首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor growth and metastatic spreading are heavily affected by the P2X7 receptor as well as microvesicles and exosomes release into the tumor microenvironment. P2X7 receptor stimulation is known to trigger vesicular release from immune and central nervous system cells. However, P2X7 role in microvesicles and exosomes delivery from tumor cells was never analyzed in depth. Here we show that P2X7 is overexpressed in patients affected by metastatic malignant melanoma and that its expression closely correlates with reduced overall survival. Antagonism of melanoma cell-expressed P2X7 receptor inhibited in vitro anchorage-independent growth and migration and in vivo dissemination and lung metastasis formation. P2X7 stimulation triggered the release of miRNA-containing microvesicles and exosomes from melanoma cells, profoundly altering the nature of their miRNA content, as well as their dimensions and quantity. Among the more than 200 miRNAs that we found up-or-down-modulated for each vesicular fraction tested, we identified three miRNAs, miR-495-3p, miR-376c-3p, and miR-6730-3p, that were enriched in both the exosome and microvesicle fraction in a P2X7-dependent fashion. Interestingly, upon transfection, these miRNAs promoted melanoma cell growth or migration, and their vesicular release was minimized by P2X7 antagonism. Our data unveil an exosome/microvesicle and miRNA-dependent mechanism for the pro-metastatic activity of the P2X7 receptor and highlight this receptor as a suitable prognostic biomarker and therapeutic target in malignant melanoma.Subject terms: Ligand-gated ion channels, Metastasis, Melanoma, Ion channel signalling, miRNAs  相似文献   

2.
There is emerging evidence of bioactive material transport by exosomes in melanoma. However, the functions of exosome content underlying such cancer progression remain largely unknown. We aimed at determining whether exosome secretion contributes to cellular microRNA-494 (miR-494) loss and investigated the roles of miR-494 in melanoma progression. The exosomes from blood serum and cell culture conditioned media were separated by ultracentrifugation. A short hairpin RNA was used to silence rab27a for inhibiting exosome release. To address the functional role of exosomal miR-494, we assessed cell proliferation, migration, invasion capabilities, and cell apoptosis. Finally, subcutaneous xenograft and lung-metastasis models were constructed to determine the effect of exosomal miR-494 in vivo. Based on long noncoding RNA microarray analysis of melanocyte and melanoma-derived exosomes from the Gene Expression Omnibus database, we discovered that miR-494 was enriched in melanoma-derived exosomes. And miR-494 was increased in exosomes secreted from melanoma patients’ serum and A375 cells. Rab27a depletion reduced exosome secretion and rescued the abundance of cellular miR-494. Functional studies revealed that knockdown of rab27a and subsequent accumulation of miR-494 significantly suppressed the malignant phenotypes of melanoma cells via inducing cell apoptosis. Nude mice experiments confirmed that tumor growth and metastasis were suppressed by increasing miR-494 accumulation after rab27a depletion. In conclusion, blocking transferred exosome-shuttled miR-494 is a potential therapeutic option for melanoma.  相似文献   

3.
Exosomes secreted by normal and cancer cells carry and deliver a variety of molecules. To date, mechanisms referring to tumor exosome trafficking, including release and cell-cell transmission, have not been described. To gain insight into this, exosomes purified from metastatic melanoma cell medium were labeled with a lipid fluorescent probe, R18, and analyzed by spectrofluorometry and confocal microscopy. A low pH condition is a hallmark of tumor malignancy, potentially influencing exosome release and uptake by cancer cells. Using different pH conditions as a modifier of exosome traffic, we showed (i) an increased exosome release and uptake at low pH when compared with a buffered condition and (ii) exosome uptake by melanoma cells occurred by fusion. Membrane biophysical analysis, such as fluidity and lipid composition, indicated a high rigidity and sphingomyelin/ganglioside GM3 (N-acetylneuraminylgalactosylglucosylceramide) content in exosomes released at low pH. This was likely responsible for the increased fusion efficiency. Consistent with these results, pretreatment with proton pump inhibitors led to an inhibition of exosome uptake by melanoma cells. Fusion efficiency of tumor exosomes resulted in being higher in cells of metastatic origin than in those derived from primary tumors or normal cells. Furthermore, we found that caveolin-1, a protein involved in melanoma progression, is highly delivered through exosomes released in an acidic condition. The results of our study provide the evidence that exosomes may be used as a delivery system for paracrine diffusion of tumor malignancy, in turn supporting the importance of both exosomes and tumor pH as key targets for future anti-cancer strategies.  相似文献   

4.
Overexpression of the hepatocyte growth factor receptor (Met/HGF receptor), a transmembrane tyrosine kinase encoded by the MET proto-oncogene, is involved in transformation and invasive behavior of human carcinomas and sarcomas. We have previously found that bone sarcomas express high levels of Met/HGF receptor while in some cases the ligand HGF is co-expressed with the receptor, activating an autocrine loop. In this study, we analyzed 40 biopsy samples of a collection of giant cell tumors and other rare benign tumors of bone for expression of the MET proto-oncogene. These included nonossifying fibromas, osteoblastomas, desmoplastic fibromas of bone, chondroblastomas, and giant cell tumors of bone. Snap frozen samples were tested for the MET and HGF gene expression by immuno-histochemistry and Western blotting with anti-MET antibodies and RT-PCR. Over 50% of all cases scored positive for MET expression being constantly positive in recurrent or locally aggressive lesions. Sporadic co-expression of the Met/HGF receptor and ligand is also demonstrated. Met/HGF receptor expression in benign bone neoplasms suggests its early involvement in sarcomagenesis.  相似文献   

5.
The stress-inducible heat shock protein (HSP) 70 is known to function as an endogenous danger signal that can increase the immunogenicity of tumors and induce CTL responses. We show in this study that HSP70 also activates mouse NK cells that recognize stress-inducible NKG2D ligands on tumor cells. Tumor size and the rate of metastases derived from HSP70-overexpressing human melanoma cells were found to be reduced in T and B cell-deficient SCID mice, but not in SCID/beige mice that lack additionally functional NK cells. In the SCID mice with HSP70-overexpressing tumors, NK cells were activated so that they killed ex vivo tumor cells that expressed NKG2D ligands. In the tumors, the MHC class I chain-related (MIC) A and B molecules were found to be expressed. Interestingly, a counter selection was observed against the expression of MICA/B in HSP70-overexpressing tumors compared with control tumors in SCID, but not in SCID/beige mice, suggesting a functional relevance of MICA/B expression. The melanoma cells were found to release exosomes. HSP70-positive exosomes from the HSP70-overexpressing cells, in contrast to HSP70-negative exosomes from the control cells, were able to activate mouse NK cells in vitro to kill YAC-1 cells, which express NKG2D ligands constitutively, or the human melanoma cells, in which MICA/B expression was induced. Thus, HSP70 and inducible NKG2D ligands synergistically promote the activation of mouse NK cells resulting in a reduced tumor growth and suppression of metastatic disease.  相似文献   

6.
Prostate cancer (PCa) is the most frequent cancer in men aged 65 and over. PCa mainly metastasizes in the bone, forming osteosclerotic lesions, inducing pain, fractures, and nerve compression. Cancer cell-derived exosomes participate in the metastatic spread, ranging from oncogenic reprogramming to the formation of pre-metastatic niches. Moreover, exosomes were recently involved in the dialog between PCa cells and the bone metastasis microenvironment. Phospholipase D (PLD) isoforms PLD1/2 catalyze the hydrolysis of phosphatidylcholine to yield phosphatidic acid (PA), regulating tumor progression and metastasis. PLD is suspected to play a role in exosomes biogenesis. We aimed to determine whether PCa-derived exosomes, through PLD, interact with the bone microenvironment, especially osteoblasts, during the metastatic process. Here we demonstrate for the first time that PLD2 is present in exosomes of C4-2B and PC-3 cells. C4-2B-derived exosomes activate proliferation and differentiation of osteoblasts models, by stimulating ERK 1/2 phosphorylation, by increasing the tissue-nonspecific alkaline phosphatase activity and the expression of osteogenic differentiation markers. Contrariwise, when C4-2B exosomes are generated in the presence of halopemide, a PLD pan-inhibitor, they lose their ability to stimulate osteoblasts. Furthermore, the number of released exosomes diminishes significantly (−40%). When the PLD product PA is combined with halopemide, exosome secretion is fully restored. Taken together, our results indicate that PLD2 stimulates exosome secretion in PCa cell models as well as their ability to increase osteoblast activity. Thus, PLD2 could be considered as a potent player in the establishment of PCa bone metastasis acting through tumor cell derived-exosomes.  相似文献   

7.
Exosomes are secreted into the extracellular space by most cell types and contain various molecular constituents, which play roles in many biological processes. Adipose-derived mesenchymal stem cells (ADSCs) can differentiate into a variety of cell types and secrete a series of paracrine factors through exosomes. ADSC-derived exosomes have shown diagnostic and therapeutic potential in many clinical diseases. The molecular components are critical for their mechanisms. Several methods have been developed for exosome purification, including ultracentrifugation, ultrafiltration, density gradient purification, size-based isolation, polymer precipitation and immuno-affinity purification. Thus, we employed four methods to isolate exosomes from the hADSC culture medium, including ultracentrifugation, size exclusion chromatography, ExoQuick-TC precipitation and ExoQuick-TC ULTRA isolation. Following exosome isolation, we performed quantitative proteomic analysis of the exosome proteins using isobaric tags for relative and absolute quantification (iTRAQ) labelling, combined with 2D-LC-MS/MS. There were 599 universal and 138 stably expressed proteins in hADSC-derived exosomes. We proved that these proteins were potential hADSC-derived exosomes markers, including CD109, CD166, HSPA4, TRAP1, RAB2A, RAB11B and RAB14. From the quantitative proteomic analysis, we demonstrated that hADSC-derived exosome protein expression varied, with lipopolysaccharide (LPS) treatment, in the different isolation methods. Pathway analysis and proliferation, migration and endothelial tube formation assays showed varying effects in cells stimulated with hADSC-derived exosomes from different isolation methods. Our study revealed that different isolation methods might introduce variations in the protein composition in exosomes, which reflects their effects on biological function. The pros and cons of these methods are important points to consider for downstream research applications.  相似文献   

8.
Exosomes are small extracellular membrane vesicles important in intercellular communication, with their oncogenic cargo attributed to tumor progression and pre‐metastatic niche formation. To gain an insight into key differences in oncogenic composition of exosomes, human non‐malignant epithelial and pancreatic cancer cell models and purified and characterized resultant exosome populations are utilized. Proteomic analysis reveals the selective enrichment of known exosome markers and signaling proteins in comparison to parental cells. Importantly, valuable insights into oncogenic exosomes (362 unique proteins in comparison to non‐malignant exosomes) of key metastatic regulatory factors and signaling molecules fundamental to pancreatic cancer progression (KRAS, CD44, EGFR) are provided. It is reported that oncogenic exosomes contain factors known to regulate the pre‐metastatic niche (S100A4, F3, ITGβ5, ANXA1), clinically‐relevant proteins which correlate with poor prognosis (CLDN1, MUC1) as well as protein networks involved in various cancer hallmarks including proliferation (CLU, CAV1), invasion (PODXL, ITGA3), metastasis (LAMP1, ST14) and immune surveillance escape (B2M). The presence of these factors in oncogenic exosomes offers an understanding of select differences in exosome composition during tumorigenesis, potential components as prognostic and diagnostic biomarkers in pancreatic cancer, and highlights the role of exosomes in mediating crosstalk between tumor and stromal cells.  相似文献   

9.
The deregulation of tyrosine kinase receptors (RTKs) is frequent in human tumors and is often associated with the acquisition of an aggressive phenotype. The Met oncogene, encoding the RTK for hepatocyte growth factor (HGF), controls genetic programs leading to cell growth, invasion and protection from apoptosis. The deregulated activation of Met is crucial not only for the acquisition of tumorigenic properties but also to achieve an invasive phenotype. The involvement of MET in human tumors has been definitively established and can be achieved through several mechanisms, including MET interaction with unrelated membrane receptors, such as integrins, plexins, CD44, FAS and other RTKs. Interfering with Met activation is thus a new and challenging approach to hamper tumorigenic and metastatic processes.  相似文献   

10.
Cancer cells secrete soluble factors and various extracellular vesicles, including exosomes, into their tissue microenvironment. The secretion of exosomes is speculated to facilitate local invasion and metastatic spread. Here, we used an in vivo metastasis model of human bladder carcinoma cell line T24 without metastatic capacity and its two isogenic derivate cell lines SLT4 and FL3, which form metastases in the lungs and liver of mice, respectively. Cultivation in CLAD1000 bioreactors rather than conventional culture flasks resulted in a 13‐ to 16‐fold increased exosome yield and facilitated quantitative proteomics of fractionated exosomes. Exosomes from T24, SLT4, and FL3 cells were partitioned into membrane and luminal fractions and changes in protein abundance related to the gain of metastatic capacity were identified by quantitative iTRAQ proteomics. We identified several proteins linked to epithelial–mesenchymal transition, including increased abundance of vimentin and hepatoma‐derived growth factor in the membrane, and casein kinase II α and annexin A2 in the lumen of exosomes, respectively, from metastatic cells. The change in exosome protein abundance correlated little, although significant for FL3 versus T24, with changes in cellular mRNA expression. Our proteomic approach may help identification of proteins in the membrane and lumen of exosomes potentially involved in the metastatic process.  相似文献   

11.
12.
Physical cues in the extracellular microenvironment regulate cancer cell metastasis. Functional microRNA (miRNA) carried by cancer derived exosomes play a critical role in extracellular communication between cells and the extracellular microenvironment. However, little is known about the role of exosomes loaded miRNAs in the mechanical force transmission between cancer cells and extracellular microenvironment. Herein, our results suggest that stiff extracellular matrix (ECM) induced exosomes promote cancer cell migration. The ECM mechanical force regulated the exosome miRNA cargo of prostate cancer cells. Exosome miRNAs regulated by the ECM mechanical force modulated cancer cell metastasis by regulating cell motility, ECM remodeling and the interaction between cancer cells and nerves. Focal adhesion kinase mediated-ECM mechanical force regulated the intracellular miRNA expression, and F-actin mediate-ECM mechanical force regulated miRNA packaging into exosomes. The above results demonstrated that the exosome miRNA cargo promoted cancer metastasis by transmitting the ECM mechanical force. The ECM mechanical force may play multiple roles in maintaining the microenvironment of cancer metastasis through the exosome miRNA cargo.  相似文献   

13.
Emerging evidence indicates that exosomes play a key role in tumor-host cross-talk and that exosome secretion, composition, and functional capacity are altered as tumors progress to an aggressive phenotype. However, little is known regarding the mechanisms that regulate these changes. Heparanase is an enzyme whose expression is up-regulated as tumors become more aggressive and is associated with enhanced tumor growth, angiogenesis, and metastasis. We have discovered that in human cancer cells (myeloma, lymphoblastoid, and breast cancer), when expression of heparanase is enhanced or when tumor cells are exposed to exogenous heparanase, exosome secretion is dramatically increased. Heparanase enzyme activity is required for robust enhancement of exosome secretion because enzymatically inactive forms of heparanase, even when present in high amounts, do not dramatically increase exosome secretion. Heparanase also impacts exosome protein cargo as reflected by higher levels of syndecan-1, VEGF, and hepatocyte growth factor in exosomes secreted by heparanase-high expressing cells as compared with heparanase-low expressing cells. In functional assays, exosomes from heparanase-high cells stimulated spreading of tumor cells on fibronectin and invasion of endothelial cells through extracellular matrix better than did exosomes secreted by heparanase-low cells. These studies reveal that heparanase helps drive exosome secretion, alters exosome composition, and facilitates production of exosomes that impact both tumor and host cell behavior, thereby promoting tumor progression.  相似文献   

14.
Prostate cancer (PCa) is the second leading cause of cancer death in the US. Death from PCa primarily results from metastasis. Mitogen-activated protein kinase kinase 4 (MAP2K4) is overexpressed in invasive PCa lesions in humans, and can be inhibited by small molecule therapeutics that demonstrate favorable activity in phase II studies. However, MAP2K4''s role in regulating metastatic behavior is controversial and unknown. To investigate, we engineered human PCa cell lines which overexpress either wild type or constitutive active MAP2K4. Orthotopic implantation into mice demonstrated MAP2K4 increases formation of distant metastasis. Constitutive active MAP2K4, though not wild type, increases tumor size and circulating tumor cells in the blood and bone marrow. Complementary in vitro studies establish stable MAP2K4 overexpression promotes cell invasion, but does not affect cell growth or migration. MAP2K4 overexpression increases the expression of heat shock protein 27 (HSP27) protein and protease production, with the largest effect upon matrix metalloproteinase 2 (MMP-2), both in vitro and in mouse tumor samples. Further, MAP2K4-mediated increases in cell invasion are dependent upon heat shock protein 27 (HSP27) and MMP-2, but not upon MAP2K4''s immediate downstream targets, p38 MAPK or JNK. We demonstrate that MAP2K4 increases human PCa metastasis, and prolonged over expression induces long term changes in cell signaling pathways leading to independence from p38 MAPK and JNK. These findings provide a mechanistic explanation for human studies linking increases in HSP27 and MMP-2 to progression to metastatic disease. MAP2K4 is validated as an important therapeutic target for inhibiting human PCa metastasis.  相似文献   

15.
16.
Oral squamous cell carcinoma (SCC) is a neoplasm characterized by a high degree of local invasion and an elevated rate of metastasis to cervical lymph nodes. It has been shown that the Hepatocyte Growth Factor/Scatter Factor Receptor Met is constitutively activated in many human tumors of epithelial origin and that it plays a critical role to confer invasive properties to neoplastic cells. Most frequently, Met activation is due to receptor overexpression, but also point mutations in the tyrosine kinase domain can lead to deregulated activation. Here we show that in all the primary tumors examined this receptor is overexpressed. Direct sequencing of Met mRNAs failed to find any activating mutation in its intracellular domain. Moreover, in cell lines derived from squamous cell carcinomas, HGF-induced activation of Met resulted in the acquisition of invasive properties. All together these data suggest that the MET oncogene is involved in progression of squamous cell carcinoma toward an invasive-metastatic behavior.  相似文献   

17.
《The Journal of cell biology》1996,135(6):1655-1668
We have characterized the adhesion molecule HEMCAM, which is expressed by hemopoietic progenitors of embryonic bone marrow. HEMCAM belongs to the immunoglobulin superfamily and consists of the V-V-C2-C2-C2 Ig domains. There are three mRNA splice variants. One has a short cytoplasmic tail; another has a long tail; while the third seems to lack transmembrane and cytoplasmic regions. Except for the NH2-terminal sequence, HEMCAM is identical to gicerin, a molecular involved in neurite outgrowth and Wilm's kidney tumor progression in the chicken and it is significantly homologous with MUC18 a molecule involved in melanoma progression and metastasis in human beings. In the bone marrow the HEMCAM+ cell population contains c-kit+ subsets. HEMCAM+ cells coexpressing the receptor tyrosine kinase c-kit give rise to T cells at a frequency of 0.17 when injected intrathymically in congenic animals. As HEMCAM+, c-kit+ cells differentiate into myeloid and erythroid CFU's the double-positive cell population seems to contain precursors for multiple lineages. HEMCAM promotes cell-cell adhesion of transfected cells. Cross-linking of murine HEMCAM leads to cell spreading of T- lymphocyte progenitors adhering to the vascular adhesion molecules, PECAM-1 and VCAM-1. Thus, HEMCAM is likely to be involved in cellular adhesion and homing processes.  相似文献   

18.
For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and exosome proteomic profiling on exosomes released from three breast cancer cell lines that model progressive stages of metastasis. Results from these experiments suggest: (1) exosomes promote cell migration and (2) the signal is stronger from exosomes isolated from cells with higher metastatic potentials; (3) exosomes are endocytosed at the same rate regardless of the cell type; (4) exosomes released from cells show differential enrichment of proteins with unique protein signatures of both identity and abundance. We conclude that breast cancer cells of increasing metastatic potential secrete exosomes with distinct protein signatures that proportionally increase cell movement and suggest that released exosomes could play an active role in metastasis.  相似文献   

19.
Development of exosome-based semisynthetic nanovesicles for diagnostic and therapeutic purposes requires novel approaches to load exosomes with cargo. Electroporation has previously been used to load exosomes with RNA. However, investigations into exosome colloidal stability following electroporation have not been considered. Herein, we report the development of a unique trehalose pulse media (TPM) that minimizes exosome aggregation following electroporation. Dynamic light scattering (DLS) and RNA absorbance were employed to determine the extent of exosome aggregation and electroextraction post electroporation in TPM compared to common PBS pulse media or sucrose pulse media (SPM). Use of TPM to disaggregate melanoma exosomes post electroporation was dependent on both exosome concentration and electric field strength. TPM maximized exosome dispersal post electroporation for both homogenous B16 melanoma and heterogeneous human serum-derived populations of exosomes. Moreover, TPM enabled heavy cargo loading of melanoma exosomes with 5 nm superparamagnetic iron oxide nanoparticles (SPION5) while maintaining original exosome size and minimizing exosome aggregation as evidenced by transmission electron microscopy. Loading exosomes with SPION5 increased exosome density on sucrose gradients. This provides a simple, label-free means of enriching exogenously modified exosomes and introduces the potential for MRI-driven theranostic exosome investigations in vivo.  相似文献   

20.
Exosomes are nanometer-sized lipid vesicles released ubiquitously by cells, which have been shown to have a normal physiological role, as well as influence the tumor microenvironment and aid metastasis. Recent studies highlight the ability of exosomes to convey tumor-suppressive and oncogenic mRNAs, microRNAs, and proteins to a receiving cell, subsequently activating downstream signaling pathways and influencing cellular phenotype. Here, we show that radiation increases the abundance of exosomes released by glioblastoma cells and normal astrocytes. Exosomes derived from irradiated cells enhanced the migration of recipient cells, and their molecular profiling revealed an abundance of molecules related to signaling pathways important for cell migration. In particular, connective tissue growth factor (CTGF) mRNA and insulin-like growth factor binding protein 2 (IGFBP2) protein levels were elevated, and coculture of nonirradiated cells with exosomes isolated from irradiated cells increased CTGF protein expression in the recipient cells. Additionally, these exosomes enhanced the activation of neurotrophic tyrosine kinase receptor type 1 (TrkA), focal adhesion kinase, Paxillin, and proto-oncogene tyrosine-protein kinase Src (Src) in recipient cells, molecules involved in cell migration. Collectively, our data suggest that radiation influences exosome abundance, specifically alters their molecular composition, and on uptake, promotes a migratory phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号