首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Destruction of cyclin B is required for exit from mitosis and meiosis. A cyclin-specific ubiquitinating system, including cyclin-selective ubiquitin carrier protein (E2-C), is thought to be responsible for cyclin B destruction. Here we present the cloning, sequencing and expression analysis of goldfish, Carassius auratus, E2-C which encodes the cyclin-selective ubiquitin carrier protein from goldfish ovary. The cloned cDNA is 677 bp long and encodes 172 amino acids. The deduced amino acid sequence is highly homologous to E2-C from other species. Recombinant goldfish E2-C possesses ubiquitinating activity against cyclin B. The expression of mRNA for E2-C was similar to that of mRNA for cyclin B, occurring at very high level in the ovary. The similarity of the expression pattern of E2-C and cyclin B suggests that E2-C mediates a cyclin-specific ubiquitination.  相似文献   

2.
Destruction of cyclin B is required for exit from mitosis and meiosis. A cyclin-degrading system, including anaphase-promoting-complex/cyclosome (APC/C), has been shown to be responsible for cyclin B destruction. Here we present the cloning, sequencing, and expression analysis of goldfish (Carassius auratus) APC11, which encodes the catalytic component of APC/C from goldfish ovary. The cloned cDNA is 348 bp long and encodes 88 amino acids. The deduced amino acid sequence is highly homologous to APC11 from other species. The expression of mRNA for APC11 was ubiquitous among tissues, as opposed to that of mRNA for E2-C, which occurred at a very high level in the ovary. Recombinant goldfish APC11 possesses ubiquitinating activity against cyclin B. We established an in vitro ubiquitinating system of proteins composed of purified recombinant E1, E2-C, and APC11 from goldfish. The reconstructed system for these ubiquitinating enzymes makes it feasible to elucidate the molecular mechanism of cyclin B degradation.  相似文献   

3.
Cdk2 kinase activity increases during oocyte maturation but neither cyclin A nor B is associated with Cdk2 in mature oocytes in goldfish. As a potential Cdk2 partner in meiosis, a cyclin E homolog was isolated from a goldfish oocyte cDNA library. A monoclonal antibody was raised against bacterially produced full-length goldfish cyclin E. Both cyclin E and Cdk2 were already present in immature oocytes and their protein levels did not change remarkably during oocyte maturation. Cyclin E formed a complex mainly with Cdk2 just at the time of germinal vesicle breakdown (GVBD) in association with the increase in Cdk2 kinase activity, although a fraction of cyclin E bound to Cdk(s) other than Cdk2 and Cdc2. Ectopic activation of cyclin E/Cdk2 by the injection of cyclin E messenger RNA (mRNA) into immature oocytes did not induce maturation-promoting factor (MPF) activation and GVBD. Furthermore, inhibition of cyclin E/Cdk2 kinase activity by the injection of p21SDI1 into the oocytes treated with 17alpha,20beta-dihydroxy-4-pregnen-3-one had no effect on MPF activation and GVBD. These results indicate that cyclin E/Cdk2 kinase activity is insufficient and unnecessary for initiating goldfish oocyte maturation.  相似文献   

4.
Under the influence of maturation-inducing hormone (MIH) secreted from follicle cells, oocyte maturation is finally triggered by maturation-promoting factor (MPF), which consists of a homolog of the cdc2+ gene product of fission yeast (p34cdc2) and cyclin B. Two species of cyclin B clones were isolated from a cDNA library constructed from mature goldfish oocytes. Sequence comparisons revealed that these two clones are highly homologous (95%) and were found to be similar to Xenopus cyclin B1. Using monoclonal antibodies against Escherichia coli-produced goldfish cyclin B and the PSTAIR sequence of p34cdc2, we examined the levels of cyclin B and p34cdc2 proteins during goldfish oocyte maturation induced in vitro by 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one (17 alpha, 20 beta-DP), a natural MIH in fish. Protein p34cdc2 was found in immature oocyte extracts and did not remarkably change during oocyte maturation. Cyclin B was not detected in immature oocyte extracts and appeared when oocytes underwent germinal vesicle breakdown. Cyclin B that appeared during oocyte maturation was labelled with [35S]methionine, indicating its de novo synthesis. Introduction of E. coli-produced cyclin B into immature oocyte extracts induced p34cdc2 (MPF) activation. Although the possibility that immature goldfish oocytes contain an insoluble cyclin B is not completely excluded, these results strongly suggest that 17 alpha, 20 beta-DP induces oocytes to synthesize cyclin B, which in turn activates preexisting p34cdc2, forming active MPF.  相似文献   

5.
In fish and amphibians, B-type lamins are divided into somatic (B1, B2) and oocyte-type (B3) lamins. In this study, we purified nuclear lamins from rainbow trout erythrocytes, raised an anti-lamin monoclonal antibody (L-200) that recognizes goldfish somatic-lamins, and isolated cDNAs encoding goldfish B-type lamins (B1 and B2) from a goldfish cell culture cDNA library. Goldfish B-type lamins are structurally similar to lamins found in other vertebrates with minor amino acid substitutions in the conserved region. Western blot analysis showed that goldfish oocytes contained mainly GV-lamin B3 as well as some somatic lamins. Laser-confocal microscope observations revealed that lamin B3 was present only in GV nuclear lamina, whereas somatic lamins were present in dense fibrillar structures throughout nuclear gels of isolated GVs. Similar nuclear filamentous structures were also observed in GVs of paraffin embedded oocytes. Epitope mapping indicated that L-200 recognized a conserved region containing a short stretch of the alpha-helix coiled-coil rod domain (Y(E/Q)(Q/E)LL). A similar motif is also present in other cytoplasmic intermediate filaments (i.e., vimentin, desmin, peripherin and GFAP). Taken together, these findings suggest that lamins or lamin-related intermediate filaments are an important component of the interior architecture of goldfish vitellogenic oocyte nuclei (GVs).  相似文献   

6.
Molecular Basis of Transferrin Polymorphism in Goldfish (Carassius auratus)   总被引:1,自引:0,他引:1  
Yang L  Zhou L  Gui JF 《Genetica》2004,121(3):303-313
Transferrin (TF) polymorphism was investigated in a color variety of goldfish (Carassius auratus), and its molecular basis analyzed. Three TF variants (A1, A2 and B1) were identified from an inbred strain of the goldfish, of which A1 and B1 displayed a large electrophoretic difference on both native and SDS-PAGE gels. The TF cDNAs corresponding to variants A1 and B1 were cloned and sequenced from A1A1, A1B1 and B1B1 individuals, and their deduced amino acid sequences were analyzed. Substantial amino acid variation occurred between variants A1 and B1, with significant differences in peptide length, theoretical molecular weight (Mw) and isoelectric point (pI). No potential glycosylation sites were observed in the two amino acid sequences, which excluded the possibility that carbohydrate difference might cause electrophoretic variation among the TF variants. Further analysis suggested that the distinct electrophoretic mobility of the two variants A1 and B1 by SDS-PAGE resulted from their Mw difference, while the difference by the native PAGE could be explained by their pI variation. Furthermore, genomic DNA fragments containing the transferrin alleles were amplified and subjected to RFLP analysis in A1A1, A1B1 and B1B1 individuals. The data revealed characteristic banding patterns for each TF genotype, and demonstrated that the TF alleles A1 and B1 could be used as a co-dominant marker system. The initial work relating to the goldfish TF variants will benefit the understanding of the evolutionary and functional significance of TF polymorphism in fish.  相似文献   

7.
Immediately before the transition from metaphase to anaphase, the protein kinase activity of maturation or M-phase promoting factor (MPF) is inactivated by a mechanism that involves the degradation of its regulatory subunit, cyclin B. The availability of biologically active goldfish cyclin B produced in Escherichia coli and purified goldfish proteasomes (a nonlysosomal large protease) has allowed the role of proteasomes in the regulation of cyclin degradation to be examined for the first time. The 26S, but not the 20S proteasome, digested recombinant 49-kD cyclin B at lysine 57 (K57), producing a 42-kD truncated form. The 42-kD cyclin was also produced by the digestion of native cyclin B forming a complex with cdc2, a catalytic subunit of MPF, and a fragment transiently appeared during cyclin degradation when eggs were released from metaphase II arrest by egg activation. Mutant cyclin at K57 was resistant to both digestion by the 26S proteasome and degradation at metaphase/anaphase transition in Xenopus egg extracts. The results of this study indicate that the destruction of cyclin B is initiated by the ATP-dependent and ubiquitin-independent proteolytic activity of 26S proteasome through the first cutting in the NH2 terminus of cyclin (at K57 in the case of goldfish cyclin B). We also surmise that this cut allows the cyclin to be ubiquitinated for further destruction by ubiquitin-dependent activity of the 26S proteasome that leads to MPF inactivation.  相似文献   

8.
This paper reports the nucleotide and predicted amino acid sequences of the goldfish cdk2, a cognate variant of the cell cycle regulator cdc2. The predicted protein sequence shows strong homology to the other known cdk2 (88% for Xenopus and 90% for human). A monoclonal antibody against the C-terminal sequence of goldfish cdk2 recognized a 34-kDa protein in extracts from various goldfish tissues. The protein level was high in such tissues as testis and ovary containing actively dividing cells. Protein cdk2 binds to p13sucl, the fission yeast suc1+ gene product, but not to cyclin B, with which cdc2 forms a complex. The kinase activity of cdk2 increased 30-fold when oocytes matured, although its protein level did not remarkably change. Anti-cdk2 immunoprecipitates from 32P-labeled mature oocyte extracts contained a 47-kDa protein, which was not recognized by either anti-cyclin A or anti-cyclin B antibody, indicating complex formation of cdk2 with a protein other than cyclins A or B.  相似文献   

9.
The degradation of the cyclin B subunit of protein kinase Cdk1/cyclin B is required for inactivation of the kinase and exit from mitosis. Cyclin B is degraded by the ubiquitin pathway, a system involved in most selective protein degradation in eukaryotic cells. In this pathway, proteins are targeted for degradation by ligation to ubiquitin, a process carried out by the sequential action of three enzymes: the ubiquitin-activating enzyme E1, a ubiquitin-carrier protein E2 and a ubiquitin-protein ligase E3. In the system responsible for cyclin B degradation, the E3-like function is carried out by a large complex called cyclosome or anaphase-promoting complex (APC). In the early embryonic cell cycles, the cyclosome is inactive in the interphase, but becomes active at the end of mitosis. Activation requires phosphorylation of the cyclosome/APC by protein kinase Cdk1/cyclin B. The lag kinetics of cyclosome activation may be explained by Suc1-assisted multiple phosphorylations of partly phosphorylated complex. The presence of a Fizzy/Cdc20-like protein is necessary for maximal activity of the mitotic form of cyclosome/APC in cyclin-ubiquitin ligation.  相似文献   

10.
UbcH10 is known to act as a ubiquitin-conjugating enzyme (E2) for anaphase-promoting complex/cyclosome. Since some E2s support different ubiquitin ligases (E3), it is possible that UbcH10 interacts with other proteins. We cloned a novel protein named H10BH by using a yeast two-hybrid screening method with UbcH10 as bait. The carboxyl terminus of H10BH showed a weak homology to the HECT (homologous to E6-AP carboxyl terminus) domain, which is conserved in one of the families of E3. H10BH bound UbcH10, and the amino acid sequence between 235 and 257 was necessary for this binding. H10BH showed a self-ubiquitinylation activity in a HECT-like sequence-dependent manner. The carboxyl terminal half (amino acids 188-389) showed stronger activity than the full-length H10BH. Furthermore, the carboxyl terminal half of H10BH was able to bind cyclin B and ubiquitinylate cyclin B in vitro. These results suggest that H10BH functions as an E3 using UbcH10 for its E2.  相似文献   

11.
Jia X  Liu B  Shi X  Gao A  You B  Ye M  Shen F  Du H 《Cell biology international》2006,30(2):183-189
Benzo(a)pyrene [B(a)P] is a potent environmental carcinogen, which induces cell cycle changes. All-trans retinoic acid (ATRA) is a promising agent in prevention and treatment of human cancers. In the present study, we investigated the inhibition of B(a)P-induced cell cycle progression by ATRA in human embryo lung fibroblast (HELF). Our results showed that after treatment with B(a)P, the expression of cyclin D1 and E2F-1 were both increased significantly in HELF. There were almost no changes of CDK4 and E2F-4 expression by treatment with B(a)P. As expected, pretreatment with ATRA could efficiently decrease B(a)P-induced overexpression of cyclin D1 and E2F-1. In a further study, we stably transfected antisense cyclin D1 and antisense CDK4 plasmid into HELF. The inhibition of cyclin D1 expression and the inhibition of CDK4 expression significantly impaired the B(a)P-induced overexpression of E2F-1 respectively. Pretreatment with ATRA, cells expressing antisense cyclinD1 or antisense CDK4 showed a lesser decrease of B(a)P-induced overexpression of E2F-1 compared with similarly treated HELF. Furthermore, flow cytometry analysis showed that B(a)P promoted cell cycle progression from G(1) phase to S phase, while pretreatment with ATRA could inhibit B(a)P-induced cell cycle progression by an accumulation of cells in the G(1) phase. It was suggested that ATRA could block B(a)P-induced cell cycle promotion partly through the cyclin D1/E2F-1 pathway in HELF.  相似文献   

12.
The anaphase-promoting complex (APC) is a ubiquitin-protein ligase (E3) that targets cell cycle regulators such as cyclin B and securin for degradation. The APC11 subunit functions as the catalytic core of this complex and mediates the transfer of ubiquitin from a ubiquitin-conjugating enzyme (E2) to the substrate. APC11 contains a RING-H2-finger domain, which includes one histidine and seven cysteine residues that coordinate two Zn(2+) ions. We now show that exposure of purified APC11 to H(2)O(2) (0.1 to 1 mM) induced the release of bound zinc as a result of the oxidation of cysteine residues. It also impaired the physical interaction between APC11 and the E2 enzyme Ubc4 as well as inhibited the ubiquitination of cyclin B1 by APC11. The release of HeLa cells from metaphase arrest in the presence of exogenous H(2)O(2) inhibited the ubiquitination of cyclin B1 as well as the degradation of cyclin B1 and securin that were apparent in the absence of H(2)O(2). The presence of H(2)O(2) also blocked the co-immunoprecipitation of Ubc4 with APC11 and delayed the exit of cells from mitosis. Inhibition of APC11 function by H(2)O(2) thus likely contributes to the delay in cell cycle progression through mitosis that is characteristic of cells subjected to oxidative stress.  相似文献   

13.
1. The activity of glycogen phosphorylase in goldfish liver is fivefold greater than that in carp liver, suggesting that the enzyme may not be as important in regulating glycogenolysis in the latter species. 2. The activity of gamma-amylase is comparable in carp and goldfish liver. 3. The activity of hepatic gamma-amylase is approximately one-half that of glycogen phosphorylase in carp whereas in goldfish, the activity of gamma-amylase is less than one-sixth that of phosphorylase. Hepatic gamma-amylase may be an important glycogenolytic enzyme in carp but makes an insignificant contribution to glycogenolysis in goldfish.  相似文献   

14.
Overexpression of cyclin E, an activator of cyclin-dependent kinase 2, has been linked to human cancer. In cell culture models, the forced expression of cyclin E leads to aneuploidy and polyploidy, which is consistent with a direct role of cyclin E overexpression in tumorigenesis. In this study, we show that the overexpression of cyclin E has a direct effect on progression through the latter stages of mitotic prometaphase before the complete alignment of chromosomes at the metaphase plate. In some cases, such cells fail to divide chromosomes, resulting in polyploidy. In others, cells proceed to anaphase without the complete alignment of chromosomes. These phenotypes can be explained by an ability of overexpressed cyclin E to inhibit residual anaphase-promoting complex (APC(Cdh1)) activity that persists as cells progress up to and through the early stages of mitosis, resulting in the abnormal accumulation of APC(Cdh1) substrates as cells enter mitosis. We further show that the accumulation of securin and cyclin B1 can account for the cyclin E-mediated mitotic phenotype.  相似文献   

15.
16.
Nuclear interaction partner of ALK (NIPA) is an F-box-containing protein that defines a nuclear skp1 cullin F-box (SCF)-type ubiquitin E3 ligase (SCFNIPA) implicated in the regulation of mitotic entry. The SCFNIPA complex targets nuclear cyclin B1 for ubiquitination in interphase, whereas phosphorylation of NIPA in late G2 phase and mitosis inactivates the complex to allow for accumulation of cyclin B1. Here, we identify the region of NIPA that mediates binding to its substrate cyclin B1. In addition to the recently described serine residue 354, we specify 2 new residues, Ser-359 and Ser-395, implicated in the phosphorylation process at G2/M within this region. Moreover, we found cyclin B1/Cdk1 to phosphorylate NIPA at Ser-395 in mitosis. Mutation of both Ser-359 and Ser-395 impaired effective inactivation of the SCFNIPA complex, resulting in reduced levels of mitotic cyclin B1. These data are compatible with a process of sequential NIPA phosphorylation where cyclin B1/Cdk1 amplifies phosphorylation of NIPA once an initial phosphorylation event has dissociated the SCFNIPA complex. Thus, cyclin B1/Cdk1 may contribute to the regulation of its own abundance in early mitosis.  相似文献   

17.
We have isolated a second goldfish estrogen receptor (ER) beta-subtype (gfER-beta2) cDNA which is distinct from the liver-derived ER-beta (gfER-beta1) cDNA reported previously. The 2650-bp cDNA, isolated from a goldfish pituitary and brain cDNA library, encodes a 610 amino acid (aa) protein which shows only a 53% aa sequence identity with gfER-beta1 in overall structure. RT-PCR analysis showed that mRNA of gfER-beta2, in contrast to that of gfER-beta1, was predominantly expressed in pituitary, telencephalon and hypothalamus as well as in liver of female goldfish. The existence of a second distinct ER-beta subtype opens new dimensions for studying tissue-specific regulation of gene expression by estrogen in the tetraploid goldfish.  相似文献   

18.
The cytokine leukemia inhibitory factor (LIF) and its receptor LIFR have been extensively characterized in mammals. LIF has been shown to mediate the proliferation, differentiation and activation of a number of cell types in various tissues. This paper reports on the identification of a novel LIFR isolated from goldfish (Carassius auratus) macrophages. Goldfish LIFR shares a 26% amino acid sequence identity with mammalian LIFR sequences; however it retains all of the conserved amino acid motifs that identify a functional LIFR such as the cytokine binding domains and the box-1 and box-2 motifs. The goldfish LIFR phylogenetically groups with the other identified LIFRs from human, mouse, rat and chicken, and it appears to be ancestral to the divergence of the oncostatin M receptor (OSMR). The tissue expression of goldfish LIFR is observed in the gill, kidney and brain as well as sorted goldfish macrophages which exhibit higher expression than monocytes and early progenitor cells.  相似文献   

19.
The Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) is a virus-encoded latent antigen essential for primary B-cell transformation. In this report we demonstrate that although the carboxy terminus of EBNA3C predominantly regulates cyclin A-dependent kinase activity, the region of greatest affinity for cyclin A lies within the EBNA3 amino-terminal homology domain of EBNA3C. Detailed mapping studies employing both in vitro binding assays and coimmunoprecipitation experiments implicated a small region of EBNA3C, amino acids 130 to 159 within the EBNA3 homology domain, as having the greatest affinity for cyclin A. The EBNA3 homology domain has the highest degree of amino acid similarity (approximately 30%) between the EBNA3 proteins, and, indeed, EBNA3B, but not EBNA3A, showed binding activity with cyclin A. We also show that EBNA3C binds to the alpha1 helix of the highly conserved mammalian cyclin box, with cyclin A amino acids 206 to 226 required for strong binding to EBNA3C amino acids 130 to 159. Interestingly, EBNA3C also bound human cyclins D1 and E in vitro, although the affinity was approximately 30% of that seen for cyclin A. Previously it was demonstrated that full-length EBNA3C rescues p27-mediated suppression of cyclin A-dependent kinase activity (J. S. Knight and E. S. Robertson, J. Virol. 78:1981-1991, 2004). It was also demonstrated that the carboxy terminus of EBNA3C recapitulates this phenotype. Surprisingly, the amino terminus of EBNA3C with the highest affinity for cyclin A was unable to rescue p27 suppression of kinase activity and actually downregulates cyclin A activity when introduced into EBV-infected cells. The data presented here suggests that the amino terminus of EBNA3C may play an important role in recruiting cyclin A complexes, while the carboxy terminus of EBNA3C is necessary for the functional modulation of cyclin A complex kinase activity.  相似文献   

20.
We have isolated the Bradyrhizobium japonicum gene encoding glutamine synthetase I (glnA) from a phage lambda library by using a fragment of the Escherichia coli glnA gene as a hybridization probe. The rhizobial glnA gene has homology to the E. coli glnA gene throughout the entire length of the gene and can complement an E. coli glnA mutant when borne on an expression plasmid in the proper orientation to be transcribed from the E. coli lac promoter. High levels of glutamine synthetase activity can be detected in cell-free extracts of the complemented E. coli. The enzyme encoded by the rhizobial gene was identified as glutamine synthetase I on the basis of its sedimentation properties and resistance to heat inactivation. DNA sequence analysis predicts a high level of amino acid sequence homology among the amino termini of B. japonicum, E. coli, and Anabaena sp. strain 7120 glutamine synthetases. S1 nuclease protection mapping indicates that the rhizobial gene is transcribed from a single promoter 131 +/- 2 base pairs upstream from the initiation codon. This glnA promoter is active when B. japonicum is grown both symbiotically and in culture with a variety of nitrogen and carbon sources. There is no detectable sequence homology between the constitutively expressed glnA promoter and the differentially regulated nif promoters of the same B. japonicum strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号