首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A well-resolved rhizobial species phylogeny with 51 haplotypes was inferred from a combined atpD + recA data set using Bayesian inference with best-fit, gene-specific substitution models. Relatively dense taxon sampling for the genera Rhizobium and Mesorhizobium was achieved by generating atpD and recA sequences for six type and 24 reference strains not previously available in GenBank. This phylogeny was used to classify nine nodule isolates from Sesbania exasperata, S. punicea and S. sericea plants native to seasonally flooded areas of Venezuela, and compared with a PCR-RFLP analysis of rrs plus rrl genes and large maximum likelihood rrs and nifH phylogenies. We show that rrs phylogenies are particularly sensitive to strain choice due to the high levels of sequence mosaicism found at this locus. All analyses consistently identified the Sesbania isolates as Mesorhizobium plurifarium or Rhizobium huautlense. Host range experiments on ten legume species coupled with plasmid profiling uncovered potential novel biovarieties of both species. This study demonstrates the wide geographic and environmental distribution of M. plurifarium, that R. galegae and R. huautlense are sister lineages, and the synonymy of R. gallicum, R. mongolense and R. yanglingense. Complex and diverse phylogeographic, inheritance and host-association patterns were found for the symbiotic nifH locus. The results and the analytical approaches used herein are discussed in the context of rhizobial taxonomy and molecular systematics.  相似文献   

2.
Barranco de Tamadaya is a deep ravine located in southern Tenerife, which is included within a protected area where several endemic plants grow. Among them, two legumes are catalogued as critically endangered, Anagyris latifolia and Lotus berthelotii. Rhizobial strains isolated from their root nodules grown in soil samples from this ravine harboured symbiotic genes belonging to two distant symbiovars, but they shared identical 16S rRNA gene sequences (rrs). The phylogeny based on the rrs sequences placed these isolates in a separate subbranch that did not include any of the currently recognised Mesorhizobium species, but the resolution of the ribosomal tree did not permit further taxonomic conclusions. Nevertheless, multilocus sequence analysis (MLSA) of four housekeeping genes (atpD, recA, glnII and dnaK) and the rrs gene generated a highly supported Bayesian phylogeny, identifying these isolates as a new Mesorhizobium lineage. DNA-DNA hybridisation homology percentages were lower than 30% compared to type strains of the closest related species, and supported the phylogenetic data. Phenotypic characterisation also distinguished this lineage from the other closest Mesorhizobium species. The polyphasic approach thus confirmed that the isolates represented a novel species for which we propose the name Mesorhizobium tamadayense sp. nov. The type strain is Ala-3(T) (CECT 8040(T), LMG 26736(T)).  相似文献   

3.
We used phylogenetic and population genetics approaches to evaluate the importance of the evolutionary forces on shaping the genetic structure of Rhizobium gallicum and related species. We analysed 54 strains from several populations distributed in the Northern Hemisphere, using nucleotide sequences of three 'core' chromosomal genes (rrs, glnII and atpD) and two 'auxiliary' symbiotic genes (nifH and nodB) to elucidate the biogeographic history of the species and symbiotic ecotypes (biovarieties) within species. The analyses revealed that strains classified as Rhizobium mongolense and Rhizobium yanglingense belong to the chromosomal evolutionary lineage of R. gallicum and harbour symbiotic genes corresponding to a new biovar; we propose their reclassification as R. gallicum bv. orientale. The comparison of the chromosomal and symbiotic genes revealed evidence of lateral transfer of symbiotic information within and across species. Genetic differentiation analyses based on the chromosomal protein-coding genes revealed a biogeographic pattern with three main populations, whereas the 16S rDNA sequences did not resolve that biogeographic pattern. Both the phylogenetic and population genetic analyses showed evidence of recombination at the rrs locus. We discuss our results in the light of the contrasting views of bacterial species expressed by microbial taxonomist and evolutionary biologists.  相似文献   

4.
Bacteria from nodules of the legume Acaciella angustissima native to the south of Mexico were characterized genetically and their nodulation and competitiveness were evaluated. Phylogenetic studies derived from rpoB gene sequences indicated that A. angustissima is nodulated by Sinorhizobium mexicanum, Rhizobium tropici, Mesorhizobium plurifarium and Agrobacterium tumefaciens and by bacteria related to Sinorhizobium americanum, Sinorhizobium terangae, Rhizobium etli and Rhizobium gallicum . A new lineage related to S. terangae is recognized based on the sequences of gyrA, nolR, recA, rpoB and rrs genes, DNA–DNA hybridization and phenotypic characteristics. The name for this new species is Sinorhizobium chiapanecum and its type strain is ITTG S70T. The symbiotic genes nodA and nifH were similar to those from S. mexicanum strains, which are Acaciella symbionts as well, with nodA gene sequences grouped within a cluster of nod genes from strains that nodulate plants from the Mimosoideae subfamily of the Leguminosae. Sinorhizobium isolates were the most frequently obtained from A. angustissima nodules and were among the best strains to promote plant growth in A. angustissima and to compete in interstrain nodule competition assays. Lateral transfer of symbiotic genes is not evident among the genera that nodulate A. angustissima ( Rhizobium, Sinorhizobium and Mesorhizobium ) but may occur among the sympatric and closely related sinorhizobia that nodulate Acaciella .  相似文献   

5.
The genetic diversity of 88 Caragana nodule rhizobial isolates, collected from arid and semi-arid alkaline sandy soils in the north of China, was assessed by PCR-RFLP of the 16S rRNA gene and the 16S-23S IGS, as well as the phylogenies of housekeeping genes (atpD, glnII and recA) and symbiotic genes (nodC and nifH). Of the 88 strains, 69 were placed in the genus Mesorhizobium, 16 in Rhizobium and 3 in Bradyrhizobium. Mesorhizobium amorphae, Mesorhizobium septentrionale, Mesorhizobium temperatum and Rhizobium yanglingense were the four predominant microsymbionts associated with Caragana spp. in the surveyed regions, and M. septentrionale was widely distributed among the sampling sites. Phylogenies of nodC and nifH genes showed that two kinds of symbiotic genes existed, corresponding to Mesorhizobium and Rhizobium, respectively. Available phosphorous (P) and potassium (K) contents were the main soil factors correlated with the distribution of these rhizobia in the sampling regions. Positive correlations between the available higher P content/lower K content and the dominance of Mesorhizobium species (M. temperatum, M. amorphae and M. septentrionale), and between the lower P content/higher K content and the dominance of R. yanglingense were found.  相似文献   

6.
Salinity is an increasing problem in Africa affecting rhizobia-legume symbioses. In Morocco, Phaseolus vulgaris is cultivated in saline soils and its symbiosis with rhizobia depends on the presence of osmotolerant strains in these soils. In this study, 32 osmotolerant rhizobial strains nodulating P. vulgaris were identified at the species and symbiovar levels by analysing core and symbiotic genes, respectively. The most abundant strains were closely related to Rhizobium etli and R. phaseoli and belonged to symbiovar phaseoli. A second group of strains was identified as R. gallicum sv gallicum. The remaining strains, identified as R. tropici, belonged to the CIAT 899(T) nodC group, which has not yet been described as a symbiovar. In representative strains, the otsA gene involved in the accumulation of trehalose and putatively in osmotolerance was analysed. The results showed that the phylogeny of this gene was not completely congruent with those of other core genes, since the genus Ensifer was more closely related to some Rhizobium species than others. Although the role of the otsA gene in osmotolerance is not well established, it can be a useful protein-coding gene for phylogenetic studies in the genus Rhizobium, since the phylogenies of otsA and other core genes are coincident at the species level.  相似文献   

7.
In order to determine the bacterial diversity and the identity of rhizobia nodulating lentil in Bangladesh, we performed a phylogenetic analysis of housekeeping genes (16S rRNA, recA, atpD and glnII) and nodulation genes (nodC, nodD and nodA) of 36 bacterial isolates from 25 localities across the country. Maximum likelihood (ML) and Bayesian analyses based on 16S rRNA sequences showed that most of the isolates (30 out of 36) were related to Rhizobium etli and Rhizobium leguminosarum. Only these thirty isolates were able to re-nodulate lentil under laboratory conditions. The protein-coding housekeeping genes of the lentil nodulating isolates showed 89.1-94.8% genetic similarity to the corresponding genes of R. etli and R. leguminosarum. The same analyses showed that they split into three distinct phylogenetic clades. The distinctness of these clades from closely related species was also supported by high resolution ERIC-PCR fingerprinting and phenotypic characteristics such as temperature tolerance, growth on acid-alkaline media (pH 5.5-10.0) and antibiotic sensitivity. Our phylogenetic analyses based on three nodulation genes (nodA, nodC and nodD) and cross-inoculation assays confirmed that the nodulation genes are related to those of R. leguminosarum biovar viciae, but clustered in a distinct group supported by high bootstrap values. Thus, our multi-locus phylogenetic analysis, DNA fingerprinting and phenotypic characterizations suggest that at least three different clades are responsible for lentil nodulation in Bangladesh. These clades differ from the R. etli-R. leguminosarum group and may correspond to novel species in the genus Rhizobium.  相似文献   

8.
Gram-negative, rod-shaped bacteria were isolated from Robinia pseudoacacia root nodules. On the basis of the 16S rRNA gene phylogeny, they are closely related to Bradyrhizobium, Rhodopseudomonas and Nitrobacter species (97% sequence similarity), belonging to the class Alphaproteobacteria and family Bradyrhizobiaceae. The results of physiological and biochemical tests together with sequence analysis of housekeeping genes (atpD, dnaK, gyrB, recA and rpoB) allowed differentiation of this group from other validly published Bradyrhizobiaceae genera. NodA, nodC and nifH genes could not be amplified. On the basis of genotypic and phenotypic data, these organisms represent a novel genus and species for which the name Tardiphaga robiniae gen. nov., sp. nov. (LMG 26467(T)=CCUG 61473(T)), is proposed.  相似文献   

9.
Fifteen isolates from several nodulated tropical legumes from Puerto Rico (USA) were characterised by their phenotypic, molecular and symbiotic features. The identification of isolates was based on a polyphasic approach, including phenotypic characteristics, 16S rRNA sequencing, Low molecular weight (LMW) RNA profiles, Two Primers-RAPD patterns, and restriction patterns from 16S rDNA molecules. Despite of the variety of hosts included in this study the 15 isolates were separated into only two groups that corresponded to Rhizobium gallicum and Rhizobium tropici. This work shows that R. gallicum and R. tropici nodulate legume plants, such as Sesbania, Caliandra, Poitea, Piptadenia, Neptunia and Mimosa species, that were not previously considered as hosts for these rhizobia. Moreover, some of these host plants can be nodulated by both species. The results confirm the great promiscuity of R. tropici and also support the hypothesis that the species R. gallicum may be native from America or cosmopolitan and worldwide spread.  相似文献   

10.
A total of seventy-five symbiotic bacterial strains isolated from root nodules of wild Sophora alopecuroides grown in different regions of China's Loess Plateau were characterized. Based on the combined RFLP patterns, thirty-five genotypes were defined among the rhizobia and they were classified into nine genomic species, including Mesorhizobium alhagi and M. gobiense as the main groups, as well as Agrobacterium tumefaciens, M. amorphae, Phyllobacterium trifolii, Rhizobium giardinii, R. indigoferae, Sinorhizobium fredii and S. meliloti as the minor groups according to the 16S rRNA and recA gene analyses. Five and three lineages of nodA and nifH were found, respectively, in these strains, implying that the symbiotic genes of the S. alopecuroides rhizobia had different origins or had divergently evolved. Results of correspondence analysis showed that there was a correlation between rhizobial genotypes and the geographic origins. Possible lateral transfer of the recA and 16S rRNA genes between the P. trifolii and A. tumefaciens strains, and that of symbiotic genes (nodA, nifH) between different genera, was shown by discrepancies of the phylogenetic relationships of the four gene loci. These results revealed diverse rhizobia associated with wild S. alopecuroides grown in different regions of China's Loess Plateau, and demonstrated for the first time the existence of symbiotic A. tumefaciens strains in root nodules of S. alopecuroides.  相似文献   

11.
Family Rhizobiaceae includes fast growing bacteria currently arranged into three genera, Rhizobium, Ensifer and Shinella, that contain pathogenic, symbiotic and saprophytic species. The identification of these species is not possible on the basis of physiological or biochemical traits and should be based on sequencing of several genes. Therefore alternative methods are necessary for rapid and reliable identification of members from family Rhizobiaceae. In this work we evaluated the suitability of Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) for this purpose. Firstly, we evaluated the capability of this methodology to differentiate among species of family Rhizobiaceae including those closely related and then we extended the database of MALDI Biotyper 2.0 including the type strains of 56 species from genera Rhizobium, Ensifer and Shinella. Secondly, we evaluated the identification potential of this methodology by using several strains isolated from different sources previously identified on the basis of their rrs, recA and atpD gene sequences. The 100% of these strains were correctly identified showing that MALDI-TOF MS is an excellent tool for identification of fast growing rhizobia applicable to large populations of isolates in ecological and taxonomic studies.  相似文献   

12.
Bacterial strains from Zn-Pb mine tailings were isolated by trapping with Anthyllis vulneraria, a legume-host suitable for mine substratum phytostabilisation. Sequence analysis of the 16S rRNA gene and three housekeeping genes (atpD, dnaK and recA) showed that they were related to those of the genus Aminobacter. DNA-DNA relatedness of representative isolates supported the placement of novel strains in Aminobacter as a new species. Phenotypic data emphasize their differentiation from the other related species of Aminobacter and Mesorhizobium. Aminobacter isolates exhibited nodA sequences tightly related with M. loti as the closest nodA relative. By contrast, their nodA sequences were highly divergent from those of M. metallidurans, another species associated with A. vulneraria that carries two complete copies of nodA. Therefore, the novel bacterial strains efficient on A. vulneraria represented the first occurrence of legume symbionts in the genus Aminobacter. They represent a new species for which the name Aminobacter anthyllidis sp. nov. is proposed (type strain STM4645(T)=LMG26462(T)=CFBP7437(T)).  相似文献   

13.
【目的】研究分离自四川攀枝花的银合欢根瘤菌的遗传多样性。【方法】采用联合16S rDNA RFLP和IGS RFLP的综合聚类分析(16S-IGS RFLP)、AFLP及多位点持家基因(16S rDNA,atpD,recA)序列的联合分析对供试银合欢根瘤菌进行研究。【结果】31株未知菌具有15种16S-IGS遗传图谱类型、27种AFLP类型。16S-IGS RFLP结果表明,没有未知菌与Bradyrhizobium的参比菌株聚在一起。在71.4%的相似水平上,31个未知菌按属的水平分成3个分支:S、M和R,分别分布在Sinorhizobium属(28株)、Mesorhizobium属(2株)和Rhizobium属(1株)。S分支的28个菌在84%的相似水平上,16S-IGS RFLP聚类图中构成3个群:群S1、群S2、群S3;在AFLP聚类图中构成9个AFLP群:S1–S9。多位点基因序列表明,代表菌株SCAU215、SCAU231分别与M.Plurifarium、R.huautlense亲缘关系最近。而分布于Sinorhizobium属SCAU222和SCAU228、SCAU213、SCAU216可能代表Sinorhizobium的3个新类群。【结论】攀枝花市银合欢根瘤菌遗传多样性丰富,分布于Sinorhizobium、Mesorhizobium和Rhizobium三个属,且优势类群为Sinorhizobium。  相似文献   

14.
Hispaniola Island was the first stopover in the travels of Columbus between America and Spain, and played a crucial role in the exchange of Phaseolus vulgaris seeds and their endosymbionts. The analysis of recA and atpD genes from strains nodulating this legume in coastal and inner regions of Hispaniola Island showed that they were almost identical to those of the American strains CIAT 652, Ch24-10 and CNPAF512, which were initially named as Rhizobium etli and have been recently reclassified into Rhizobium phaseoli after the analysis of their genomes. Therefore, the species R. phaseoli is more abundant in America than previously thought, and since the proposal of the American origin of R. etli was based on the analysis of several strains that are currently known to be R. phaseoli, it can be concluded that both species have an American origin coevolving with their host in its distribution centres. The analysis of the symbiovar phaseoli nodC gene alleles carried by different species isolated in American and European countries suggested a Mesoamerican origin of the α allele and an Andean origin of the γ allele, which is supported by the dominance of this latter allele in Europe where mostly Andean cultivars of common beans have been traditionally cultivated.  相似文献   

15.
Five Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from galls on different plant species in Hungary: strain 39/7(T) from Prunus cerasifera Myrobalan, strain 0 from grapevine var. Ezerjó, strain 7/1 from raspberry var. Findus and in Poland, strain C3.4.1 from Colt rootstock (Prunus avium × Prunus pseudocerasus) and strain CP17.2.2 from Prunus avium. Only one of these isolates, strain 0, is able to cause crown gall on different plant species. On the basis of 16S rRNA gene sequence similarity, the strains cluster together and belong to the genus Rhizobium and their closest relative is Rhizobium radiobacter (99.1%). Phylogenetic analysis of the novel strains using housekeeping genes atpD, glnA, gyrB, recA and rpoB revealed their distinct position separate from other known Rhizobium species and confirmed their relation to Rhizobium radiobacter. The major cellular fatty acids are 18:1 w7c, 16:0, 16:0 3OH, summed feature 2 (comprising 12:0 aldehyde, 16:1 iso I and/or 14:0 3OH) and summed feature 3 (comprising 16:1 w7c and/or 15 iso 2OH). DNA-DNA hybridization of strain 39/7(T) with the type strain of R. radiobacter LMG 140(T) revealed 45% DNA-DNA hybridization. Phenotypic and physiological properties differentiate the novel isolates from other closely related species. On the basis of the results obtained, the five isolates are considered to represent a novel species of the genus Rhizobium, for which the name Rhizobium nepotum sp. nov. (type strain 39/7(T)=LMG 26435(T)=CFBP 7436(T)) is proposed.  相似文献   

16.
The stability of the genetic structure of rhizobial populations nodulating Phaseolus vulgaris cultivated in a traditionally managed milpa plot in Mexico was studied over three consecutive years. The set of molecular markers analyzed (including partial rrs, glnII, nifH, and nodB sequences), along with host range experiments, placed the isolates examined in Rhizobium etli bv. phaseoli and Rhizobium gallicum bv. gallicum. Cluster analysis of multilocus enzyme electrophoresis and plasmid profile data separated the two species and identified numerically dominant clones within each of them. Population genetic analyses showed that there was high genetic differentiation between the two species and that there was low intrapopulation differentiation of the species over the 3 years. The results of linkage disequilibrium analyses are consistent with an epidemic genetic structure for both species, with frequent genetic exchange taking place within conspecific populations but not between the R. etli and R. gallicum populations. A subsample of isolates was selected and used for 16S ribosomal DNA PCR-restriction fragment length polymorphism analysis, nifH copy number determination, and host range experiments. Plasmid profiles and nifH hybridization patterns also revealed the occurrence of lateral plasmid transfer among distinct multilocus genotypes within species but not between species. Both species were recovered from nodules of the same plants, indicating that mechanisms other than host, spatial, or temporal isolation may account for the genetic barrier between the species. The biogeographic implications of finding an R. gallicum bv. gallicum population nodulating common bean in America are discussed.  相似文献   

17.
In this work, we analyzed the diversity of seventy-six bacteria isolated from Pea and faba bean nodules in two regions of Morocco. The molecular diversity was realized using the analysis of the sequences of 16S rRNA and six housekeeping genes (recA, glnII, atpD, dnaK, rpoB and gyrB) and two symbiotic genes (nodA and nodC).The phylogeny of the 16S rRNA gene sequences revealed that all strains belong to the genus Rhizobium, being related to the type strains of R. leguminosarum, R. laguerreae, R. indigoferae, R. anhuiense and R. acidisoli. The housekeeping genes phylogenies showed that some strains formed a subclade distinct from the rhizobial species that usually nodulate Vicia faba and Pisum sativum which are closely related to R. acidisoli FH23 with sequence similarity of 98.3%.Analysis of the PGPR activities of the different isolates showed that the strains related to R. laguerreae were able to solubilize phosphates and to produce siderophores and auxin phytohormone. However, R. acidisoli strain F40D2 was unable to solubilize phosphates although they produce siderophores and IAA.The phylogenetic analysis of the nodA and nodC sequences showed that all isolated strains were closely related with the strains of symbiovar viciae. The nodulation tests confirmed the ability to nodulate V. faba and P. sativum but not Cicer arietinum or Phaseolus vulgaris. Hence, in Morocco P. sativum is nodulated by R. laguerreae; whereas V. faba is nodulated by R. laguerreae and the symbiovar viciae of R. acidisoli which has been not previously described in this species.  相似文献   

18.
Two bradyrhizobial strains, CTAW71(T) and CTAW69, previously isolated from root nodules of Cytisus villosus, have been analysed using a polyphasic approach. These strains have identical 16S rRNA genes and their closest relative species is Bradyrhizobium cytisi, whose type strain CTAW11(T) presented 99.8% identity with respect to strain CTAW71(T). Despite the closeness of the 16S rRNA genes, the housekeeping genes recA, atpD and glnII harboured by strain CTAW71(T) were divergent to those from B. cytisi CTAW11(T), with identity values of 93%, 95% and 97%, respectively. These differences were congruent with DNA-DNA hybridization analysis that revealed an average of 37% relatedness between strain CTAW71(T) and B. cytisi CTAW11(T). Phenotypic characteristics were identical for strains CTAW71(T) and CTAW69, but differed from those of the described species from genus Bradyrhizobium. Based on the genotypic and phenotypic data obtained in this study, we propose that strains CTAW71(T) and CTAW69 should be classified into a new species for which the name Bradyrhizobium rifense sp. nov. is proposed (type strain CTAW71(T)=LMG 26781(T)=CECT 8066(T)).  相似文献   

19.
DnaK is the 70 kDa chaperone that prevents protein aggregation and supports the refolding of damaged proteins. Due to sequence conservation and its ubiquity this chaperone has been widely used in phylogenetic studies. In this study, we applied the less conserved part that encodes the so-called alpha-subdomain of the substrate-binding domain of DnaK for phylogenetic analysis of rhizobia and related non-symbiotic alpha-Proteobacteria. A single 330 bp DNA fragment was routinely amplified from DNA templates isolated from the species of the genera, Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium, but also from some non-symbiotic alpha Proteobacteria such as Blastochloris, Chelatobacter and Chelatococcus. Phylogenetic analyses revealed high congruence between dnaK sequences and 16S rDNA trees, but they were not identical. In contrast, the partition homogeneity tests revealed that dnaK sequence data could be combined with other housekeeping genes such as recA, atpD or glnA. The dnaK trees exhibited good resolution in the cases of the genera Mesorhizobium, Sinorhizobium and Rhizobium, even better than usually shown by 16S rDNA phylogeny. The dnaK phylogeny supported the close phylogenetic relationship of Rhizobium galegae and Agrobacterium tumefaciens (R. radiobacter) C58, which together formed a separate branch within the fast-growing rhizobia, albeit closer to the genus Sinorhizobium. The Rhizobium and Sinorhizobium genera carried an insertion composed of two amino acids, which additionally supported the phylogenetic affinity of these two genera, as well as their distinctness from the Mesorhizobium genus. Consistently with the phylogeny shown by 16S-23S rDNA intergenic region sequences, the dnaK trees divided the genus Bradyrhizobium into three main lineages, corresponding to B. japonicum, B. elkanii, and photosynthetic Bradyrhizobium strains that infect Aeschynomene plants. Our results suggest that the 330 bp dnaK sequences could be used as an additional taxonomic marker for rhizobia and related species (alternatively to the 16S rRNA gene phylogeny).  相似文献   

20.
The bacterial endophytic community present in different Phaseolus vulgaris (bean) cultivars was analyzed by 16S ribosomal RNA gene sequences of cultured isolates derived from surface disinfected roots and immature seeds. Isolated endophytes from tissue-macerates belonged to over 50 species in 24 different genera and some isolates from Acinetobacter, Bacillus, Enterococcus, Nocardioides, Paracoccus, Phyllobacterium, and Sphingomonas seem to correspond to new lineages. Phytate solubilizing bacteria were identified among Acinetobacter, Bacillus and Streptomyces bean isolates, phytate is the most abundant reserve of phosphorus in bean and in other seeds. Endophytic rhizobia were not capable of forming nodules. A novel rhizobial species Rhizobium endophyticum was recognized on the basis of DNA–DNA hybridization, sequence of 16S rRNA, recA, rpoB, atpD, dnaK genes, plasmid profiles, and phenotypic characteristics. R. endophyticum is capable of solubilizing phytate, the type strain is CCGE2052 (ATCC BAA-2116; HAMBI 3153) that became fully symbiotic by acquiring the R. tropici CFN299 symbiotic plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号