and scope  

In the context of environmental life cycle assessment (LCA), life cycle impact assessment (LCIA) is one of the central issues with respect to modelling and methodological data collection. The thesis described in this paper focusses on the assessment of toxicity-related impacts, and on the collection of normalisation data. A view on the complementary roles of LCA toxicity assessment on the one hand and human and environmental risk assessment (HERA) on the other is presented, and the global, spatially differentiated LCA toxicity assessment model GLOBOX for the assessment of organics and metals is described. Normalisation factors for the year 2000 are calculated on a global as well as on a European level.  相似文献   

3.
Consequential life cycle assessment: a review   总被引:1,自引:0,他引:1  

Purpose  

Over the past two decades, consequential life cycle assessment (CLCA) has emerged as a modeling approach for capturing environmental impacts of product systems beyond physical relationships accounted for in attributional LCA (ALCA). Put simply, CLCA represents the convergence of LCA and economic modeling approaches.  相似文献   

4.

Purpose  

The need for a systematic evaluation of the human and environmental impacts of engineered nanomaterials (ENMs) has been widely recognized, and a growing body of literature is available endorsing life cycle assessment (LCA) as a valid tool for the same. The purpose of this study is to evaluate how the nano-specific environmental assessments are being done within the existing framework of life cycle inventory and impact assessment and whether these frameworks are valid and/or whether they can be modified for nano-evaluations.  相似文献   

5.

Purpose  

The purpose of this study is to document and assess the environmental impacts associated with two competing powder coating solutions using current life cycle assessment (LCA) methods and available data and to check whether there is a conflict between environmental performance and occupational health issues.  相似文献   

6.

Purpose  

As new alternative automotive fuels are being developed, life cycle assessment (LCA) is being used to assess the sustainability of these new options. A fuel LCA is commonly referred as a “Well To Wheels” analysis and calculates the environmental impacts of producing the fuel (the “Well To Tank” stage) and using it to move a car (the “Tank To Wheels” stage, TTW). The TTW environmental impacts are the main topic of this article.  相似文献   

7.

Purpose

This paper uses a dynamic life cycle assessment (DLCA) approach and illustrates the potential importance of the method using a simplified case study of an institutional building. Previous life cycle assessment (LCA) studies have consistently found that energy consumption in the use phase of a building is dominant in most environmental impact categories. Due to the long life span of buildings and potential for changes in usage patterns over time, a shift toward DLCA has been suggested.

Methods

We define DLCA as an approach to LCA which explicitly incorporates dynamic process modeling in the context of temporal and spatial variations in the surrounding industrial and environmental systems. A simplified mathematical model is used to incorporate dynamic information from the case study building, temporally explicit sources of life cycle inventory data and temporally explicit life cycle impact assessment characterization factors, where available. The DLCA model was evaluated for the historical and projected future environmental impacts of an existing institutional building, with additional scenario development for sensitivity and uncertainty analysis of future impacts.

Results and discussion

Results showed that overall life cycle impacts varied greatly in some categories when compared to static LCA results, generated from the temporal perspective of either the building's initial construction or its recent renovation. From the initial construction perspective, impacts in categories related to criteria air pollutants were reduced by more than 50 % when compared to a static LCA, even though nonrenewable energy use increased by 15 %. Pollution controls were a major reason for these reductions. In the future scenario analysis, the baseline DLCA scenario showed a decrease in all impact categories compared with the static LCA. The outer bounds of the sensitivity analysis varied from slightly higher to strongly lower than the static results, indicating the general robustness of the decline across the scenarios.

Conclusions

These findings support the use of dynamic modeling in life cycle assessment to increase the relevance of results. In some cases, decision making related to building design and operations may be affected by considering the interaction of temporally explicit information in multiple steps of the LCA. The DLCA results suggest that in some cases, changes during a building's lifetime can influence the LCA results to a greater degree than the material and construction phases. Adapting LCA to a more dynamic approach may increase the usefulness of the method in assessing the performance of buildings and other complex systems in the built environment.  相似文献   

8.

Background, aim and scope  

Records over the last decades indicate a high growth rate for tourism, making it one of the most important industries in the world economy. Since estimates outline a consolidation of this trend, an accurate identification and assessment of the environmental impacts related to the life cycle of tourist products is increasingly necessary. By reviewing and comparing Life Cycle Assessment (LCA) case studies in the tourism sector, this paper aims to identify life cycle approaches that may be used as a basis for the subsequent development of sectorial Life Cycle Thinking guidelines.  相似文献   

9.

Purpose  

This paper describes part of the first detailed environmental life cycle assessment (LCA) of Australian red meat (beef and sheep meat) production. The study was intended to assist the methodological development of life cycle impact assessment by examining the feasibility of new indicators for natural resource management (NRM) issues relevant to soil management in agricultural LCA. This paper is intended to describe the NRM indicators directly related to agricultural soil chemistry.  相似文献   

10.

Purpose  

In order to provide more sustainable fuels and address the depletion of oil as a feedstock, the automotive industry must adapt to a growing market share of alternative fuels. The environmental impacts of the automotive industry to date would suggest that these alternatives will be more environmentally friendly than petroleum-based fuels. This is nonetheless an assumption that cannot be confirmed without a systematic life cycle assessment (LCA). This article explores the feasibility of USEtox to provide information needed for automotive-fuel LCA.  相似文献   

11.
12.

Purpose

Life cycle assessment (LCA) is a tool that can be utilized to holistically evaluate novel trends in the construction industry and the associated environmental impacts. Green labels are awarded by several organizations based on single or multiple attributes. The use of multi-criteria labels is a good start to the labeling process as opposed to single criteria labels that ignore a majority of impacts from products. Life cycle thinking, in theory, has the potential to improve the environmental impacts of labeling systems. However, LCA databases currently are lacking in detailed information about products or sometimes provide conflicting information.

Method

This study compares generic and green-labeled carpets, paints, and linoleum flooring using the Building for Environmental and Economic Sustainability (BEES) LCA database. The results from these comparisons are not intuitive and are contradictory in several impact categories with respect to the greenness of the product. Other data sources such as environmental product declarations and ecoinvent are also compared with the BEES data to compare the results and display the disparity in the databases.

Results

This study shows that partial LCAs focused on the production and transportation phase help in identifying improvements in the product itself and improving the manufacturing process but the results are uncertain and dependent upon the source or database. Inconsistencies in the data and missing categories add to the ambiguity in LCA results.

Conclusions

While life cycle thinking in concept can improve the green labeling systems available, LCA data is lacking. Therefore, LCA data and tools need to improve to support and enable market trends.  相似文献   

13.

Purpose  

The goal of this study was to use life cycle assessment (LCA) methodology to assess the environmental impacts of industrial and institutional cleaning products that are compliant with the Green Seal Standard for Cleaning Products for Industrial and Institutional Use, GS-37, and conventional products (non-GS-37-compliant) products.  相似文献   

14.

Purpose  

The purpose of this study was to evaluate the environmental impacts linked to fish extraction on a temporal basis, in order to analyze the effect that stock abundance variations may have on reporting environmental burdens. Inventory data for the North-East Atlantic Mackerel (NEAM) fishing season were collected over an 8-year period and used to carry out a life cycle assessment (LCA). The selected fishery corresponds to the Basque coastal purse seining fleet.  相似文献   

15.

Background, aim, and scope  

Pharmaceuticals have been recently discussed in the press and literature regarding their occurrence in rivers and lakes, mostly due to emissions after use. The production of active pharmaceutical ingredients (APIs) has been less analyzed for environmental impacts. In this work, a life cycle assessment (LCA) of the production of an API from cradle to factory gate was carried out. The main sources of environmental impacts were identified. The resulting environmental profile was compared to a second pharmaceutical production and to the production of basic chemicals.  相似文献   

16.

Purpose

We investigate how the boundary between product systems and their environment has been delineated in life cycle assessment and question the usefulness and ontological relevance of a strict division between the two.

Methods

We consider flows, activities and impacts as general terms applicable to both product systems and their environment and propose that the ontologically relevant boundary is between the flows that are modelled as inputs to other activities (economic or environmental)—and the flows that—in a specific study—are regarded as final impacts, in the sense that no further feedback into the product system is considered before these impacts are applied in decision-making. Using this conceptual model, we contrast the traditional mathematical calculation of the life cycle impacts with a new, simpler computational structure where the life cycle impacts are calculated directly as part of the Leontief inverse, treating product flows and environmental flows in parallel, without the need to consider any boundary between economic and environmental activities.

Results and discussion

Our theoretical outline and the numerical example demonstrate that the distinctions and boundaries between product systems and their environment are unnecessary and in some cases obstructive from the perspective of impact assessment, and can therefore be ignored or chosen freely to reflect meaningful distinctions of specific life cycle assessment (LCA) studies. We show that our proposed computational structure is backwards compatible with the current practice of LCA modelling, while allowing inclusion of feedback loops both from the environment to the economy and internally between different impact categories in the impact assessment.

Conclusions

Our proposed computational structure for LCA facilitates consistent, explicit and transparent modelling of the feedback loops between environment and the economy and between different environmental mechanisms. The explicit and transparent modelling, combining economic and environmental information in a common computational structure, facilitates data exchange and re-use between different academic fields.
  相似文献   

17.

Background, aim, and scope  

Life cycle assessment (LCA) was initially developed to answer questions about the environmental impact of available products and services, implying that the product system under study was possible to investigate in detail; however, if new products or processes are to be evaluated, several complications occur. So, this paper aims to review the methodological issues that need careful attention when LCA is used for evaluating novel products, processes, or production from an environmental standpoint, as well as to draw some recommendations related to the best approach when dealing with them.  相似文献   

18.

Purpose

With the tremendous growth in the worldwide electronic information and telecommunication industries, there continues to be an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of electrical and electronic products (e-products). Although Macau is a small region with a total land area of about 29.5 km2 and a population of 557,000 in 2011, there are two personal computers (PCs) for every household in Macau.

Methods

This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of PCs in Macau. An assessment of the PC (focusing on the desktop PC) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with both the Eco-indicator'99 method and the Centrum voor Milieuwetenschappen method. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations of the actual situations.

Results and discussion

The established LCA study showed that the manufacturing and the use of such devices are of the highest environmental importance. In the manufacturing stage, the desktop contributes the most to the total environmental impacts (44.89 Pt), followed by the LCD screens (about 27.53 Pt), while the CRT screen, keyboard, and mouse are of minor importance. During the use phase, the environmental impact is due entirely to the consumption of electricity generated by coal, oil, natural gas, and hydropower. The electricity generated by coal is by far the most important, accounting for about 66 % of the total environmental impact, followed by oil and gas. Within the EoL treatment phase, using incineration, there will be little environmental impact. When adopting recycling technology in the EoL phase, apparent environmental benefits will be generated due mainly to avoiding emissions to water (arsenic ions and cadmium ions) and to air (SO2) in the primary production phase. For the competing technologies of CRT and LCD screens, the environmental impacts are different in different phases, but the total impacts over their entire life cycle are similar.

Conclusions

Results from a life cycle assessment can be used to compare the relative environmental impacts of competing technologies; it can also help designers and managers to focus efforts toward making environmental improvements to a particular technology.  相似文献   

19.
Ecodesign of PVC packing tape using life cycle assessment   总被引:1,自引:0,他引:1  

Purpose

Polymer materials play an important role in the improvement and quality of life. However, due to their persistence in the environment, polymer materials may be harmful to the ecosystems. According to the European Directive on Packaging and Packaging Waste, management of these wastes should include prevention of their generation as a priority. The main motivation for employing ecodesign of a product is to reduce both raw material consumption and waste generation through a good initial design.

Methods

In this study, life cycle assessment (LCA) was applied to the design of printed PVC plastic packing tape in order to reduce its environmental impact. LCA software GaBi4.4® was used to determine the PVC packing tape life cycle stage with the highest environmental impacts.

Results and discussion

LCA results showed that PVC film manufacture was the stage with the highest impact. It was therefore reasonable to assume that packing tape manufactured with material other than PVC could have reduced environmental impact, and LCA was used to evaluate this hypothesis. When using Kraft paper or polypropylene plastic packing tape, the weighted impacts were reduced by 36.3 and 39.9 %, respectively.

Conclusions

PVC plastic packing tape has been redesigned with the aim of reducing waste and raw material consumption. LCA results showed that a suitable option for reducing life cycle environmental impact is to use alternative film materials. Kraft paper and polypropylene plastic packing tape were found to give lower values of almost all environmental impact indexes and normalized and weighted impacts.  相似文献   

20.

Purpose  

Climate change impacts in life cycle assessment (LCA) are usually assessed as the emissions of greenhouse gases expressed with the global warming potential (GWP). However, changes in surface albedo caused by land use change can also contribute to change the Earth’s energy budget. In this paper we present a methodology for including in LCA the climatic impacts of land surface albedo changes, measured as CO2-eq. emissions or emission offsets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号