首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
Using the crystal structure of Despentapeptide (B26-B30) insulin (DPI as the search model, the crystal structure of DesB1-B2 Despentapeptide (B26-B30) insulin (DesB1-2 DPI) has been studied by the molecular replacement method. There is one DesB1-2 DPI molecule in each crystallographic asymmetric unit. The cross rotation function search and the translation function search show apparent peaks and thus determine the orientation and position of DesB1-2 DPI molecule in the cell respectively. The subsequent three-dimensional structural rebuilding and refinement of DesB1-2 DPI molecule confirm the results by molecular replacement method.  相似文献   

2.
The solution conformation of des-(B26-B30)-insulin (DPI) has been investigated by 1H-NMR spectroscopy. A set of 250 approximate interproton distance restraints, derived from two-dimensional nuclear Overhauser enhancement spectra, were used as the basis of a structure determination using distance geometry (DG) and distance-bound driven dynamics (DDD). Sixteen DG structures were optimized using energy minimization (EM) and submitted to short 5-ps restrained molecular dynamics (RMD) simulations. A further refinement of the DDD structure with the lowest distance errors was done by energy minimization, a prolonged RMD simulation in vacuo and a time-averaged RMD simulation. An average structure was obtained from a trajectory generated during 20-ps RMD. The final structure was compared with the des-(B26-B30)-insulin crystal structure refined by molecular dynamics and the 2-Zn crystal structure of porcine insulin. This comparison shows that the overall structure of des-(B26-B30)-insulin is retained in solution with respect to the crystal structures with a high flexibility at the N-terminal part of the A chain and at the N-terminal and C-terminal parts of the B chain. In the RMD run a high mobility of Gly A1, Asn A21 and of the side chain of Phe B25 is noticed. One of the conformations adopted by des-(B26-B30)-insulin in solution is similar to that of molecule 1 (Chinese nomenclature) in the crystal structure of porcine insulin.  相似文献   

3.
Q X Hua  M A Weiss 《Biochemistry》1991,30(22):5505-5515
The solution structure and dynamics of human insulin are investigated by 2D 1H NMR spectroscopy in reference to a previously analyzed analogue, des-pentapeptide(B26-B30) insulin (DPI; Hua, Q.X., & Weiss, M.A. (1990) Biochemistry 29, 10545-10555). This spectroscopic comparison is of interest since (i) the structure of the C-terminal region of the B-chain has not been determined in the monomeric state and (ii) the role of this region in binding to the insulin receptor has been the subject of long-standing speculation. The present NMR studies are conducted in the presence of an organic cosolvent (20% acetic acid), under which conditions both proteins are monomeric and stably folded. Complete sequential assignment of human insulin is obtained and leads to the following conclusions. (1) The secondary structure of the insulin monomer (three alpha-helices and B-chain beta-turn) is similar to that observed in the 2-Zn crystal state. (2) The folding of DPI is essentially the same as the corresponding portion of intact insulin, in accord with the similarities between their respective crystal structures. However, differences between insulin and DPI are observed in the extent of conformational broadening of amide resonances, indicating that the presence or absence of residues B26-B30 influences the overall dynamics of the protein on the millisecond time scale. (3) Residues B24-B28 adopt an extended configuration in the monomer and pack against the hydrophobic core as in crystallographic dimers; residues B29 and B30 are largely disordered. This configuration differs from that described in a more organic milieu (35% acetonitrile; Kline, A.D., & Justice, R.M., Jr. (1990) Biochemistry 29, 2906-2913), suggesting that the conformation of insulin in the latter study may have been influenced by solvent composition. (4) The insulin fold is shown to provide a model for collective motions in a protein with implications for the mechanism of protein-protein recognition. To our knowledge, this paper describes the first detailed analysis of a protein NMR spectrum under conditions of extensive conformational broadening. Such an analysis is made possible in the present case by comparative study of an analogue (DPI) with more tractable spectroscopic properties.  相似文献   

4.
FTIR studies of secondary structures of bovine insulin and its derivatives   总被引:2,自引:0,他引:2  
The amide I bands of the deconvolved FTIR spectrum of bovine insulin, despentapeptide (B26-B30) insulin and desoctapeptide (B23-B30) insulin in D2O solution have been assigned to alpha-helix, the 3(10) helix, irregular helix, extended chains, beta-turns and other secondary structures. From the peak areas the relative contents of these structures obtained are in general agreement with those calculated from the known structures of porcine insulin and DPI in the crystalline state. The main difference in the structure of DOI with those of insulin and DPI is the shortening of the helix segment and an extended chain for the C terminal segment in the B chain.  相似文献   

5.
Destripeptide (B28-B30) insulin (DTRI) is an insulin analogue that has much weaker association ability than native insulin but keeps most of its biological activity. It can be crystallized from a solution containing zinc ions at near-neutral pH. Its crystal structure has been determined by molecular replacement and refined at 1.9 A resolution. DTRI in the crystal exists as a loose hexamer compared with 2Zn insulin. The hexamer only contains one zinc ion that coordinates to the B10 His residues of three monomers. Although residues B28-B30 are located in the monomer-monomer interface within a dimer, the removal of them can simultaneously weaken both the interactions between monomers within the dimer and the interactions between dimers. Because the B-chain C-terminus of insulin is very flexible, we take the DTRI hexamer as a transition state in the native insulin dissociation process and suggest a possible dissociation process of the insulin hexamer based on the DTRI structure.  相似文献   

6.
Two analogs of bovine insulin, [des(tetrapeptide B27--30), Tyr(NH2)26-B] and [des(pentapeptide B26--30), Phe(NH2)25-B] insulin, which differ from the parent molecule in that the C-terminal tetrapeptide and pentapeptide sequences, respectively, from the B chain have been eliminated and the newly exposed residues are amidated, have been synthesized. The [des(tetrapeptide B27--30), Tyr(NH2)26-B] insulin shows potencies of 16.8 IU/mg by the mouse convulsion assay method and 10.8 IU/mg by the radioimmunoassay method. The [des(pentapeptide B26--30), Phe(NH2)25-B] insulin possesses a potency of 10.5 IU/mg when assayed by the mouse convulsion method and 14 IU/mg by the radioimmunoassay technique. The potencies of these analogs are higher than the potencies of the respective non-amidated derivatives (Katsoyannis et al., 1973, 1974). It is speculated that the gradual decline of biological activity observed as amino acid residues are eliminated from the C-terminal region of the B chain of insulin is due to the proximity of a hydrophilic carboxyl group to the hydrophobic core of the protein molecule.  相似文献   

7.
This paper reports on an insulin analogue with 12.5-fold receptor affinity, the highest increase observed for a single replacement, and on its solution structure, determined by NMR spectroscopy. The analogue is [D-AlaB26]des-(B27-B30)-tetrapeptide-insulin-B26-amide. C-terminal truncation of the B-chain by four (or five) residues is known not to affect the functional properties of insulin, provided the new carboxylate charge is neutralized. As opposed to the dramatic increase in receptor affinity caused by the substitution of D-Ala for the wild-type residue TyrB26 in the truncated molecule, this very substitution reduces it to only 18% of that of the wild-type hormone when the B-chain is present in full length. The insulin molecule in solution is visualized as an ensemble of conformers interrelated by a dynamic equilibrium. The question is whether the "active" conformation of the hormone, sought after in innumerable structure/function studies, is or is not included in the accessible conformational space, so that it could be adopted also in the absence of the receptor. If there were any chance for the active conformation, or at least a predisposed state to be populated to a detectable extent, this chance should be best in the case of a superpotent analogue. This was the motivation for the determination of the three-dimensional structure of [D-AlaB26]des-(B27-B30)-tetrapeptide-insulin-B26-amide. However, neither the NMR data nor CD spectroscopic comparison of a number of related analogues provided a clue concerning structural features predisposing insulin to high receptor affinity. After the present study it seems more likely than before that insulin will adopt its active conformation only when exposed to the force field of the receptor surface.  相似文献   

8.
Semisynthetic des-(B27-B30)-insulins with modified B26-tyrosine   总被引:1,自引:0,他引:1  
Semisynthetic des-(B27-B30)-insulins containing modified B26-tyrosine residues were prepared to refine the understanding of the importance of position B26 with regard to biological and structural properties of the hormone. The following shortened insulin analogues were synthesized by trypsin-catalysed peptide-bond formation between the C-terminal amino acid ArgB22 of des-(B23-B30)-insulin and synthetic tetrapeptides as amino components: des-(B27-B30)-insulin, des-(B27-B30)-insulin-B26-methyl ester, -B26-carboxamide with varying C-terminal hydrophobicity of the B-chain, and [Tyr(NH2)B26]-, [Tyr(NO2)B26]-, [Tyr(I2)B26]-, [D-TyrB26]des-(B27-B30)-insulin-B26-carboxamide containing non-proteinogenic amino acids in position B26. Starting from insulin and an excess of synthetic Gly-Phe-Phe-Tyr-OMe as nucleophile, des-(B27-B30)-insulin-B26-methyl ester--the formal transpeptidation product at ArgB22--was formed in one step. Biological in vitro properties (binding to cultured human IM-9 lymphocytes, relative lipogenic potency in isolated rat adipocytes) of all semisynthetic analogues are reported, ranging from slightly decreased to two-fold receptor affinity and nearly three-fold biopotency relative to insulin. If the C-terminal tetrapeptide B27-B30 is removed, full relative insulin activity is still preserved, while the shortening results in the loss of ability to associate in solution. Only after carboxamidation or methyl esterification of TyrB26 the self-association typical of native insulin can be observed, and the CD-spectral effects in the near UV spectrum related to association and hexamerization of the native hormone are qualitatively reestablished. The results of this investigation underline the importance of position B26 to the modulation of hormonal properties and solution structure of the shortened insulins.  相似文献   

9.
The role of three highly conserved insulin residues PheB24, PheB25, and TyrB26 was studied to better understand the subtleties of the structure-function relationship between insulin and its receptor. Ten shortened insulin analogues with modifications in the beta-strand of the B-chain were synthesized by trypsin-catalyzed coupling of des-octapeptide (B23-B30)-insulin with synthetic peptides. Insulin analogues with a single amino acid substitution in the position B26 and/or single N-methylation of the peptide bond at various positions were all shortened in the C-terminus of the B-chain by four amino acids. The effect of modifications was followed by two types of in vitro assays, i.e., by the binding to the receptor of rat adipose plasma membranes and by the stimulation of the glucose transport into the isolated rat adipocytes. From our results, we can deduce several conclusions: (i) the replacement of tyrosine in the position B26 by phenylalanine has no significant effect on the binding affinity and the stimulation of the glucose transport of shortened analogues, whereas the replacement of TyrB26 by histidine affects the potency highly positively; [HisB26]-des-tetrapeptide (B27-B30)-insulin-B26-amide and [NMeHisB26]-des-tetrapeptide (B27-B30)-insulin-B26-amide show binding affinity 529 and 5250%, respectively, of that of human insulin; (ii) N-methylation of the B24-B25 peptide bond exhibits a disruptive effect on the potency of analogues in both in vitro studies regardless the presence of amino acid in the position B26; (iii) N-methylation of the B23-B24 peptide bond markedly reduces the binding affinity and the glucose transport of respective analogue [NMePheB24]-des-tetrapeptide (B27-B30)-insulin-B26-amide.  相似文献   

10.
Despentapeptide (B26-30)-insulinamide (B25) prepared by a semisynthetic procedure was found to have about 65% of the hypoglycaemic activity of natural insulin. In contrast, the binding of the modified insulin analogue to insulin specific receptors was markedly increased. The discrepancy between the loss of biological potency and the apparent increase in binding affinity for membrane receptors reveals that not all of the biological activity of insulin is regulated by the receptor-binding system. The tetrapeptidamide of the B-chain of insulin (Arg-Gly-Phe-Phe-NH2) was clearly shown to have both insulin-like and insulin-potentiating actions in vivo although it had no effect on insulin receptor function in vitro. Evidence suggests that the small peptide fragment of insulin may be internalized and acts at the post-binding site(s) of the glucose metabolic pathway in target tissues. The present data support the general concept that insulin may exert its complex molecular actions through internalized hormonal fragment as well as the transmembrane mediators generated from receptor binding.  相似文献   

11.
The shortened analogue of insulin, des-(B26-B30)-pentapeptide insulin, has been characterized by two-dimensional 1H NMR. The 1H resonance assignments and the secondary structure in water solution are discussed The results indicate that the secondary structure in solution is very similar to that reported for the crystalline state. A high flexibility of both A and B chains is observed. Of the two conformations seen in the 2-Zn insulin crystals and indicated as molecules 1 and 2 (Chinese nomenclature), the structure of the analogue is more similar to that of molecule 1.  相似文献   

12.
摘要:为了研究人类胰岛素B链第26位的酪氨酸对胰岛素和受体之间的结合的影响,包括单独的氨基酸替换或化合物替换的不同的胰岛素类似物被合成,其中化合物替代的类似物的B链C末端都减少了4个氨基酸。在对它们与胰岛素受体的亲和力进行研究中,结果发现它们与胰岛素受体的亲和力没有丢失, HisB26类似物和N-MeHisB26类似物的结合能力与胰岛素相比改变不大,分别是胰岛素的72 %和107 %。N-MeGluB26类似物,AadB26类似物和Phe (4-carboxy) B26类似物的结合能力有很大的提高,分别是130 %, 234 %和160 %。  相似文献   

13.
The origins of differentiation of insulin from insulin-like growth factor I (IGF-I) are still unknown. To address the problem of a structural and biological switch from the mostly metabolic hormonal activity of insulin to the predominant growth factor activities of IGF-I, an insulin analogue with IGF-I-like structural features has been synthesized. Insulin residues Phe(B25) and Tyr(B26) have been swapped with the IGF-I-like Tyr(24) and Phe(25) sequence with a simultaneous methylation of the peptide nitrogen of residue Phe(B26). These modifications were expected to introduce a substantial kink in the main chain, as observed at residue Phe(25) in the IGF-I crystal structure. These alterations should provide insight into the structural origins of insulin-IGF-I structural and functional divergence. The [Tyr(B25)NMePhe(B26)] mutant has been characterized, and its crystal structure has been determined. Surprisingly, all of these changes are well accommodated within an insulin R6 hexamer. Only one molecule of each dimer in the hexamer responds to the structural alterations, the other remaining very similar to wild-type insulin. All alterations, modest in their scale, cumulate in the C-terminal part of the B-chain (residues B23-B30), which moves toward the core of the insulin molecule and is associated with a significant shift of the A1 helix toward the C-terminus of the B-chain. These changes do not produce the expected bend of the main chain, but the fold of the mutant does reflect some structural characteristics of IGF-1, and in addition establishes the CO(A19)-NH(B25) hydrogen bond, which is normally characteristic of T-state insulin.  相似文献   

14.
本文报道了[B10,22-Asp,B25-Tyr-NH2]-去B链羧端五肽胰岛素的制备及其生物活性。结果表明,这一类似物的生物活力比去五肽胰岛素(DPI)的活力高一倍,但却比Gerald所报道的[B10-Asp,B25-Tyr-NH_2]-DPI的活力低很多,说明后者的高活性可能依赖于分子中B22-Arg的存在。  相似文献   

15.
To gain an understanding of the causes of decreased biological activity in insulins bearing amino acid substitutions at position B25 and the importance of the PheB25 side chain in directing hormone-receptor interactions, we have prepared a variety of insulin analogs and have studied both their interactions with isolated canine hepatocytes and their abilities to stimulate glucose oxidation by isolated rat adipocytes. The semisynthetic analogs fall into three structural classes: (a) analogs in which the COOH-terminal 5, 6, or 7 residues of the insulin B-chain have been deleted, but in which the COOH-terminal residue of the B-chain has been derivatized by alpha-carboxamidation; (b) analogs in which PheB25 has been replaced by unnatural aromatic or natural L-amino acids; and (c) analogs in which the COOH-terminal 5 residues of the insulin B-chain have been deleted and in which residue B25 has been replaced by selected alpha-carboxamidated amino acids. Our results showed that (a) insulin residues B26-B30 can be deleted without decrease in biological potency, whereas deletion of residues B25-B30 and B24-B30 causes a marked and cumulative decrease in potency; (b) replacement of PheB25 in insulin by Leu or Ser results in analogs with biological potency even less than that observed when residues B25-B30 are deleted; (c) the side chain bulk of naphthyl(1)-alanine or naphthyl(2)-alanine at position B25 is well tolerated during insulin interactions with receptor, whereas that of homophenylalanine is not; and (d) the decreased biological potency attending substitution of insulin PheB25 by Ala, Ser, Leu, or homophenylalanine is reversed, in part or in total, by deletion of COOH-terminal residues B26-B30. Additional experiments showed that the rate of dissociation of receptor-bound 125I-labeled insulin from isolated hepatocytes is enhanced by incubating cells with insulin or [naphthyl(2)-alanineB25]insulin, but not with analogs in which PheB25 is replaced by serine, leucine, or homophenylalanine; deletion of residues B26-B30, however, results in analogs that enhance the rate of dissociation of receptor-bound insulin in all cases studied. We conclude that (a) steric hindrance involving the COOH-terminal domain of the B chain plays a major role in directing the interaction of insulin with its receptor; (b) the initial negative effect of this domain is reversed upon the filling of a site reflecting interaction of the receptor and the beta-aromatic ring of the PheB25 side chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
We have studied the time sequence degradation of native insulin by insulin protease from human fibroblast using multiple steps involving purification of the products by high performance liquid chromatography, determination of peak composition by amino acid sequence analysis, and confirmation of structure by mass spectrometry and thus elucidated the sites of cleavage of insulin by human insulin protease. We observed that as early as 0.5 min of incubation, three major new peptide peaks, intact insulin, and four smaller peptide peaks can be detected. The major peptides are portions of the insulin molecule, with the amino ends of the A and B chains or the carboxyl ends of the A and B chains still connected by disulfide bonds. Peptide peak I is A1-13-B1-9. Peptide peak II is A1-14-B1-9. Peptide peak III is A14-21-B14-30. The smaller peptide peaks are A14-21-B17-30, A15-21-B14-30, A15-21-B10-30, and A14-21-B10-30. The major peptide bond cleavage sites therefore consist of A13-14, A14-15, B9-10, B13-14, and B10-17. With longer incubation times, peptide peak II appears to lose the A14 tyrosine to form peptide peak I. This peptide I, which is the amino end of the A and B chains, is not further degraded even after 1.5 h of incubation. With longer incubation times, the peptides containing the carboxyl ends of the A and B chains are further degraded to form products from cleavage at the A18-19, B14-15, B25-26, and a small amount of A19-20, B10-11, and B24-25 cleavage and the emergence of 2-5-amino acid peptide chains, tyrosine, alanine, histidine, and leucine-tyrosine. We conclude, based on the three-dimensional structure of insulin, that human insulin protease recognizes the alpha-helical regions around leucine-tyrosine bonds and that final degradation steps to small peptides do not require lysosomal involvement.  相似文献   

17.
空间群为P21的A1-(L-丙氨酸)胰岛素晶胞内,一个不对称单位含有一个六聚体,应用差值Fourier技术,立体化学制最小二来技术和X—PLOR程序并辅以电子密度图的人工拟合,解析了分辨率AI—(L-丙氨酸)胰岛素(Al-L-AlaⅠ)的晶体结构。最终R因子为20.6%,与标准键长与键角的均方根偏差分别为和4.19°,从电子密度图与模型的拟合来看,六聚体中每条A链的Al位置替换的L—Ala清晰可见,每条B链N端B1—B8伏段都为α螺旋构象,形成了B1—B19的连续α螺旋段。  相似文献   

18.
Shortened insulin with enhanced in vitro potency   总被引:5,自引:0,他引:5  
After it has been shown that removal of residues B26-B30 leaves insulin with full biological activity, provided the new C-terminus is amidated (Fischer et al. (1985) Biol. Chem. Hoppe-Seyler 366, 521-525), it is demonstrated here that it does not even preclude enhancement of potency. 7 analogues of des-(B26-B30)-insulin-B25-amide were prepared by trypsin-mediated semisynthesis, the replacements being D-PheB24; HisB25, D-PheB25, TrpB25, TyrB25; D-PheB24,B25 and D-PheB24, TyrB25. Mere conversion of the configuration of B25-phenylalanine reduces in vitro potency to 0.5%. If B25-phenylalanine is, however, substituted by histidine or tyrosine activity is increased to 310 or 230, respectively. According to the features common to these two side chains, the favourable effect should be due to their ring structure with balanced aromatic and polar or H-bonding properties, respectively. The results indicate that in the complete insulin molecule the C-terminal pentapeptide modulates the subtle role that residues B24 and/or B25 play in receptor binding and activity; its presence may have a positive or negative effect. The drastic differences in activity between the shortened analogues are in no ways reflected in the CD spectra which are very similar, though clearly different from that of native insulin.  相似文献   

19.
The assignments of 1H resonances of the eight aromatic residues of Des-(B26-B30)-insulin are reported, based on pH titration, selective spin decoupling and its 500 MHz 1H two-dimensional (2D)-COSY spectrum. The pK values of the three tyrosines A14, A19 and B16 are 10.84, 11.27 and 10.40, respectively. Tyrosine A19 is buried in a hydrophobic environment, while Tyrosine B16 is exposed in a relatively hydrophilic state. Among the three phenylalanines, the ring proton resonances of Phe-B25 undergo abnormal upfield shifts, probably due to the ring currents of the nearby Phe-B24 and Tyr-B16. From this study of the low-field region of 1H-NMR spectrum of Des-(B26-B30)-insulin, we conclude that this molecule probably maintains the major structural features of insulin in aqueous solution, but there are some readjustments of the peptide conformation.  相似文献   

20.
It has been confirmed by sedimentation equilibrium and sedimentation velocity experiments that des-(B26-B30)-insulin does not self-associate at neutral pH. Sedimentation equilibrium experiments at pH 7, 25 degrees C were conducted to investigate the effects of the structurally and physiologically important divalent cations Zn2+, Cd2+, Pb2+ and Ca2+ on the aggregation state of des-(B26-B30)-insulin (pig) in solution. It was found that all of these ions bring about association of this insulin analogue; Zn2+ and Cd2+ to a more marked degree than Pb2+ and Ca2+. The predominant species in solutions containing Zn2+ appear to be hexamers and hexameric aggregates, in those containing Cd2+, species up to and including tetramers, and in those containing Pb2+ and Ca2+, monomers and dimers of des-(B26-B30)-insulin appear to be the only species present. The possible significance of these findings, especially in relation to a role for Ca2+ in the action of insulin, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号