首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mog1 is conserved from yeast to mammal, but its function is obscure. We isolated yeast genes that rescued a temperature-sensitive death of S. cerevisiae Scmog1Δ, and of S. pombe Spmog1ts. Scmog1Δ was rescued by Opi3p, a phospholipid N-methyltransferase, in addition to S. cerevisiae Ran-homologue Gsp1p, and a RanGDP binding protein Ntf2p. On the other hand, Spmog1ts was rescued by Cid13 that is a poly (A) polymerase specific for suc22+ mRNA encoding a subunit of ribonucleotide reductase, Ssp1 that is a protein kinase involved in stress response pathway, and Crp79 that is required for mRNA export, in addition to Spi1, S. pombe Ran-homologue, and Nxt2, S. pombe homologue of Ntf2p. Consistent with the identification of those suppressors, lack of ScMog1p dislocates Opi3p from the nuclear membrane and all of Spmog1ts showed the nuclear accumulation of mRNA. Furthermore, SpMog1 was co-precipitated with Nxt2 and Cid13.  相似文献   

2.
Y. Landry  A. Goffeau 《BBA》1975,376(3):470-484
1. The oligomycin-sensitive ATPase activity of submitochondrial particles of the glycerol-grown “petite-negative” yeast: Schizosaccharomyces pombe is markedly stimulated by incubation at 40°C and by trypsin activations are treatment. Both increased in Triton-X 100 extracts of the submitochondrial particles.

2. A trypsin-sensitive inhibitory factor of mitochondrial ATPase with properties similar to that of beef heart has been extracted and purified from glycerolgrown and glucose-grown S. pombe wild type, from the nuclear pleiotropic respiratory-deficient mutant S. pombe M126 and from Saccharomyces cerevisiae.

3. ATPase activation by heat is more pronounced in submitochondrial particles isolated from glycerol-grown than from glucose-grown S. pombe. An activation of lower extent is observed in rat liver mitochondrial particles but is barely detectable in the “petite-positive” yeast: S. cerevisiae. No activation but inhibition by heat is observed in the pleitotropic respiratory-deficient nuclear mutant S. pombe M126.

4. The inhibition of S. pombe ATPase activity by low concentrations of dicyclohexylcarbodiimide dissapears at inhibitor concentrations above 25 μM. In Triton-extract of submitochondrial particles net stimulation of ATPase activity is observed at 100 μM dicyclohexylcarbodiimide. The pattern of stimulation of ATPase activity by dicyclohexylcarbodiimide in different genetic and physiological conditions parallels that produced by heat and trypsin. A similar mode of action is therefore proposed for the three agents: dissociation or inactivation of an ATPase inhibitory factor.

5. We conclude that “petite-positive” and “petite-negative” yeasts contain an ATPase inhibitor factor with properties similar to those of the bovine mitochondrial ATPase inhibitor. The expression of the ATPase inhibitor, measured by ATPase activation by heat, trypsin or high concentrations of dicyclohexylcarbodiimide, is sensitive to alterations of the hydrophobic membrane environment and dependent on both physiological state and genetic conditions of the yeast cells.  相似文献   


3.
R C Dickson 《Gene》1980,10(4):347-356
Three recombinant DNA vectors carrying the β-galactosidase structural gene, LAC4, from the yeast Kluyveromyces lactis were constructed and transformed into Saccharomyces cerevisiae. All transformants expressed the β-galactosidase activity of LAC4. However, the level of enzyme activity varied, being highest in cells transformed with vectors which are maintained as multicopy plasmids and lowest in cells transformed with a vector which integrates into chromosomes. Enzyme levels probably reflect gene dosage. LAC4 is very stable when integrated into a chromosome, but unstable when carried on a plasmid. Therefore, stability is a property of the recombinant vector rather than of LAC4, LAC4-coded β-galactosidase synthesized in either S. cerevisiae or in K. lactis is the same as judged by two-dimensional polyacrylamide gel electrophoresis. However, S. cerevisiae transformed with  相似文献   

4.
Warren WD  Lin E  Nheu TV  Hime GR  McKay MJ 《Gene》2000,250(1-2):77-84
Cohesin is an evolutionarily conserved multiprotein complex required to establish and maintain sister chromatid cohesion. Here, we report the cloning and initial characterization of the Drosophila homologue of the fission yeast rad21 cohesin subunit, called Drad21. The Drad21 coding region was localized to centromeric heterochromatin and encodes a 715 amino acid (aa) protein with 42% aa identity to vertebrate Rad21p-homologues, 25% with Scc1p/Mcd1p (S. cerevisiae) and 28% with Rad21p (S. pombe). Sequences with similarity to the sites of proteolytic cleavage identified in Scc1p/Mcd1p are not evident in DRAD21. Northern blot and mRNA in-situ studies show that Drad21 is developmentally regulated, with high levels of expression in early embryogenesis, in S-phase cells of proliferating imaginal tissues, and in the early endocycling cells of the embryonic gut.  相似文献   

5.
Three hundred sixty-one yeast strains (80 of which ascribable to Saccharomyces cerevisiae) were isolated from Sicilian musts and wines with the purpose of looking for β-glucosidase (βG, EC 3.2.1.21) activity. Of these, the AL 41 strain had highest endogenous βG activity and was identified as belonging to the species S. cerevisiae by biochemical and molecular methods. This enzyme was subsequently characterized. It had optimum effect at pH 3.5–4.0, whilst optimum temperature was 20 °C, compatible with typical wine-cellar conditions; it was not inhibited by ethanol, at concentrations of 12–14%, or fructose and glucose. The βG was also characterised in terms of the kinetic parameters Km (2.55 mM) and Vmax (1.71 U mg−1 of protein). Finally, it remained stable for at least 35 days in model solutions of must and wine.  相似文献   

6.
Mutants of the fission yeast Schizosaccharomyces pombe which are sensitive to UV and/or γ-irradiation have been assigned to 23 complementation groups, which can be assigned to three phenotypic groups. We have cloned genes which correct the deficiency in mutants corresponding to 12 of the complementation groups. Three genes in the excision-repair pathway have a high degree of sequence conservation with excision-repair genes from the evolutionarily distant budding yeast Saccharomyces cerevisiae. In contrast, those genes in the recombination repair pathway which have been characterised so far, show little homology with any previously characterised genes.  相似文献   

7.
8.
Murakumo Y 《Mutation research》2002,510(1-2):37-44
Translesion DNA synthesis (TLS) is an important damage tolerance system which rescues cells from severe injuries caused by DNA damage. Specialized low fidelity DNA polymerases in this system synthesize DNA past lesions on the template DNA strand, that replicative DNA polymerases are usually unable to pass through. However, in compensation for cell survival, most polymerases in this system are potentially mutagenic and sometimes introduce mutations in the next generation. In yeast Saccharomyces cerevisiae (S. cerevisiae), DNA polymerase ζ, which consists of Rev3 and Rev7 proteins, and Rev1 are known to be involved in most damage-induced and spontaneous mutations. The human homologs of S. cerevisiae REV1, REV3, and REV7 were identified, and it is revealed that the human REV proteins have similar functions to their yeast counterparts, however, a large part of the mechanisms of mutagenesis employing REV proteins are still unclear. Recently, the new findings about REV proteins were reported, which showed that REV7 interacts not only with REV3 but also with REV1 in human and that REV7 is involved in cell cycle control in Xenopus. These findings give us a new point of view for further investigation about REV proteins. Recent studies of REV proteins are summarized and several points are discussed.  相似文献   

9.
The therapeutic enzyme asparaginase, which is used for the treatment of acute lymphoblastic leukaemia, is industrially produced by the bacteria Escherichia coli or Erwinia crysanthemi. In spite of its effectiveness as a therapeutic agent, the drug causes severe immunological reactions. As asparaginase is also produced by the yeast Saccharomyces cerevisiae, this microorganism could be considered for the production of the enzyme, providing an alternative antitumoral agent. In this study the ASP3 gene, that codes for the periplasmic, nitrogen regulated, asparaginase II from S. cerevisiae, was cloned and expressed in the methylotrophic yeast Pichia pastoris, under the control of the AOX1 gene promoter. Similarly to S. cerevisiae the heterologous enzyme was addressed to the P. pastoris cell periplasmic space. Enzyme yield per dry cell mass reached 800 U g−1, which was seven fold higher than that obtained using a nitrogen de-repressed ure2 dal80 S. cerevisiae strain. High cell density cultures performed with P. pastoris harbouring the ASP3 gene using a 2 l instrumented bioreactor, where biomass concentration reached 107 g l−1, resulted in a dramatic increase in volumetric yield (85,600 U l−1) and global volumetric productivity (1083 U l−1 h−1).  相似文献   

10.
A soluble protein from Saccharomyces cerevisiae acts as a peroxidase but requires a NADPH-dependent thioredoxin system and was named thioredoxin peroxidase (TPx). The role of TPx in aging of stationary cultures of S. cerevisiae was investigated in a wild-type strain and a mutant yeast strain in which the tsa gene that encodes TPx was disrupted by homologous recombination. The occurrence of oxidative stress during aging of stationary cultures of the yeast has been proposed. Comparison of 5-day-old (young) stationary cultures of S. cerevisiae and of cultures aged for 3 months (old) revealed decreased viability, increased generation of reactive oxygen species, modulation of cellular redox status, and increased cellular oxidative damage reflected by increased protein carbonyl content and lipid peroxidation. The magnitude of this stress was augmented in yeast mutant lacking TPx. These results suggest that TPx may play a direct role in cellular defense against aging of stationary cultures presumably, functioning as an antioxidant enzyme.  相似文献   

11.
L Ferraro  F Fatichenti  M Ciani   《Process Biochemistry》2000,35(10):1125-1129
Sequential grape juice fermentation first with immobilized Candida stellata and then with an inoculum of Saccharomyces cerevisiae was carried out at pilot scale and under non-sterile conditions in order to evaluate the dynamics of yeast microflora and their influence on the analytical profile of wine. Non-Saccharomyces yeast were adequately controlled while S. cerevisiae wild strains were consistently present after 3 days of fermentation and could compete with the inoculated S. cerevisiae strain. However, the metabolism of immobilized C. stellata cells strongly influenced the analytical profile of wines with a consistent increase in glycerol (70%) and succinic acid content in comparison with values for a S. cerevisiae fermentation control.  相似文献   

12.
Mian Wu  Hai-Meng Tan 《Gene》1994,150(2):401-402
The nucleotide sequence of RPS26, the gene encoding a homologue of ribosomal protein small subunit S26 in Saccharomyces cerevisiae, was determined. The deduced amino-acid sequence showed significant identity with its counter- parts from Neurospora crassa, human, rat and Arabidopsis thaliana. Disruption of RPS26 resulted in the formation of micro-colonies, suggesting that it is important for the normal cell growth of S. cerevisiae.  相似文献   

13.
8-Oxo-7,8-dihydroguanine (8-oxoG) is produced abundantly in DNA exposed to free radicals and reactive oxygen species. The biological relevance of 8-oxoG has been unveiled by the study of two mutator genes in Escherichia coli, fpg, and mutY. Both genes code for DNA N-glycosylases that cooperate to prevent the mutagenic effects of 8-oxoG in DNA. In Saccharomyces cerevisiae, the OGG1 gene encodes a DNA N-glycosylase/AP lyase, which is the functional homologue of the bacterial fpg gene product. The inactivation of OGG1 in yeast creates a mutator phenotype that is specific for the generation of GC to TA transversions. In yeast, nucleotide excision repair (NER) also contributes to the release of 8-oxoG in damaged DNA. Furthermore, mismatch repair (MMR) mediated by MSH2/MSH6/MLH1 plays a major role in the prevention of the mutagenic effect of 8-oxoG. Indeed, MMR acts as the functional homologue of the MutY protein of E. coli, excising the adenine incorporated opposite 8-oxoG. Finally, the efficient and accurate replication of 8-oxoG by the yeast DNA polymerase η also prevents 8-oxoG-induced mutagenesis. The aim of this review is to summarize recent literature dealing with the replication and repair of 8-oxoG in Saccharomyces cerevisiae, which can be used as a paradigm for DNA repair in eukaryotes.  相似文献   

14.
目的:利用酿酒酵母表面展示技术筛选幽门螺杆菌候选疫苗,并分析其免疫原性。方法:以幽门螺杆菌的空泡型细胞毒素A(vacA)基因作为研究对象,构建重组S.cerevisiae EBY100/pYD1-VacA,通过Western blot、免疫荧光标记和流式细胞仪对S.cerevisiae EBY100/pYD1-VacA进行体外表达分析。以PBS和S.cerevisiae EBY100/pYD1为对照组,S.cerevisiae EBY100/pYD1-VacA为实验组,口服免疫SPF级BALB/c小鼠。通过ELISA分析检测口服免疫后小鼠抗VacA特异性IgG及分泌型IgA效价。结果:VacA抗原蛋白被成功地展示在S.cerevisiae EBY100表面。小鼠经口服免疫S.cerevisiae EBY100/pYD1-VacA后可诱导产生较高的VacA特异性抗体。结论:表面展示型酿酒酵母可以作为幽门螺杆菌候选疫苗的递送载体,与此同时,这也为开发其他细菌或病毒疫苗提供新思路。  相似文献   

15.
邴健  白逢彦 《菌物学报》2018,37(11):1441-1453
近年来的基因组学研究结果已证实拉格啤酒酵母Saccharomyces pastorianus是一个由艾尔啤酒酵母S. cerevisiae和真贝氏酿酒酵母S. eubayanus杂交而成的杂交种,并可根据地域传承和染色体倍性分为两个株系,即I型/Saaz系和II型/Frohberg系。前者主要为异源3倍体,后者则主要为异源4倍体。为了探讨中国啤酒酿造酵母菌的物种和菌系归属,我们根据拉格啤酒酵母及其两个菌系的基因组特性,制定了一套基于IntFR片段种特异性扩增和ITS-RFLP分析的精确但简便易行的拉格啤酒酵母菌物种和株系鉴定新方法,并以酿酒酵母属内相关种的模式或权威菌株和部分酒精及面包酵母为参照,对保藏于中国普通微生物菌种保藏中心(CGMCC)的41株啤酒酿造酵母菌进行了重新鉴定和分型。这些菌株除1株原定名为贝氏酿酒酵母S. bayanus外,其余菌株的原定名均为S. cerevisiae。研究结果确认了S. bayanus菌株鉴定的正确性,但在其余的40株啤酒酵母菌株中,21株属于S. cerevisiae,1株属于葡萄汁酿酒酵母S. uvarum,18株属于S. pastorianus。菌系鉴定和流式细胞测定结果显示在确认的S. pastorianus菌株中,1株为I型/Saaz系,3倍体;17株为II型/Frohberg系,其中9株为4倍体,两株为3倍体,5株介于3倍至4倍体之间。啤酒酵母物种和株系的确认对优化发酵工艺和菌种选育及遗传改造等具有重要意义。  相似文献   

16.
RNA polymerase II subunit composition, stoichiometry, and phosphorylation were investigated in Saccharomyces cerevisiae by attaching an epitope coding sequence to a well-characterized RNA polymerase II subunit gene (RPB3) and by immunoprecipitating the product of this gene with its associated polypeptides. The immunopurified enzyme catalyzed alpha-amanitin-sensitive RNA synthesis in vitro. The 10 polypeptides that immunoprecipitated were identical in size and number to those previously described for RNA polymerase II purified by conventional column chromatography. The relative stoichiometry of the subunits was deduced from knowledge of the sequence of the subunits and from the extent of labeling with [35S]methionine. Immunoprecipitation from 32P-labeled cell extracts revealed that three of the subunits, RPB1, RPB2, and RPB6, are phosphorylated in vivo. Phosphorylated and unphosphorylated forms of RPB1 could be distinguished; approximately half of the RNA polymerase II molecules contained a phosphorylated RPB1 subunit. These results more precisely define the subunit composition and phosphorylation of a eucaryotic RNA polymerase II enzyme.  相似文献   

17.
Polymerase chain reaction using degenerate primers was used to identify genes encoding proteins of the ATP-binding cassette superfamily in Aspergillus fumigatus and Aspergillus flavus. In A. fumigatus, two genes (AfuMDR1 and AfuMDR2) encoding proteins of the ATP-binding cassette superfamily were identified. One gene (AflMDR1) was isolated from A. flavus and is the apparent homologue to AfuMDR1. AfuMDR1and AflMDR1 encode proteins of molecular weights 148 000 and 143 000, respectively, each containing 12 putative transmembrane regions and two ATP-binding sites. These proteins are arranged in two homologous halves, each half consisting of a hydrophobic region (encoding six putative transmembrane domains) and an ATP-binding site. The AfuMDR1 and AflMDR1-encoded proteins bear a high degree of similarity to the Schizosaccharomyces pombe leptomycin B resistance protein and to human MDR1. The second gene identified in A. fumigatus, AfuMDR2, encodes a protein of molecular weight 85 000, containing four putative transmembrane domains and an ATP binding domain. The encoded protein is similar to those encoded by MDL1 and MDL2, two MDR-like genes of Saccharomyces cerevisiae. Expression of AFUMDR1 in S. cerevisiae conferred increased resistance to the antifungal agent cilofungin (LY121019), an echinocandin B analog.  相似文献   

18.
Quinn Lu  John C. Bauer  Alan Greener 《Gene》1997,200(1-2):135-144
We have established a eukaryotic protein expression and purification system by using the yeast Schizosaccharomyces pombe as the host and the glutathione S-transferase (GST) as a protein purification tag. This system provides opportunities for rapid, inexpensive, and high yield production of proteins in a eukaryotic organism. Unlike E. coli, S. pombe provides for post-translational modifications of the proteins, which are often critical for the structure and function of eukaryotic proteins. Two vectors have been constructed for protein expression in S. pombe, pESP-1 and pESP-2. Both vectors use the nmt1 promoter for constitutive or induced expression of the gene of interest. Expressed GST-tagged proteins are easily and rapidly purified using glutathione agarose beads. The GST tag can be removed from the fusion proteins by treatment with either the thrombin or enterokinase protease. Proteins expressed from the pESP-2 vector will yield native amino acid sequence when the GST tag is removed by treatment with enterokinase. Nine proteins have been purified by using the system with yields ranging from 1.0 mg/l to 12.5 mg/l of induced culture.  相似文献   

19.
Fungi and humans: closer than you think   总被引:2,自引:0,他引:2  
The budding yeast, Saccharomyces cerevisiae, has long been used as a model system to study the functions of human genes. Now that the genome sequences from several other fungal species are nearly complete, we can characterize the genetic diversity in the fungal kingdom at the genomic level. This diversity means that the number of human genes with homologues in the fungal kingdom is double that with homologues in S. cerevisiae only. Therefore, functional studies of human genes in the fungal model systems should look beyond S. cerevisiae.  相似文献   

20.
Sassa H  Oguchi S  Inoue T  Hirano H 《Gene》2000,250(1-2):61-66
The 20S proteasome is the proteolytic complex that is involved in removing abnormal proteins, and it also has other diverse biological functions. Its structure comprises 28 subunits arranged in four rings of seven subunits, and exists as a hollow cylinder. The two outer rings and two inner rings form an 7β7β77 structure, and each subunit, and β, exists as seven different types, thus giving 14 kinds of subunits. In this study, we report the primary structures of the 14 proteasomal subunit subfamilies in rice (Oryza sativa), representing the first set for all of the subunits from monocots. Amino acid sequence homology within the rice family (-type: 28.9–42.1%; β-type: 17.2–31.9%) were lower than those between rice subunits and corresponding orthologs from Arabidopsis and yeast (-type: 49.2–94.5%; β-type: 34.8–87.7%). Structural features observed in eukaryotic proteasome subunits, i.e., - or β-type signature at the N-termini, Thr active sites in β1, β2 and β5 subunits, and nuclear localization signal-like sequences in some -type subunits, were shown to be conserved in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号