首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proenzyme form of the Ca2+-requiring neutral proteinase of human erythrocytes (procalpain) is converted to the active proteinase (calpain) by low concentrations of Ca2+ in the presence of appropriate substrates such as beta-hemoglobin or heme-free beta-globin chains. Modification of these substrates by limited proteolysis with calpain abolishes their ability to promote the conversion of procalpain. A similar requirement for the presence of unmodified beta-hemoglobin or heme-free beta-globin chains is observed for the autocatalytic inactivation of calpain. The conversion of procalpain to calpain is accompanied by a small decrease in the molecular mass of the catalytic subunit, from 80 kDa to 75 kDa; however, the activation is not accelerated by the addition of a small quantity of calpain. The autocatalytic inactivation of active CANP is related to the disappearance of the 75 kDa subunit and the formation of smaller peptide fragments.  相似文献   

2.
Mannan-binding lectin (MBL)-associated serine proteases, MASP-1 and MASP-2, have been thought to autoactivate when MBL/ficolin·MASP complexes bind to pathogens triggering the complement lectin pathway. Autoactivation of MASPs occurs in two steps: 1) zymogen autoactivation, when one proenzyme cleaves another proenzyme molecule of the same protease, and 2) autocatalytic activation, when the activated protease cleaves its own zymogen. Using recombinant catalytic fragments, we demonstrated that a stable proenzyme MASP-1 variant (R448Q) cleaved the inactive, catalytic site Ser-to-Ala variant (S646A). The autoactivation steps of MASP-1 were separately quantified using these mutants and the wild type enzyme. Analogous mutants were made for MASP-2, and rate constants of the autoactivation steps as well as the possible cross-activation steps between MASP-1 and MASP-2 were determined. Based on the rate constants, a kinetic model of lectin pathway activation was outlined. The zymogen autoactivation rate of MASP-1 is ∼3000-fold higher, and the autocatalytic activation of MASP-1 is about 140-fold faster than those of MASP-2. Moreover, both activated and proenzyme MASP-1 can effectively cleave proenzyme MASP-2. MASP-3, which does not autoactivate, is also cleaved by MASP-1 quite efficiently. The structure of the catalytic region of proenzyme MASP-1 R448Q was solved at 2.5 Å. Proenzyme MASP-1 R448Q readily cleaves synthetic substrates, and it is inhibited by a specific canonical inhibitor developed against active MASP-1, indicating that zymogen MASP-1 fluctuates between an inactive and an active-like conformation. The determined structure provides a feasible explanation for this phenomenon. In summary, autoactivation of MASP-1 is crucial for the activation of MBL/ficolin·MASP complexes, and in the proenzymic phase zymogen MASP-1 controls the process.  相似文献   

3.
Plasmepsin-2 is a malarial aspartic proteinase that has been implicated in the initial steps of hemoglobin degradation in parasites and thus represents an attractive antimalarial target. Escherichia coli expressed proplasmepsin-2 is capable of activation at acidic pH by autocatalytic cleavage of the pro part region, which results in products of different length. We designed a 10-amino-acid deletion in the pro part region that allows faster generation of homogeneous enzyme upon activation. Incorporation of a (His)6 tag onto the N-terminus of the pro part enables on-column refolding of proplasmepsin-2 and simplifies proenzyme purification and pro part separation after activation. The proposed purification procedure results in highly pure and easily crystallizable enzyme.  相似文献   

4.
Human pancreatic secretions contain two major trypsinogen isoforms, cationic and anionic trypsinogen, normally at a ratio of 2 : 1. Pancreatitis, pancreatic cancer and chronic alcoholism lead to a characteristic reversal of the isoform ratio, and anionic trypsinogen becomes the predominant zymogen secreted. To understand the biochemical consequences of these alterations, we recombinantly expressed and purified both human trypsinogens and documented characteristics of autoactivation, autocatalytic degradation and Ca2+-dependence. Even though the two trypsinogens are approximately 90% identical in their primary structure, we found that human anionic trypsinogen and trypsin exhibited a significantly increased (10-20-fold) propensity for autocatalytic degradation, relative to cationic trypsinogen and trypsin. Furthermore, in contrast to the characteristic stimulation of the cationic proenzyme, acidic pH inhibited autoactivation of anionic trypsinogen. In mixtures of cationic and anionic trypsinogen, an increase in the proportion of the anionic proenzyme had no significant effect on the levels of trypsin generated by autoactivation or by enterokinase at pH 8.0 in 1 mm Ca2+- conditions that were characteristic of the pancreatic juice. In contrast, rates of trypsinogen activation were markedly reduced with increasing ratios of anionic trypsinogen under conditions that were typical of potential sites of pathological intra-acinar trypsinogen activation. Thus, at low Ca2+ concentrations at pH 8.0, selective degradation of anionic trypsinogen and trypsin caused diminished trypsin production; while at pH 5.0, inhibition of anionic trypsinogen activation resulted in lower trypsin yields. Taken together, the observations indicate that up-regulation of anionic trypsinogen in pancreatic diseases does not affect physiological trypsinogen activation, but significantly limits trypsin generation under potential pathological conditions.  相似文献   

5.
Cathepsin S is unique among mammalian cysteine cathepsins in being active and stable at neutral pH. We show that autocatalytic activation of procathepsin S at low pH is a bimolecular process that is considerably accelerated (approximately 20-fold) by glycosaminoglycans and polysaccharides such as dextran sulfate, chondroitin sulfates A and E, and dermatan sulfate through electrostatic interaction with the proenzyme. Procathepsin S is also shown to undergo autoactivation at neutral pH in the presence of dextran sulfate with t1/2 of approximately 20 min at pH 7.5. This novel property of procathepsin S may have implications in pathological conditions associated with the appearance of active cathepsins outside lysosomes.  相似文献   

6.
The hyaluronic acid binding serine protease (PHBSP), an enzyme with the ability to activate the coagulation factor FVII and the plasminogen activator precursors and to inactivate factor VIII and factor V, could be isolated from human plasma in the presence of 6M urea as a single-chain zymogen, whereas under native conditions only its activated two-chain form was obtained. The total yield of proenzyme (proPHBSP) was 5-6 mg/l, corresponding to a concentration of at least 80-100nM in plasma. Upon removal of urea, even in the absence of charged surfaces a rapid development of amidolytic activity was observed that correlated with the appearance of the two-chain enzyme. The highest activation rate was observed at pH 6. ProPHBSP processing was concentration-dependent following a second order kinetic and was accelerated by catalytic amounts of active PHBSP, indicating an intermolecular autocatalytic activation. Charged macromolecules like poly-L-lysine, heparin, and dextran sulfate strongly accelerated the autoactivation, suggesting that in vivo proPHBSP activation might be a surface-bound process. The intrinsic activity of the proenzyme was determined to be 0.25-0.3%, most likely due to traces of PHBSP. The presence of physiological concentrations of known plasma inhibitors of PHBSP, like alpha2 antiplasmin and C1 esterase inhibitor, but not antithrombin III/heparin, slowed down zymogen processing. Our in vitro data suggest that the autoactivation of proPHBSP during plasma fractionation is induced by the removal of inhibitors of PHBSP and is accelerated by charged surfaces of the chromatographic resins.  相似文献   

7.
Yeast pro-proteinase C was transformed to active form by brief exposure to a lower concentration of protein denaturants: urea, guanidine hydrochloride, acid and various solvents including dimethylformamide, 2-chloroethanol, dioxane, formamide, ethanol and n-propanol. Dioxane 30~35% or 4 m urea were most effective in obtaining high activity.

In respect to catalytic properties, the reagent-activated enzymes were identical with proteinase C which was obtained from yeast autolysate. The characteristic participation of cysteine and serine residues in the catalytic process was also suggested in the aforementioned enzymes.

The proenzyme was composed of two subunit proteins. However their dissociation was not involved in the denaturant-activation process, as determined from the sedimentation and gel-filtration analyses. Changes in the reactivity of an unessential cysteine residue of the proenzyme, however, suggested that the structural alteration would be accompanied in the process.

From these results, it was concluded that the denaturants rearrange the quartenary structure of the proenzyme and lead to demasking of the active site.

Activation of pro-proteinase C by yeast proteinase A was examined under controlled conditions. Maximum activation occurred at pH 3.5 and 0°C, releasing a cationic protein. The active enzyme and the protein was separated and chemically analyzed.

The same N-terminal amino acid, lysine, was found in both the active enzyme and proenzyme. Amino acid analysis revealed that the released protein is a protein of small molecular weight about 19,000 containing one SH-group and one disulfide bond. These results strongly suggested that the protein would correspond to the cationic subunit of the proenzyme.

In both activation processes by denaturant and proteinase A, a decrease of β-structure was found as determined from ORD and CD measurements.

All of these results supported the idea that activation of the proenzyme occurred by denaturant- or enzyme-modification of the inhibitor protein, followed by demasking of the active site.  相似文献   

8.
Conversion of the pi subunit of prohistidine decarboxylase to the alpha beta subunits of the active enzyme proceeds by a nonhydrolytic, monovalent cation-dependent, serinolysis reaction in which the hydroxyl oxygen of serine 82 of the pi chain is incorporated into the carboxyl group at the COOH terminus (serine 81) of the beta chain. Serine-82 becomes the pyruvate residue at the NH2 terminus of the alpha chain (Recsei, P.A., Huynh, Q. K., and Snell, E.E. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 973-977). The unusual reactivity of this particular -Ser-Ser- bond is demonstrated by its sensitivity to 1 M hydroxylamine, which cleaves the native proenzyme under mild conditions (pH 8.0, 37 degrees C) to yield a modified beta chain with serine hydroxamate at the COOH terminus (Ser-81) and a modified alpha chain containing serine (Ser-82 of the proenzyme) rather than pyruvate at the NH2 terminus. Neither an -Asn-Gly- bond nor other -Ser-Ser- bonds in the proenzyme were cleaved under these conditions. The reaction also did not occur with the denatured enzyme or with model peptides, indicating that the enhanced reactivity is a result of the particular conformation at this position in the native protein. The reaction with the native proenzyme proceeded optimally at pH 7.5-8.0 with a half-time (30 min) substantially less than that (3.5-4.5 h) required for the activation reaction and was not increased in rate by addition of K+. Correspondingly, preincubation of the proenzyme at pH 8.0 in the absence of both hydroxylamine and K+ modestly increased the rate of activation when K+ was subsequently added. Although these findings do not exclude other mechanisms, they are all consistent with and most easily explained by rearrangement of the pi chain to form an internal ester intermediate prior to the beta-elimination that occurs during activation to yield the alpha and beta chains of the mature enzyme.  相似文献   

9.
The latent precursor of matrilysin (EC 3.4.24.23; punctuated metalloproteinase (PUMP) was purified from transfected mouse myeloma cell conditioned medium and was found to contain one zinc atom per molecule which was essential for catalytic activity. Promatrilysin could be activated to the same specific activity by (4-aminophenyl)mercuric acetate, trypsin, and incubation at elevated temperatures (heat activation). Active matrilysin hydrolyzed the fluorescent substrate 2,4-dinitrophenyl-Pro-Leu-Gly-Leu-Trp-Ala-D-Arg-NH2 at the Gly-Leu bond with a maximum value for kcat/Km of 1.3 x 10(4) M-1 s-1 at the pH optimum of 6.5 and pKa values of 4.60 and 8.65. Activity is inhibited by the tissue inhibitor of metalloproteinases-1 in a 1:1 stoichiometric interaction. Analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis in conjunction with N-terminal sequencing revealed that, as with all other matrix metalloproteinases similarly studied, promatrilysin activation was accompanied by the stepwise proteolytic removal of an M(r) 9000 propeptide from the N-terminus. The intermediates generated were dependent on the mode of activation used but, in all cases studied, activation terminated with an autocatalytic cleavage at E77-Y78 to yield the final M(r) 19,000 active matrilysin. From an analysis of the stability of the various intermediates, we propose that the sequence L13-K33 is particularly important in protecting the E77-Y78 site from autocatalytic cleavage, thereby maintaining the latency of the proenzyme.  相似文献   

10.
The activation of caspase-3 represents a critical step in the pathways leading to the biochemical and morphological changes that underlie apoptosis. Upon induction of apoptosis, the large (p17) and small (p12) subunits, comprising active caspase-3, are generated via proteolytic processing of a latent proenzyme dimer. Two copies of each individual subunit are generated to form an active heterotetramer. The tetrameric form of caspase-3 cleaves specific protein substrates within the cell, thereby producing the apoptotic phenotype. In contrast to the proenzyme, once activated in HeLa cells, caspase-3 is difficult to detect due to its rapid degradation. Interestingly, however, enzyme stability and therefore detection of active caspase-3 by immunoblot analysis can be restored by treatment of cells with a peptide-based caspase-3 selective inhibitor, suggesting that the active form can be stabilized through protein-inhibitor interaction. The heteromeric active enzyme complex is necessary for its stabilization by inhibitors, as expression of the large subunit alone is not stabilized by the presence of inhibitors. Our results show for the first time, that synthetic caspase inhibitors not only block caspase activity, but may also increase the stability of otherwise rapidly degraded mature caspase complexes. Consistent with these findings, experiments with a catalytically inactive mutant of caspase-3 show that rapid turnover is dependent on the activity of the mature enzyme. Furthermore, turnover of otherwise stable active site mutants of capase-3 is rescued by the presence of the active enzyme suggesting that turnover can be mediated in trans.  相似文献   

11.
Human S-adenosylmethionine decarboxylase is synthesized as a proenzyme that undergoes an autocatalytic cleavage reaction generating the alpha and beta subunits and forming the pyruvate prosthetic group, which is derived from an internal Ser residue (Ser-68). The mechanism of this processing reaction was studied using site-directed mutagenesis of conserved residues (His-243 and Ser-229) located close to the cleavage site. Mutant S229A failed to process, and mutant S229C cleaved very slowly, whereas mutant S229T processed normally, suggesting that the hydroxyl group of residue 229 is required for the processing reaction where Ser-229 may act as a proton acceptor. Mutant His-243A cleaved very slowly, forming a small amount of the correctly processed pyruvoyl enzyme but a much larger proportion of the alpha subunit with an amino-terminal Ser. The cleavage to form the latter was greatly enhanced by hydroxylamine. This result suggests that the N-O acyl shift needed for ester formation occurs normally in this mutant but that the next step, which is a beta-elimination reaction leading to the two subunits, does not occur. His-243 may therefore act as the basic residue that extracts the hydrogen of the alpha-carbon of Ser-68 in the ester in order to facilitate this reaction. The availability of the recombinant H243A S-adenosylmethionine decarboxylase proenzyme provides a useful model system to examine the processing reaction in vitro and test the design of specific inactivators aimed at blocking the production of the pyruvoyl prosthetic group.  相似文献   

12.
We have previously shown that the gene (speD) for S-adenosylmethionine decarboxylase is part of an operon that also contains the gene (speE) for spermidine synthase (Tabor, C. W., Tabor, H., and Xie, Q.-W. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 6040-6044). We have now determined the nucleotide sequence of this operon and have found that speD codes for a polypeptide of Mr = 30,400, which is considerably greater than the subunit size of the purified enzyme. Our studies show that S-adenosylmethionine decarboxylase is first formed as a Mr = 30,400 polypeptide and that this proenzyme is then cleaved at the Lys111-Ser112 peptide bond to form a Mr = 12,400 subunit and a Mr = 18,000 subunit. The latter subunit contains the pyruvoyl moiety that we previously showed is required for enzymatic activity. Both subunits are present in the purified enzyme. These conclusions are based on (i) pulse-chase experiments with a strain containing a speD+ plasmid which showed a precursor-product relationship between the proenzyme and the enzyme subunits, (ii) the amino acid sequence of the proenzyme form of S-adenosylmethionine decarboxylase (derived from the nucleotide sequence of the speD gene), and (iii) comparison of this sequence of the proenzyme with the N-terminal amino acid sequences of the two subunits of the purified enzyme reported by Anton and Kutny (Anton, D. L., and Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822).  相似文献   

13.
The cysteine proteinase EhCP112 and the adhesin EhADH112 assemble to form the EhCPADH complex involved in Entamoeba histolytica virulence. To further characterize this cysteine proteinase, the recombinant full-length EhCP112 enzyme was expressed and purified under denaturing conditions. After a refolding step under reductive conditions, the inactive precursor (ppEhCP112) was processed to a 35.5 kDa mature and active enzyme (EhCP112). The thiol specific inhibitor E-64, but not serine or aspartic proteinase inhibitors arrested this activation process. The activation step of the proenzyme followed by the mature enzyme suggests an autocatalytic process during EhCP112 maturation. The experimentally determined processing sites observed during EhCP112 activation lie close to processing sites of other cysteine proteinases from parasites. The kinetic parameters of the mature EhCP112 were determined using hemoglobin and azocasein as substrates. The proteinase activity of EhCP112 was completely inhibited by thiol inhibitors, E-64, TLCK, and chymostatin, but not by general proteinase inhibitors. Since EhCP112 is a proteinase involved in the virulence of E. histolytica, a reliable source of active EhCP112 is a key step for its biochemical characterization and to carry out future protein structure-function studies.  相似文献   

14.
The catalytic subunit of human Cl, Cls-Clr-Clr-Cls, is a Ca2+-dependent tetrameric association of two serine proteases, Clr and Cls, which are glycoproteins containing asparagine-linked carbohydrates. With a view to investigate the accessibility and the possible functional role of these carbohydrates, the isolated proteases and their Ca2+-dependent complexes were submitted to deglycosylation by peptide:N-glycosidase F, an endoglycosidase that specifically hydrolyzes all classes of N-linked glycans. Treatment of isolated Clr and Cls led to the removal of the carbohydrate moieties attached to their N-terminal alpha region, whereas those located in the C-terminal gamma-B catalytic domains were resistant to hydrolysis. Formation of the Ca2+-dependent Cls-Cls dimer and Cls-Clr-Clr-Cls tetramer induced specific protection of the single carbohydrate attached to the alpha region of Cls and of one of the two carbohydrates located in the corresponding region of Clr. Sequence studies indicated that the carbohydrates protected upon homologous (Cls-Cls) or heterologous (Clr-Cls) interactions are attached to asparagine residues 159 of Cls and 204 of Clr, at the C-terminal end of the EGF-like domain of both proteases. These data bring further evidence that Ca2+-dependent interactions between Clr and Cls are mediated by their N-terminal alpha regions and strongly suggest that, inside these regions, the EGF-like domains play an essential role in these interactions.  相似文献   

15.
Phosphatidylserine decarboxylase of Escherichia coli is one of a small group of pyruvoyl-dependent enzymes (Satre, M., and Kennedy, E.P. (1978) J. Biol. Chem. 253, 479-483). The DNA sequence of the structural gene (psd) and partial protein sequence studies demonstrate that the enzyme contains two nonidentical subunits, alpha (Mr = 7,332) and beta (Mr = 28,579), which are derived from a single proenzyme. These two subunits are blocked at their respective amino termini. Reduction of the enzyme with NaCNBH3 in the presence of radiolabeled phosphatidylserine resulted in association of the label with the alpha subunit. Similar reduction in the presence of ammonium ions exposed a new amino terminus for the alpha subunit beginning with alanine. Therefore, the pyruvate prosthetic group is in amide linkage to the amino terminus of the alpha subunit. The amino terminus of the beta subunit was determined to be formylmethionine. The carboxyl terminus of the beta subunit was determined to be glycine as predicted by the DNA sequence. Comparison of the DNA sequence and protein sequence information revealed that the decarboxylase is made as a proenzyme (Mr = 35,893), and the predicted amino acid at the position of the pyruvate within the open reading frame of the proenzyme is serine. Therefore, as with other pyruvoyl-dependent decarboxylases, the prosthetic group is derived from serine through a post-translational cleavage of a proenzyme.  相似文献   

16.
Two models of the hydrogenase reaction cycle were investigated by means of theoretical calculations and model simulations. The first model is the widely accepted triangular hydrogenase reaction cycle with minor modifications; the second is a modified triangular model, where we have introduced an autocatalytic step into the reaction cycle. Both models include a one-step activation reaction. The theoretical calculations and model simulations corroborate the assumed autocatalytic reaction step concluded from the experimental characteristics of the hydrogenase reaction.  相似文献   

17.
Increased levels of both the cysteine protease, cathepsin L, and the serine protease, uPA (urokinase-type plasminogen activator), are present in solid tumors and are correlated with malignancy. uPA is released by tumor cells as an inactive single-chain proenzyme (pro-uPA) which has to be activated by proteolytic cleavage. We analyzed in detail the action of the cysteine protease, cathepsin L, on recombinant human pro-uPA. Enzymatic assays, SDS-PAGE and Western blot analysis revealed that cathepsin L is a potent activator of pro-uPA. As determined by N-terminal amino acid sequence analysis, activation of pro-uPA by cathepsin L is achieved by cleavage of the Lys158-Ile159 peptide bond, a common activation site of serine proteases such as plasmin and kallikrein. Similar to cathepsin B (Kobayashi et al., J. Biol. Chem. (1991) 266, 5147-5152) cleavage of pro-uPA by cathepsin L was most effective at acidic pH (molar ratio of cathepsin L to pro-uPA of 1:2,000). Nevertheless, even at pH 7.0, pro-uPA was activated by cathepsin L, although a 10-fold higher concentration of cathepsin L was required. As tumor cells may produce both pro-uPA and cathepsin L, implications for the activation of tumor cell-derived pro-uPA by cathepsin L may be considered. Different pathways of activation of pro-uPA in tumor tissues may coexist: (i) autocatalytic intrinsic activation of pro-uPA; (ii) activation by serine proteases (plasmin, kallikrein, Factor XIIa); and (iii) activation by cysteine proteases (cathepsin B and L).  相似文献   

18.
In the present paper, a kinetic analysis of a general model for proenzyme activation, where the activating enzyme and also the activated one are reversibly inhibited in two steps by two different inhibitors, has been performed. The cases in which both inhibitors are the same, or in which the inhibition is irreversible (only one or the two inhibition routes) are treated as particular cases of the general model. In addition, the kinetic behaviour of many other proenzyme activation systems involving inhibition, particular cases of the reaction scheme under study, can be obtained. The total number of particular cases for the general model under study is 370, so this approach offers to the scientific community working in limited proteolysis regulation for the first time a method based on general solutions which only needs to be specified to their concrete problem of zymogen activation. Finally, new adimensional parameters are introduced, allowing the knowledgement, in the case that any of the inhibition routes is irreversible, the relative weight of both activation and irreversible inhibition routes.  相似文献   

19.
The activation of microglia, resident immune cells of the central nervous system, and inflammation-mediated neurotoxicity are typical features of neurodegenerative diseases, for example, Alzheimer''s and Parkinson''s diseases. An unexpected role of caspase-3, commonly known to have executioner role for apoptosis, was uncovered in the microglia activation process. A central question emerging from this finding is what prevents caspase-3 during the microglia activation from killing those cells? Caspase-3 activation occurs as a two-step process, where the zymogen is first cleaved by upstream caspases, such as caspase-8, to form intermediate, yet still active, p19/p12 complex; thereafter, autocatalytic processing generates the fully mature p17/p12 form of the enzyme. Here, we show that the induction of cellular inhibitor of apoptosis protein 2 (cIAP2) expression upon microglia activation prevents the conversion of caspase-3 p19 subunit to p17 subunit and is responsible for restraining caspase-3 in terms of activity and subcellular localization. We demonstrate that counteracting the repressive effect of cIAP2 on caspase-3 activation, using small interfering RNA targeting cIAP2 or a SMAC mimetic such as the BV6 compound, reduced the pro-inflammatory activation of microglia cells and promoted their death. We propose that the different caspase-3 functions in microglia, and potentially other cell types, reside in the active caspase-3 complexes formed. These results also could indicate cIAP2 as a possible therapeutic target to modulate microglia pro-inflammatory activation and associated neurotoxicity observed in neurodegenerative disorders.  相似文献   

20.
When plasma from third instar larvae of the fleshfly, Sarcophaga barbarta, was diluted tenfold with distilled water, lipoproteins precipitated out. After centrifuging, the water supernatant was rendered 30, 50, and 65% to ammonium sulphate, and it was found that the 50% fraction contained 95% of the tyrosinase activity in all the fractions, the enzyme being present in its inactive form or proenzyme. The proenzyme was activated by mixing it with activator isolated from the larval cuticle. After addition of activator there followed a lag period before the rapid phase of activation, the duration of the lag being dependent upon the concentration of both proenzyme and activator. The final activity attained was dependent upon the concentration of proenzyme but was independent of the activator concentration.The level of proenzyme in the plasma rose steadily throughout the third larval instar reaching a maximum in 7 day larvae, formation of the puparium commencing about 24 hr later, the rounded-off white stage (r.o.). At the r.o. and golden-brown stage (1 hr later) the level was still maximal, but 12 hr later at the dark-brown puparial stage no proenzyme was isolatable from the plasma, all the enzyme at this stage behaving as active enzyme.The vast majority (95%) of the proenzyme isolated from plasma in the larval stages and at the r.o. white stage was present in the 50% ammonium sulphate fraction, whereas 1 hr later at the golden-brown stage only 33% of the proenzyme was found in the 50% fraction, 62% now being found in the 65% fraction. At the dark-brown puparial stage 12 hr later, not only was there a further redistribution, but all the enzyme behaved as active enzyme. It is suggested that these changes in the distribution and behaviour of the proenzyme indicate that, in vivo, activation of the enzyme in the blood has taken place over the period r.o. white to the golden-brown to dark-brown puparial stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号