首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

2.

Introduction

Allograft rejection is still an important complication after kidney transplantation. Currently, monitoring of these patients mostly relies on the measurement of serum creatinine and clinical evaluation. The gold standard for diagnosing allograft rejection, i.e. performing a renal biopsy is invasive and expensive. So far no adequate biomarkers are available for routine use.

Objectives

We aimed to develop a urine metabolite constellation that is characteristic for acute renal allograft rejection.

Methods

NMR-Spectroscopy was applied to a training cohort of transplant recipients with and without acute rejection.

Results

We obtained a metabolite constellation of four metabolites that shows promising performance to detect renal allograft rejection in the cohorts used (AUC of 0.72 and 0.74, respectively).

Conclusion

A metabolite constellation was defined with the potential for further development of an in-vitro diagnostic test that can support physicians in their clinical assessment of a kidney transplant patient.
  相似文献   

3.

Introduction

Mass spectrometry is the current technique of choice in studying drug metabolism. High-resolution mass spectrometry in combination with MS/MS gas-phase experiments has the potential to contribute to rapid advances in this field. However, the data emerging from such fragmentation spectral files pose challenges to downstream analysis, given their complexity and size.

Objectives

This study aims to detect and visualize antihypertensive drug metabolites in untargeted metabolomics experiments based on the spectral similarity of their fragmentation spectra. Furthermore, spectral clusters of endogenous metabolites were also examined.

Methods

Here we apply a molecular networking approach to seek drugs and their metabolites, in fragmentation spectra from urine derived from a cohort of 26 patients on antihypertensive therapy. The mass spectrometry data was collected on a Thermo Q-Exactive coupled to pHILIC chromatography using data dependent analysis (DDA) MS/MS gas-phase experiments.

Results

In total, 165 separate drug metabolites were found and structurally annotated (17 by spectral matching and 122 by classification based on a clustered fragmentation pattern). The clusters could be traced to 13 drugs including the known antihypertensives verapamil, losartan and amlodipine. The molecular networking approach also generated clusters of endogenous metabolites, including carnitine derivatives, and conjugates containing glutamine, glutamate and trigonelline.

Conclusions

The approach offers unprecedented capability in the untargeted identification of drugs and their metabolites at the population level and has great potential to contribute to understanding stratified responses to drugs where differences in drug metabolism may determine treatment outcome.
  相似文献   

4.
5.

Introduction

In systems biology, where a main goal is acquiring knowledge of biological systems, one of the challenges is inferring biochemical interactions from different molecular entities such as metabolites. In this area, the metabolome possesses a unique place for reflecting “true exposure” by being sensitive to variation coming from genetics, time, and environmental stimuli. While influenced by many different reactions, often the research interest needs to be focused on variation coming from a certain source, i.e. a certain covariable \(\mathbf {X}_m\).

Objective

Here, we use network analysis methods to recover a set of metabolite relationships, by finding metabolites sharing a similar relation to \(\mathbf {X}_m\). Metabolite values are based on information coming from individuals’ \(\mathbf {X}_m\) status which might interact with other covariables.

Methods

Alternative to using the original metabolite values, the total information is decomposed by utilizing a linear regression model and the part relevant to \(\mathbf {X}_m\) is further used. For two datasets, two different network estimation methods are considered. The first is weighted gene co-expression network analysis based on correlation coefficients. The second method is graphical LASSO based on partial correlations.

Results

We observed that when using the parts related to the specific covariable of interest, resulting estimated networks display higher interconnectedness. Additionally, several groups of biologically associated metabolites (very large density lipoproteins, lipoproteins, etc.) were identified in the human data example.

Conclusions

This work demonstrates how information on the study design can be incorporated to estimate metabolite networks. As a result, sets of interconnected metabolites can be clustered together with respect to their relation to a covariable of interest.
  相似文献   

6.

Introduction

Metabolite identification in biological samples using Nuclear Magnetic Resonance (NMR) spectra is a challenging task due to the complexity of the biological matrices.

Objectives

This paper introduces a new, automated computational scheme for the identification of metabolites in 1D 1H NMR spectra based on the Human Metabolome Database.

Methods

The methodological scheme comprises of the sequential application of preprocessing, data reduction, metabolite screening and combination selection.

Results

The proposed scheme has been tested on the 1D 1H NMR spectra of: (a) an amino acid mixture, (b) a serum sample spiked with the amino acid mixture, (c) 20 blood serum, (d) 20 human amniotic fluid samples, (e) 160 serum samples from publicly available database. The methodological scheme was compared against widely used software tools, exhibiting good performance in terms of correct assignment of the metabolites.

Conclusions

This new robust scheme accomplishes to automatically identify peak resonances in 1H-NMR spectra with high accuracy and less human intervention with a wide range of applications in metabolic profiling.
  相似文献   

7.

Introduction

Metabolomics technologies enable the identification of putative biomarkers for numerous diseases; however, the influence of confounding factors on metabolite levels poses a major challenge in moving forward with such metabolites for pre-clinical or clinical applications.

Objectives

To address this challenge, we analyzed metabolomics data from a colorectal cancer (CRC) study, and used seemingly unrelated regression (SUR) to account for the effects of confounding factors including gender, BMI, age, alcohol use, and smoking.

Methods

A SUR model based on 113 serum metabolites quantified using targeted mass spectrometry, identified 20 metabolites that differentiated CRC patients (n?=?36), patients with polyp (n?=?39), and healthy subjects (n?=?83). Models built using different groups of biologically related metabolites achieved improved differentiation and were significant for 26 out of 29 groups. Furthermore, the networks of correlated metabolites constructed for all groups of metabolites using the ParCorA algorithm, before or after application of the SUR model, showed significant alterations for CRC and polyp patients relative to healthy controls.

Results

The results showed that demographic covariates, such as gender, BMI, BMI2, and smoking status, exhibit significant confounding effects on metabolite levels, which can be modeled effectively.

Conclusion

These results not only provide new insights into addressing the major issue of confounding effects in metabolomics analysis, but also shed light on issues related to establishing reliable biomarkers and the biological connections between them in a complex disease.
  相似文献   

8.
9.

Introduction

The Latitudinal Gradient Hypothesis (LGH) foresees that specialized metabolites are overexpressed under low latitudes, where organisms are subjected to higher herbivory pressure. The widespread macroalga Asparagopsis taxiformis is composed of six distinct genetic lineages, some of them being introduced in many regions.

Objectives

To study (i) metabolic fingerprints of the macroalga and (ii) its bioactivity in space and time, both as proxies of its investment in defensive traits, in order to assess links between bioactivities and metabotypes with macroalgal invasiveness.

Methods

289 macroalgal individuals, from four tropical and three temperate regions, were analyzed using untargeted metabolomics and the standardized Microtox® assay.

Results

Metabotypes showed a low divergence between tropical and temperate populations, while bioactivities were higher in temperate populations. However, these phenotypes varied significantly in time, with a higher variability in tropical regions. Bioactivities were high and stable in temperate regions, whereas they were low and much variable in tropical regions. Although the introduced lineage two exhibited the highest bioactivities, this lineage could also present variable proliferation fates.

Conclusion

The metabolomic approach partly discriminates macroalgal populations from various geographic origins. The production of chemical defenses assessed by the bioactivity assay does not match the macroalgal genetic lineage and seems more driven by the environment. The higher content of chemical defenses in temperate versus tropical populations is not in accordance with the LGH and cannot be related to the invasiveness of the macroalgae.
  相似文献   

10.

Introduction

Seed germination is inherently related to seed metabolism, which changes throughout its maturation, desiccation and germination processes. The metabolite content of a seed and its ability to germinate are determined by underlying genetic architecture and environmental effects during development.

Objective

This study aimed to assess an integrative approach to explore genetics modulating seed metabolism in different developmental stages and the link between seed metabolic- and germination traits.

Methods

We have utilized gas chromatography-time-of-flight/mass spectrometry (GC-TOF/MS) metabolite profiling to characterize tomato seeds during dry and imbibed stages. We describe, for the first time in tomato, the use of a so-called generalized genetical genomics (GGG) model to study the interaction between genetics, environment and seed metabolism using 100 tomato recombinant inbred lines (RILs) derived from a cross between Solanum lycopersicum and Solanum pimpinellifolium.

Results

QTLs were found for over two-thirds of the metabolites within several QTL hotspots. The transition from dry to 6 h imbibed seeds was associated with programmed metabolic switches. Significant correlations varied among individual metabolites and the obtained clusters were significantly enriched for metabolites involved in specific biochemical pathways.

Conclusions

Extensive genetic variation in metabolite abundance was uncovered. Numerous identified genetic regions that coordinate groups of metabolites were detected and these will contain plausible candidate genes. The combined analysis of germination phenotypes and metabolite profiles provides a strong indication for the hypothesis that metabolic composition is related to germination phenotypes and thus to seed performance.
  相似文献   

11.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

12.

Introduction

Experiments in metabolomics rely on the identification and quantification of metabolites in complex biological mixtures. This remains one of the major challenges in NMR/mass spectrometry analysis of metabolic profiles. These features are mandatory to make metabolomics asserting a general approach to test a priori formulated hypotheses on the basis of exhaustive metabolome characterization rather than an exploratory tool dealing with unknown metabolic features.

Objectives

In this article we propose a method, named ASICS, based on a strong statistical theory that handles automatically the metabolites identification and quantification in proton NMR spectra.

Methods

A statistical linear model is built to explain a complex spectrum using a library containing pure metabolite spectra. This model can handle local or global chemical shift variations due to experimental conditions using a warping function. A statistical lasso-type estimator identifies and quantifies the metabolites in the complex spectrum. This estimator shows good statistical properties and handles peak overlapping issues.

Results

The performances of the method were investigated on known mixtures (such as synthetic urine) and on plasma datasets from duck and human. Results show noteworthy performances, outperforming current existing methods.

Conclusion

ASICS is a completely automated procedure to identify and quantify metabolites in 1H NMR spectra of biological mixtures. It will enable empowering NMR-based metabolomics by quickly and accurately helping experts to obtain metabolic profiles.
  相似文献   

13.

Introduction

Onion (Allium cepa) represents one of the most important horticultural crops and is used as food, spice and medicinal plant almost worldwide. Onion bulbs accumulate a broad range of primary and secondary metabolites which impact nutritional, sensory and technological properties.

Objectives

To complement existing analytical methods targeting individual compound classes this work aimed at the development and validation of an analytical workflow for comprehensive metabolite profiling of onion bulbs.

Method

Metabolite profiling was performed by liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (LC/ESI-QTOFMS). For annotation of metabolites accurate mass tandem mass spectrometry experiments were carried out.

Results

On the basis of LC/ESI-QTOFMS and two chromatographic methods an analytical workflow was developed which facilitates profiling of polar and semi-polar onion metabolites including fructooligosaccharides, proteinogenic amino acids, peptides, S-substituted cysteine conjugates, flavonoids and saponins. To minimize enzymatic conversion of S-alk(en)ylcysteine sulfoxides, a sample preparation and extraction protocol for fresh onions was developed comprising cryohomogenization and a low-temperature quenching step. A total of 123 metabolites were annotated and characterized by chromatographic and tandem mass spectral data. For validation, recovery rates and matrix effects were determined for 15 model compounds. Repeatability and linearity were assessed for more than 80 endogenous metabolites.

Conclusion

As exemplarily demonstrated by comparative metabolic analysis of six onion cultivars the established analytical workflow in combination with targeted and non-targeted data analysis strategies can be successfully applied for comprehensive metabolite profiling of onion bulbs.
  相似文献   

14.

Introduction

Untargeted and targeted analyses are two classes of metabolic study. Both strategies have been advanced by high resolution mass spectrometers coupled with chromatography, which have the advantages of high mass sensitivity and accuracy. State-of-art methods for mass spectrometric data sets do not always quantify metabolites of interest in a targeted assay efficiently and accurately.

Objectives

TarMet can quantify targeted metabolites as well as their isotopologues through a reactive and user-friendly graphical user interface.

Methods

TarMet accepts vendor-neutral data files (NetCDF, mzXML and mzML) as inputs. Then it extracts ion chromatograms, detects peak position and bounds and confirms the metabolites via the isotope patterns. It can integrate peak areas for all isotopologues automatically.

Results

TarMet detects more isotopologues and quantify them better than state-of-art methods, and it can process isotope tracer assay well.

Conclusion

TarMet is a better tool for targeted metabolic and stable isotope tracer analyses.
  相似文献   

15.

Introduction

Aqueous–methanol mixtures have successfully been applied to extract a broad range of metabolites from plant tissue. However, a certain amount of material remains insoluble.

Objectives

To enlarge the metabolic compendium, two ionic liquids were selected to extract the methanol insoluble part of trunk from Betula pendula.

Methods

The extracted compounds were analyzed by LC/MS and GC/MS.

Results

The results show that 1-butyl-3-methylimidazolium acetate (IL-Ac) predominantly resulted in fatty acids, whereas 1-ethyl-3-methylimidazolium tosylate (IL-Tos) mostly yielded phenolic structures. Interestingly, bark yielded more ionic liquid soluble metabolites compared to interior wood.

Conclusion

From this one can conclude that the application of ionic liquids may expand the metabolic snapshot.
  相似文献   

16.

Introduction

Few studies have investigated the influence of storage conditions on urine samples and none of them used targeted mass spectrometry (MS).

Objectives

We investigated the stability of metabolite profiles in urine samples under different storage conditions using targeted metabolomics.

Methods

Pooled, fasting urine samples were collected and stored at ?80 °C (biobank standard), ?20 °C (freezer), 4 °C (fridge), ~9 °C (cool pack), and ~20 °C (room temperature) for 0, 2, 8 and 24 h. Metabolite concentrations were quantified with MS using the AbsoluteIDQ? p150 assay. We used the Welch-Satterthwaite-test to compare the concentrations of each metabolite. Mixed effects linear regression was used to assess the influence of the interaction of storage time and temperature.

Results

The concentrations of 63 investigated metabolites were stable at ?20 and 4 °C for up to 24 h when compared to samples immediately stored at ?80 °C. When stored at ~9 °C for 24 h, few amino acids (Arg, Val and Leu/Ile) significantly decreased by 40% in concentration (P < 7.9E?04); for an additional three metabolites (Ser, Met, Hexose H1) when stored at ~20 °C reduced up to 60% in concentrations. The concentrations of four more metabolites (Glu, Phe, Pro, and Thr) were found to be significantly influenced when considering the interaction between exposure time and temperature.

Conclusion

Our findings indicate that 78% of quantified metabolites were stable for all examined storage conditions. Particularly, some amino acid concentrations were sensitive to changes after prolonged storage at room temperature. Shipping or storing urine samples on cool packs or at room temperature for more than 8 h and multiple numbers of freeze and thaw cycles should be avoided.
  相似文献   

17.
18.

Background

Recently, measuring phenotype similarity began to play an important role in disease diagnosis. Researchers have begun to pay attention to develop phenotype similarity measurement. However, existing methods ignore the interactions between phenotype-associated proteins, which may lead to inaccurate phenotype similarity.

Results

We proposed a network-based method PhenoNet to calculate the similarity between phenotypes. We localized phenotypes in the network and calculated the similarity between phenotype-associated modules by modeling both the inter- and intra-similarity.

Conclusions

PhenoNet was evaluated on two independent evaluation datasets: gene ontology and gene expression data. The result shows that PhenoNet performs better than the state-of-art methods on all evaluation tests.
  相似文献   

19.

Introduction

In Northern Europe, maize early-sowing used to maximize yield may lead to moderate damages of seedlings due to chilling without visual phenotypes. Genetic studies and breeding for chilling tolerance remain necessary, and metabolic markers would be particularly useful in this context.

Objectives

Using an untargeted metabolomic approach on a collection of maize hybrids, our aim was to identify metabolite signatures and/or metabolites associated with chilling responses at the vegetative stage, to search for metabolites differentiating groups of hybrids based on silage-earliness, and to search for marker-metabolites correlated with aerial biomass.

Methods

Thirty genetically-diverse maize dent inbred-lines (Zea mays) crossed to a flint inbred-line were sown in a field to assess metabolite profiles upon cold treatment induced by a modification of sowing date, and characterized with climatic measurements and phenotyping.

Results

NMR- and LC-MS-based metabolomic profiling revealed the biological variation of primary and specialized metabolites in young leaves of plants before flowering-stage. The effect of early-sowing on leaf composition was larger than that of genotype, and several metabolites were associated to sowing response. The metabolic distances between genotypes based on leaf compositional data were not related to the genotype admixture groups, and their variability was lower under early-sowing than normal-sowing. Several metabolites or metabolite-features were related to silage-earliness groups in the normal-sowing condition, some of which were confirmed the following year. Correlation networks involving metabolites and aerial biomass suggested marker-metabolites for breeding for chilling tolerance.

Conclusion

After validation in other experiments and larger genotype panels, these marker-metabolites can contribute to breeding.
  相似文献   

20.

Background

Considering that approximately 15% of the nine million new tuberculosis (TB) cases reported per annum are not treated successfully, new, distinctive and specific biomarkers are needed to better characterize the biological basis of a poor treatment outcome.

Methods

Urine samples from 41 active pulmonary TB patients were collected at baseline (time of diagnosis), during treatment (weeks 1, 2 and 4) and 2 weeks after treatment completion (week 26). These samples were divided into successful (cured) and unsuccessful (failed) treatment outcome groups and analyzed using a GCxGC-TOFMS metabolomics research approach.

Results

The metabolite data collected showed clear differentiation of the cured and failed treatment outcome groups using the samples collected at the time of diagnosis, i.e. before any treatment was administered.

Conclusions

The treatment failure group was characterized by an imbalanced gut microbiome, in addition to elevated levels of metabolites associated with abnormalities in the long-chain fatty acid β-oxidation pathway, accompanied by reduced l-carnitine and short-chain fatty acids, indicative of a mitochondrial trifunctional protein defect in particular. Furthermore, an altered amino acid metabolism was also observed in these patients, which confirms previous findings and associations to increased interferon gamma due to the host’s immune response to M. tuberculosis and a compromised insulin secretion.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号