首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Cyclic GMP-AMP (cGAMP) synthase (cGAS) is recently identified as a cytosolic DNA sensor and generates a non-canonical cGAMP that contains G(2′,5′)pA and A(3′,5′)pG phosphodiester linkages. cGAMP activates STING which triggers innate immune responses in mammals. However, the evolutionary functions and origins of cGAS and STING remain largely elusive. Here, we carried out comprehensive evolutionary analyses of the cGAS-STING pathway. Phylogenetic analysis of cGAS and STING families showed that their origins could be traced back to a choanoflagellate Monosiga brevicollis. Modern cGAS and STING may have acquired structural features, including zinc-ribbon domain and critical amino acid residues for DNA binding in cGAS as well as carboxy terminal tail domain for transducing signals in STING, only recently in vertebrates. In invertebrates, cGAS homologs may not act as DNA sensors. Both proteins cooperate extensively, have similar evolutionary characteristics, and thus may have co-evolved during metazoan evolution. cGAS homologs and a prokaryotic dinucleotide cyclase for canonical cGAMP share conserved secondary structures and catalytic residues. Therefore, non-mammalian cGAS may function as a nucleotidyltransferase and could produce cGAMP and other cyclic dinucleotides. Taken together, assembling signaling components of the cGAS-STING pathway onto the eukaryotic evolutionary map illuminates the functions and origins of this innate immune pathway.  相似文献   

2.
STING has emerged in recent years as an important signalling adaptor in the activation of type I interferon responses during infection with DNA viruses and bacteria. An increasing body of evidence suggests that STING also modulates responses to RNA viruses, though the mechanisms remain less clear. In this review, we give a brief overview of the ways in which STING facilitates sensing of RNA viruses. These include modulation of RIG-I-dependent responses through STING's interaction with MAVS, and more speculative mechanisms involving the DNA sensor cGAS and sensing of membrane remodelling events. We then provide an in-depth literature review to summarise the known mechanisms by which RNA viruses of the families Flaviviridae and Coronaviridae evade sensing through STING. Our own work has shown that the NS2B/3 protease complex of the flavivirus dengue virus binds and cleaves STING, and that an inability to degrade murine STING may contribute to host restriction in this virus. We contrast this to the mechanism employed by the distantly related hepacivirus hepatitis C virus, in which STING is bound and inactivated by the NS4B protein. Finally, we discuss STING antagonism in the coronaviruses SARS coronavirus and human coronavirus NL63, which disrupt K63-linked polyubiquitination and dimerisation of STING (both of which are required for STING-mediated activation of IRF-3) via their papain-like proteases. We draw parallels with less-well characterised mechanisms of STING antagonism in related viruses, and place our current knowledge in the context of species tropism restrictions that potentially affect the emergence of new human pathogens.  相似文献   

3.
Oncogenic human papillomaviruses (HPVs) replicate in differentiating epithelium, causing 5% of cancers worldwide. Like most other DNA viruses, HPV infection initiates after trafficking viral genome (vDNA) to host cell nuclei. Cells possess innate surveillance pathways to detect microbial components or physiological stresses often associated with microbial infections. One of these pathways, cGAS/STING, induces IRF3-dependent antiviral interferon (IFN) responses upon detection of cytosolic DNA. Virion-associated vDNA can activate cGAS/STING during initial viral entry and uncoating/trafficking, and thus cGAS/STING is an obstacle to many DNA viruses. HPV has a unique vesicular trafficking pathway compared to many other DNA viruses. As the capsid uncoats within acidic endosomal compartments, minor capsid protein L2 protrudes across vesicular membranes to facilitate transport of vDNA to the Golgi. L2/vDNA resides within the Golgi lumen until G2/M, whereupon vesicular L2/vDNA traffics along spindle microtubules, tethering to chromosomes to access daughter cell nuclei. L2/vDNA-containing vesicles likely remain intact until G1, following nuclear envelope reformation. We hypothesize that this unique vesicular trafficking protects HPV from cGAS/STING surveillance. Here, we investigate cGAS/STING responses to HPV infection. DNA transfection resulted in acute cGAS/STING activation and downstream IFN responses. In contrast, HPV infection elicited minimal cGAS/STING and IFN responses. To determine the role of vesicular trafficking in cGAS/STING evasion, we forced premature viral penetration of vesicular membranes with membrane-perturbing cationic lipids. Such treatment renders a non-infectious trafficking-defective mutant HPV infectious, yet susceptible to cGAS/STING detection. Overall, HPV evades cGAS/STING by its unique subcellular trafficking, a property that may contribute to establishment of infection.  相似文献   

4.
Ataxia‐telangiectasia (A‐T) is a genetic disorder caused by the lack of functional ATM kinase. A‐T is characterized by chronic inflammation, neurodegeneration and premature ageing features that are associated with increased genome instability, nuclear shape alterations, micronuclei accumulation, neuronal defects and premature entry into cellular senescence. The causal relationship between the detrimental inflammatory signature and the neurological deficiencies of A‐T remains elusive. Here, we utilize human pluripotent stem cell‐derived cortical brain organoids to study A‐T neuropathology. Mechanistically, we show that the cGAS‐STING pathway is required for the recognition of micronuclei and induction of a senescence‐associated secretory phenotype (SASP) in A‐T olfactory neurosphere‐derived cells and brain organoids. We further demonstrate that cGAS and STING inhibition effectively suppresses self‐DNA‐triggered SASP expression in A‐T brain organoids, inhibits astrocyte senescence and neurodegeneration, and ameliorates A‐T brain organoid neuropathology. Our study thus reveals that increased cGAS and STING activity is an important contributor to chronic inflammation and premature senescence in the central nervous system of A‐T and constitutes a novel therapeutic target for treating neuropathology in A‐T patients.  相似文献   

5.
A cyclic dinucleotide comprised of GMP and AMP was previously shown to be a key intermediate during activation of innate immune responses to cytosolic DNA. A report by Patel and Tuschl groups published in Cell reveals the structure of the enzyme involved in the synthesis of this second messenger and identifies this cyclic dinucleotide as a unique compound in metazoan cell signaling.For more than 100 years it has been known that DNA stimulates immune responses1. Hence, when DNA reaches the cytoplasmic compartment in a cell, no matter originating from an infectious agent like viruses or from the damaged nucleus or mitochondria, it is recognized as a sign of danger. DNA can provoke severe consequences as it can be seen from aberrant recognition of lost DNA in autoimmune conditions such as systemic lupus erythematous and Sjogren''s syndrome. To perceive such a dreadful insult, several DNA-sensing proteins are present in mammalian cells. Some of these DNA sensors activate a cytoplasmic protein called stimulator of interferon (IFN) genes (STING). STING then turns on a series of protein kinases, culminating in the production of type I IFNs and other cytokines that participate in host immune responses2. Gaining details about the structures and the mechanisms associated with such cellular responses has been a matter of great interest in the immunology field and may bear relevance for both infectious and autoimmune conditions.It was recently demonstrated that STING activation by DNA is mediated by a cyclic dinucleotide comprised of GMP and AMP, called cGAMP. Hence, upon infection with DNA viruses or delivery of DNA into the cytoplasm of some immune cells, cGAMP levels build up, and the dinucleotide binds directly to STING, leading to type I IFN production through activation of IRF3 via TBK13. Therefore, cGAMP acts as a second messenger during DNA-triggered innate immune response. It was also shown that cGAMP synthesis relies on the activity of the enzyme cyclic GMP-AMP synthase (cGAS), which belongs to the nucleotidyltransferase family4. cGAS, therefore, acts as a cytoplasmic DNA sensor that generates the second messenger cGAMP, essential for activating STING-mediated type I IFN production.Cyclic dinucleotides are well-known bacterial intracellular signal transducers, and cyclic di-GMP (c-di-GMP) has been acknowledged as a universal bacterial second messenger5. The structural and biochemical analysis of the bacterial enzymes responsible for the synthesis of this second messenger suggested that c-di-GMP is formed from two molecules of GTP via a two-step reaction that generates a 3′-5′-phosphodiester linkage between the two GMP nucleotides6. Taking the bacterial synthesis as a model and based on the fact that chemically synthesized cGAMP with the 3′-5′-phosphodiester linkage stimulates STING-dependent type I IFN production in mammalian cells3, one would assume that cGAS-derived cGAMP likely contains the same phosphodiester linkage. However, in an outstanding paper published by Cell, Gao et al.7 challenged this view. Combining structural, chemical, biochemical and biological techniques, they definitely establish that cGAMP contains a 2′-5′ linkage, position this second messenger as the first 2′-5′ linkage-containing metazoan second messenger ever described, and distinguish it from the bacterial cyclic dinucleotides. The previous study had concluded that the form of cGAMP generated in mammalian cells was a 3′-5′-phosphodiester nucleotide. In this study, however, Gao et al. identify cGAMP as actually cyclic [G(2′,5′)pA(3′,5′)p] cGAMP. This form is unique to metazoans. The bacterial form is therefore subtly different and is less potent as an activator of STING3.As a first approach for understanding the mechanisms involved in cGAMP synthesis after DNA recognition, the authors compared the structure of the crystalized cGAS in its free state with the structure of the enzyme complexed with double-stranded DNA (dsDNA). dsDNA interaction with the enzyme led to pronounced conformational changes on the protein, allowing cGAS to adopt a catalytically competent conformation, a feature considered to be essential for a cytosolic DNA sensor. Comparison of the structures of the dsDNA-bound cGAS complexed with GTP, or with GMP + ATP or with GTP + ATP suggested that one of the phosphodiester linkages in the dinucleotide produced by the reaction was of the 2′-5′ nature, in contrast to the previously assumed 3′-5′ conformation. This unexpected result was supported by biochemical analysis and confirmed after comparison of the purified cGAS-derived product with chemically synthesized dinucleotide standards.The authors have also provided evidence suggesting that cyclization occurs in a stepwise manner and showed that a pair of divalent cations is necessary for phosphodiester bond formation. Finally, the use of functional mutants of the dsDNA-binding site or of the catalytic pocket of cGAS reinforced the conclusions gained from the structural analysis, confirming the importance of complex formation between cGAS and dsDNA and of the nucleotide-interacting residues in the catalytic pocket for activity of cGAS and consequent STING-mediated type I IFN production.The great amount of data presented by Gao et al. provide detailed information regarding the synthesis of cGAMP by cGAS, and valuable knowledge for understanding the control of cellular responses to cytosolic DNA (Figure 1). Although 2′-5′ bonds were previously shown to occur in mammalian biochemical reactions during the polymerization of ATP into linear oligoadenilate by the dsRNA sensor oligoadenylate synthetase 1 (OAS1)8, this is the first documented case of such a linkage in dinucleotides. This kind of phosphodiester bond is uncommon, and few nucleases are reported to be able to hydrolyze 2′-5′ linkages9. This might promote a greater stability of the second messenger in cells and consequently enable effective and, maybe, long-lasting signal transduction. This unique structure establishes cGAMP as a founding member of a potentially broader class of metazoan second messengers. Importantly, the fact that the second messenger and the enzymes involved in dinucleotide synthesis in bacterial systems present some structural distinctions from the ones found in metazoan cells points to features that may be explored for selectively targeting the prokaryotic or the metazoan pathway. In addition, although it was not clearly demonstrated that cGAS and cGAMP directly impact in autoimmune responses, the structural and biochemical information provided by Gao et al. may bear relevance for the development of small molecule inhibitors with therapeutic potentials in such conditions.Open in a separate windowFigure 1The study by Gao et al. shows that, upon DNA recognition in cytoplasm, cGAS suffers a conformational shift that allows it to convert GTP and ATP nucleotides into the cyclic compound cGAMP, containing the [G(2′,5′)pA(3′,5′)p] linkages. The 2′-5′ linkage is a unique feature of metazoan cyclic dinucleotides, as bacterial ones described so far present exclusively 3′-5′ phosphodiester bonds. cGAMP subsequently binds to STING, leading to TBK1-mediated IRF3 activation and robust type I IFN production.  相似文献   

6.
5‐Fluorouracil (5‐FU) is a widely used chemotherapeutic drug, but the mechanisms underlying 5‐FU efficacy in immunocompetent hosts in vivo remain largely elusive. Through modeling 5‐FU response of murine colon and melanoma tumors, we report that effective reduction of tumor burden by 5‐FU is dependent on anti‐tumor immunity triggered by the activation of cancer‐cell‐intrinsic STING. While the loss of STING does not induce 5‐FU resistance in vitro, effective 5‐FU responsiveness in vivo requires cancer‐cell‐intrinsic cGAS, STING, and subsequent type I interferon (IFN) production, as well as IFN‐sensing by bone‐marrow‐derived cells. In the absence of cancer‐cell‐intrinsic STING, a much higher dose of 5‐FU is needed to reduce tumor burden. 5‐FU treatment leads to increased intratumoral T cells, and T‐cell depletion significantly reduces the efficacy of 5‐FU in vivo. In human colorectal specimens, higher STING expression is associated with better survival and responsiveness to chemotherapy. Our results support a model in which 5‐FU triggers cancer‐cell‐initiated anti‐tumor immunity to reduce tumor burden, and our findings could be harnessed to improve therapeutic effectiveness and toxicity for colon and other cancers.  相似文献   

7.
cGAS, an innate immune sensor of cellular stress, recognizes double‐stranded DNA mislocalized in the cytosol upon infection, mitochondrial stress, DNA damage, or malignancy. Early models suggested that cytosolic localization of cGAS prevents autoreactivity to nuclear and mitochondrial self‐DNA, but this paradigm has shifted in light of recent findings of cGAS as a predominantly nuclear protein tightly bound to chromatin. This has raised the question how nuclear cGAS is kept inactive while being surrounded by chromatin, and what function nuclear localization of cGAS may serve in the first place? Cryo‐EM structures have revealed that cGAS interacts with nucleosomes, the minimal units of chromatin, mainly via histones H2A/H2B, and that these protein–protein interactions block cGAS from DNA binding and thus prevent autoreactivity. Here, we discuss the biological implications of nuclear cGAS and its interaction with chromatin, including various mechanisms for nuclear cGAS inhibition, release of chromatin‐bound cGAS, regulation of different cGAS pools in the cell, and chromatin structure/chromatin protein effects on cGAS activation leading to cGAS‐induced autoimmunity.  相似文献   

8.
DNA methylation is a fundamental epigenetic modification, important across biological processes. The maintenance methyltransferase DNMT1 is essential for lineage differentiation during development, but its functions in tissue homeostasis are incompletely understood. We show that epidermis‐specific DNMT1 deletion severely disrupts epidermal structure and homeostasis, initiating a massive innate immune response and infiltration of immune cells. Mechanistically, DNA hypomethylation in keratinocytes triggered transposon derepression, mitotic defects, and formation of micronuclei. DNA release into the cytosol of DNMT1‐deficient keratinocytes activated signaling through cGAS and STING, thus triggering inflammation. Our findings show that disruption of a key epigenetic mark directly impacts immune and tissue homeostasis, and potentially impacts our understanding of autoinflammatory diseases and cancer immunotherapy.  相似文献   

9.
10.
Intracellular recognition of non‐self and also self‐nucleic acids can result in the initiation of potent pro‐inflammatory and antiviral cytokine responses. Most recently, cGAS was shown to be critical for the recognition of cytoplasmic dsDNA. Binding of dsDNA to cGAS results in the synthesis of cGAMP(2′–5′), which then binds to the endoplasmic reticulum resident protein STING. This initiates a signaling cascade that triggers the induction of an antiviral immune response. While most studies on intracellular nucleic acids have focused on dsRNA or dsDNA, it has remained unexplored whether cytosolic RNA:DNA hybrids are also sensed by the innate immune system. Studying synthetic RNA:DNA hybrids, we indeed observed a strong type I interferon response upon cytosolic delivery of this class of molecule. Studies in THP‐1 knockout cells revealed that the recognition of RNA:DNA hybrids is completely attributable to the cGAS–STING pathway. Moreover, in vitro studies showed that recombinant cGAS produced cGAMP upon RNA:DNA hybrid recognition. Altogether, our results introduce RNA:DNA hybrids as a novel class of intracellular PAMP molecules and describe an alternative cGAS ligand next to dsDNA.  相似文献   

11.
12.
The detection of cytosolic DNA, derived from pathogens or host cells, by cytosolic receptors is essential for appropriate host immune responses. Cyclic GMP-AMP synthase (cGAS) is a newly identified cytosolic DNA receptor that produces cyclic GMP-AMP, which activates stimulator of interferon genes (STING), resulting in TBK1-IRF3 pathway activation followed by the production of type I interferons. Here we report the crystal structure of human cGAS. The structure revealed that a cluster of lysine and arginine residues forms the positively charged DNA binding surface of human cGAS, which is important for the STING-dependent immune activation. A structural comparison with other previously determined cGASs and our functional analyses suggested that a conserved zinc finger motif and a leucine residue on the DNA binding surface are crucial for the DNA-specific immune response of human cGAS, consistent with previous work. These structural features properly orient the DNA binding to cGAS, which is critical for DNA-induced cGAS activation and STING-dependent immune activation. Furthermore, we showed that the cGAS-induced activation of STING also involves the activation of the NF-κB and IRF3 pathways. Our results indicated that cGAS is a DNA sensor that efficiently activates the host immune system by inducing two distinct pathways.  相似文献   

13.
Nucleic acid sensing through pattern recognition receptors is critical for immune recognition of microbial infections. Microbial DNA is frequently methylated at the N6 position of adenines (m6A), a modification that is rare in mammalian host DNA. We show here how that m6A methylation of 5′-GATC-3′ motifs augments the immunogenicity of synthetic double-stranded (ds)DNA in murine macrophages and dendritic cells. Transfection with m6A-methylated DNA increased the expression of the activation markers CD69 and CD86, and of Ifnβ, iNos and Cxcl10 mRNA. Similar to unmethylated cytosolic dsDNA, recognition of m6A DNA occurs independently of TLR and RIG-I signalling, but requires the two key mediators of cytosolic DNA sensing, STING and cGAS. Intriguingly, the response to m6A DNA is sequence-specific. m6A is immunostimulatory in some motifs, but immunosuppressive in others, a feature that is conserved between mouse and human macrophages. In conclusion, epigenetic alterations of DNA depend on the context of the sequence and are differentially perceived by innate cells, a feature that could potentially be used for the design of immune-modulating therapeutics.  相似文献   

14.
Negative regulation of immune pathways is essential to achieve resolution of immune responses and to avoid excess inflammation. DNA stimulates type I IFN expression through the DNA sensor cGAS, the second messenger cGAMP, and the adaptor molecule STING. Here, we report that STING degradation following activation of the pathway occurs through autophagy and is mediated by p62/SQSTM1, which is phosphorylated by TBK1 to direct ubiquitinated STING to autophagosomes. Degradation of STING was impaired in p62‐deficient cells, which responded with elevated IFN production to foreign DNA and DNA pathogens. In the absence of p62, STING failed to traffic to autophagy‐associated vesicles. Thus, DNA sensing induces the cGAS‐STING pathway to activate TBK1, which phosphorylates IRF3 to induce IFN expression, but also phosphorylates p62 to stimulate STING degradation and attenuation of the response.  相似文献   

15.
The host takes use of pattern recognition receptors (PRRs) to defend against pathogen invasion or cellular damage. Among microorganism-associated molecular patterns detected by host PRRs, nucleic acids derived from bacteria or viruses are tightly supervised, providing a fundamental mechanism of host defense. Pathogenic DNAs are supposed to be detected by DNA sensors that induce the activation of NFκB or TBK1-IRF3 pathway. DNA sensor cGAS is widely expressed in innate immune cells and is a key sensor of invading DNAs in several cell types. cGAS binds to DNA, followed by a conformational change that allows the synthesis of cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) from adenosine triphosphate and guanosine triphosphate. cGAMP is a strong activator of STING that can activate IRF3 and subsequent type I interferon production. Here we describe recent progresses in DNA sensors especially cGAS in the innate immune responses against pathogenic DNAs.  相似文献   

16.
Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif protein 30α (TRIM30α) was induced by herpes simplex virus type 1 (HSV-1) infection in dendritic cells (DCs). Knockdown or genetic ablation of TRIM30α augmented the type I IFNs and interleukin-6 response to intracellular DNA and DNA viruses. Trim30α-deficient mice were more resistant to infection by DNA viruses. Biochemical analyses showed that TRIM30α interacted with the stimulator of interferon genes (STING), which is a critical regulator of the DNA-sensing response. Overexpression of TRIM30α promoted the degradation of STING via K48-linked ubiquitination at Lys275 through a proteasome-dependent pathway. These findings indicate that E3 ligase TRIM30α is an important negative-feedback regulator of innate immune responses to DNA viruses by targeting STING.  相似文献   

17.
Cyclic GMP‐AMP (cGAMP) is an immunostimulatory molecule produced by cGAS that activates STING. cGAMP is an adjuvant when administered alongside antigens. cGAMP is also incorporated into enveloped virus particles during budding. Here, we investigate whether inclusion of cGAMP within viral vaccine vectors enhances their immunogenicity. We immunise mice with virus‐like particles (VLPs) containing HIV‐1 Gag and the vesicular stomatitis virus envelope glycoprotein G (VSV‐G). cGAMP loading of VLPs augments CD4 and CD8 T‐cell responses. It also increases VLP‐ and VSV‐G‐specific antibody titres in a STING‐dependent manner and enhances virus neutralisation, accompanied by increased numbers of T follicular helper cells. Vaccination with cGAMP‐loaded VLPs containing haemagglutinin induces high titres of influenza A virus neutralising antibodies and confers protection upon virus challenge. This requires cGAMP inclusion within VLPs and is achieved at markedly reduced cGAMP doses. Similarly, cGAMP loading of VLPs containing the SARS‐CoV‐2 Spike protein enhances Spike‐specific antibody titres. cGAMP‐loaded VLPs are thus an attractive platform for vaccination.  相似文献   

18.
Oligonucleotide-based therapeutics have the capacity to engage with nucleic acid immune sensors to activate or block their response, but a detailed understanding of these immunomodulatory effects is currently lacking. We recently showed that 2′-O-methyl (2′OMe) gapmer antisense oligonucleotides (ASOs) exhibited sequence-dependent inhibition of sensing by the RNA sensor Toll-Like Receptor (TLR) 7. Here we discovered that 2′OMe ASOs can also display sequence-dependent inhibitory effects on two major sensors of DNA, namely cyclic GMP-AMP synthase (cGAS) and TLR9. Through a screen of 80 2′OMe ASOs and sequence mutants, we characterized key features within the 20-mer ASOs regulating cGAS and TLR9 inhibition, and identified a highly potent cGAS inhibitor. Importantly, we show that the features of ASOs inhibiting TLR9 differ from those inhibiting cGAS, with only a few sequences inhibiting both pathways. Together with our previous studies, our work reveals a complex pattern of immunomodulation where 95% of the ASOs tested inhibited at least one of TLR7, TLR9 or cGAS by ≥30%, which may confound interpretation of their in vivo functions. Our studies constitute the broadest analysis of the immunomodulatory effect of 2′OMe ASOs on nucleic acid sensing to date and will support refinement of their therapeutic development.  相似文献   

19.
20.
Damaged deoxyribonucleic acid (DNA) is a primary pathologic factor for osteoarthritis (OA); however, the mechanism by which DNA damage drives OA is unclear. Previous research demonstrated that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) participates in DNA damage response. As a result, the current study aimed at exploring the role STING, which is the major effector in the cGAS-STING signaling casacde, in OA progress in vitro, as well as in vivo. In this study, the expression of STING was evaluated in the human and mouse OA tissues, and in chondrocytes exposed to interleukin-1 beta (IL-1β). The influences of STING on the metabolism of the extracellular matrix (ECM), apoptosis, and senescence, were assessed in STING overexpressing and knocking-down chondrocytes. Moreover, the NF-κB-signaling casacde and its role in the regulatory effects of STING on ECM metabolism, apoptosis, and senescence were explored. The STING knockdown lentivirus was intra-articularly injected to evaluate its therapeutic impact on OA in mice in vivo. The results showed that the expression of STING was remarkably elevated in the human and mouse OA tissues and in chondrocytes exposed to IL-1β. Overexpression of STING promoted the expression of MMP13, as well as ADAMTS5, but suppressed the expression of Aggrecan, as well as Collagen II; it also enhanced apoptosis and senescence in chondrocytes exposed to and those untreated with IL-1β. The mechanistic study showed that STING activated NF-κB signaling cascade, whereas the blockage of NF-κB signaling attenuated STING-induced apoptosis and senescence, and ameliorated STING-induced ECM metabolism imbalance. In in vivo study, it was demonstrated that STING knockdown alleviated destabilization of the medial meniscus-induced OA development in mice. In conclusion, STING promotes OA by activating the NF-κB signaling cascade, whereas suppression of STING may provide a novel approach for OA therapy.Subject terms: Apoptosis, Senescence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号