首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
We have carried out NMR and molecular modeling studies of peptidomimetic HIV-1 protease inhibitors, LB71116: Qc-Asn-Phepsi[(1R,2S)-cis-epoxide]Gly-NH-CH(isopropyl)2 where Qc stands for quinaldic acid and LB71148: Qc-(SMe)Pen(O)2-Phepsi[(1R,2S)-cis-epoxide]Gly-NH-CH(isoprop yl)2 where (SMe)Pen(O)2 stands for S-methyl-S-dioxo-penicillamine. Through conformational calculations and NMR data analysis, we have obtained preferred conformations of the two inhibitors in solution. To our knowledge, this work is one of the first extensive conformational studies of peptidomimetics containing cis-epoxide amide isostere. The resulting preferred conformations contain extended structures. In these conformations, the psi of Phe(cep) is maintained about 130 degrees and the phi angle of (cep)Gly prefers +/- 150 degrees [where Phe(cep) and (cep)Gly are the residues generated by the replacement of the Phe-Gly peptide bond with cis-epoxide]. Two conformations were commonly observed in the preferred conformations of each inhibitor. Through restrained molecular dynamics simulating the hydrogen bond formation between our inhibitor and a water molecule ('flap water'), one of the conformations is assumed as the conformation which can bind to the enzyme without large conformational changes. Recently, we had the opportunity to compare the selected preferred conformation with the binding conformation of LB71116 observed from the X-ray studies of the complex between LB71116 and HIV-1 protease. These two conformations are surprisingly similar to each other. Thus, we can explain high activity and selectivity of our inhibitors to the HIV-1 protease by the similarity between the preferred conformations in solution and the binding conformation.  相似文献   

3.
The structure of a crystal complex of recombinant human immunodeficiency virus type 1 (HIV-1) protease with a peptide-mimetic inhibitor containing a dihydroxyethylene isostere insert replacing the scissile bond has been determined. The inhibitor is Noa-His-Hch psi [CH(OH)CH(OH)]Vam-Ile-Amp (U-75875), and its Ki for inhibition of the HIV-1 protease is < 1.0 nM (Noa = 1-naphthoxyacetyl, Hch = a hydroxy-modified form of cyclohexylalanine, Vam = a hydroxy-modified form of valine, Amp = 2-pyridylmethylamine). The structure of the complex has been refined to a crystallographic R factor of 0.169 at 2.0 A resolution by using restrained least-squares procedures. Root mean square deviations from ideality are 0.02 A and 2.4 degrees, for bond lengths and angles, respectively. The bound inhibitor diastereomer has the R configurations at both of the hydroxyl chiral carbon atoms. One of the diol hydroxyl groups is positioned such that it forms hydrogen bonds with both the active site aspartates, whereas the other interacts with only one of them. Comparison of this X-ray structure with a model-built structure of the inhibitor, published earlier, reveals similar positioning of the backbone atoms and of the side-chain atoms in the P2-P2' region, where the interaction with the protein is strongest. However, the X-ray structure and the model differ considerably in the location of the P3 and P3' end groups, and also in the positioning of the second of the two central hydroxyl groups. Reconstruction of the central portion of the model revealed the source of the hydroxyl discrepancy, which, when corrected, provided a P1-P1' geometry very close to that seen in the X-ray structure.  相似文献   

4.
The crystal structure of a complex between chemically synthesized human immunodeficiency virus type 1 (HIV-1) protease and an octapeptide inhibitor has been refined to an R factor of 0.138 at 2.5-A resolution. The substrate-based inhibitor, H-Val-Ser-Gln-Asn-Leu psi [CH(OH)CH2]Val-Ile-Val-OH (U-85548e) contains a hydroxyethylene isostere replacement at the scissile bond that is believed to mimic the tetrahedral transition state of the proteolytic reaction. This potent inhibitor has Ki less than 1 nM and was developed as an active-site titrant of the HIV-1 protease. The inhibitor binds in an extended conformation and is involved in beta-sheet interactions with the active-site floor and flaps of the enzyme, which form the substrate/inhibitor cavity. The inhibitor diastereomer has the S configuration at the chiral carbon atom of the hydroxyethylene insert, and the hydroxyl group is within H-bonding distance of the two active-site carboxyl groups in the enzyme dimer. The two subunits of the enzyme are related by a pseudodyad, which superposes them at a 178 degrees rotation. The main difference between the subunits is in the beta turns of the flaps, which have different conformations in the two monomers. The inhibitor has a clear preferred orientation in the active site and the alternative conformation, if any, is a minor one (occupancy of less than 30%). A new model of the enzymatic mechanism is proposed in which the proteolytic reaction is viewed as a one-step process during which the nucleophile (water molecule) and electrophile (an acidic proton) attack the scissile bond in a concerted manner.  相似文献   

5.
The mutation Ala28 to serine in human immunodeficiency virus, type 1, (HIV-1) protease introduces putative hydrogen bonds to each active-site carboxyl group. These hydrogen bonds are ubiquitous in pepsin-like eukaryotic aspartic proteases. In order to understand the significance of this difference between HIV-1 protease and homologous, eukaryotic aspartic proteases, we solved the three-dimensional structure of A28S mutant HIV-1 protease in complex with a peptidic inhibitor U-89360E. The structure has been determined to 2.0 A resolution with an R factor of 0.194. Comparison of the mutant enzyme structure with that of the wild-type HIV-1 protease bound to the same inhibitor (Hong L, Treharne A, Hartsuck JA, Foundling S, Tang J, 1996, Biochemistry 35:10627-10633) revealed double occupancy for the Ser28 hydroxyl group, which forms a hydrogen bond either to one of the oxygen atoms of the active-site carboxyl or to the carbonyl oxygen of Asp30. We also observed marked changes in orientation of the Asp25 catalytic carboxyl groups, presumably caused by the new hydrogen bonds. These observations suggest that catalytic aspartyl groups of HIV-1 protease have significant conformational flexibility unseen in eukaryotic aspartic proteases. This difference may provide an explanation for some unique catalytic properties of HIV-1 protease.  相似文献   

6.
Compounds containing the easily accessible Phe[CH(OH)CH2N(NH)Phe dipeptide isostere as a non-hydrolyzable replacement of the scissile amide bond in the natural substrate are potent inhibitors of HIV-1 protease. The expected symmetric binding pattern of the most potent inhibitor in this series (CGP 53280, IC50 = 9 nM) is illustrated by the X-ray analysis performed with the corresponding enzyme-inhibitor complex.  相似文献   

7.
Analogues of peptides ranging in size from three to six amino acids and containing the hydroxyethylene dipeptide isosteres Phe psi Gly, Phe psi Ala, Phe psi NorVal, Phe psi Leu, and Phe psi Phe, where psi denotes replacement of CONH by (S)-CH(OH)CH2, were synthesized and studied as HIV-1 protease inhibitors. Inhibition constants (Ki) with purified HIV-1 protease depend strongly on the isostere in the order Phe psi Gly greater than Phe psi Ala greater than Phe psi NorVal greater than Phe psi Leu greater than Phe psi Phe and decrease with increasing length of the peptide analogue, converging to a value of 0.4 nM. Ki values are progressively less dependent on inhibitor length as the size of the P1' side chain within the isostere increases. The structures of HIV-1 protease complexed with the inhibitors Ala-Ala-X-Val-Val-OMe, where X is Phe psi Gly, Phe psi Ala, Phe psi NorVal, and Phe psi Phe, have been determined by X-ray crystallography (resolution 2.3-3.2 A). The crystals exhibit symmetry consistent with space group P6(1) with strong noncrystallographic 2-fold symmetry, and the inhibitors all exhibit 2-fold disorder. The inhibitors bind in similar conformations, forming conserved hydrogen bonds with the enzyme. The Phe psi Gly inhibitor adopts an altered conformation that places its P3' valine side chain partially in the hydrophobic S1' pocket, thus suggesting an explanation for the greater dependence of the Ki value on inhibitor length in the Phe psi Gly series. From the kinetic and crystallographic data, a minimal inhibitor model for tight-binding inhibition is derived in which the enzyme subsites S2-S2' are optimally occupied. The Ki values for several compounds are compared with their potencies as inhibitors of proteolytic processing in T-cell cultures chronically infected with HIV-1 (MIC values) and as inhibitors of acute infectivity (IC50 values). There is a rank-order correspondence, but a 20-1000-fold difference, between the values of Ki and those of MIC or IC50. IC50 values can approach those of Ki but are highly dependent on the conditions of the acute infectivity assay and are influenced by physiochemical properties of the inhibitors such as solubility.  相似文献   

8.
The conformation of the synthetic renin inhibitor CP-69,799, bound to the active site of the fungal aspartic proteinase endothiapepsin (EC 3.4.23.6), has been determined by X-ray diffraction at 1.8 A resolution and refined to the crystallographic R factor of 16%. CP-69,799 is an oligopeptide transition--state analogue inhibitor that contains a new dipeptide isostere at the P1-P1' position. This dipeptide isostere is a nitrogen analogue of the well-explored hydroxyethylene dipeptide isostere, wherein the tetrahedral P1' C alpha atom has been replaced by trigonal nitrogen. The inhibitor binds in the extended conformation, filling S4 to S3' pockets, with hydroxyl group of the P1 residue positioned symmetrically between the two catalytic aspartates of the enzyme. Interactions between the inhibitor and the enzyme include 12 hydrogen bonds and extensive van der Waals contacts in all the pockets, except for S3'. The crystal structure reveals a bifurcated orientation of the P2 histidine side chain and an interesting relative rotation of the P3 phenyl ring to accommodate the cyclohexyl side chain at P1. The binding of the inhibitor to the enzyme, while producing no large distortions in the enzyme active site cleft, results in small but significant change in the relative orientation of the two endothiapepsin domains. This structural change may represent the action effected by the proteinase as it distorts its substrate towards the transition state for proteolytic cleavage.  相似文献   

9.
Aspartic proteases have emerged as targets for substrate-based inhibitor design due to their vital roles in the life cycles of the organisms that cause AIDS, malaria, leukemia, and other infectious diseases. Based on the concept of mimicking the substrate transition-state, we designed and synthesized a novel class of aspartic protease inhibitors containing the hydroxymethylcarbonyl (HMC) isostere. An unnatural amino acid, allophenylnorstatine [Apns; (2 S ,3 S )-3-amino-2-hydroxy-4-phenylbutyric acid], was incorporated at the P1 site in a series of peptidomimetic compounds that mimic the natural substrates of the HIV, HTLV-I, and malarial aspartic proteases. From extensive structure-activity relationship studies, we were able to identify a series of highly potent peptidomimetic inhibitors of HIV protease. One highly potent inhibitor of the malarial aspartic protease (plasmepsin II) was identified. Finally, a promising lead compound against the HTLV-I protease was identified.  相似文献   

10.
Truncation of a peptide substrate in the N-terminus and replacement of its scissile amide bond with a non-cleavable reduced bond results in a potent inhibitor of HIV-1 protease. A series of such inhibitors has been synthesized, and S2-S3' subsites of the protease binding cleft mapped. The S2 pocket requires bulky Boc or PIV groups, large aromatic Phe residues are preferred in P1 and P1' and Glu in P2'. The S3' pocket prefers Phe over small Ala or Val. Introduction of a Glu residue into the P2' position yields a tight-binding inhibitor of HIV-1 protease, Boc-Phe-[CH2-NH]-Phe-Glu-Phe-OMe, with a subnanomolar inhibition constant. The relevant peptide derived from the same amino acid sequence binds to the protease with a Ki of 110 nM, thus still demonstrating a good fit of the amino acid residues into the protease binding pockets and also the importance of the flexibility of P1-P1' linkage for proper binding. A new type of peptide bond mimetic, N-hydroxylamine -CH2-N(OH)-, has been synthesized. Binding of hydroxylamino inhibitor of HIV-1 protease is further improved with respect to reduced-bond inhibitor.  相似文献   

11.
HIV-1 protease (PR) has been a significant target for design of potent inhibitors curing acquired immunodeficiency syndrome. Molecular dynamics simulations coupled with molecular mechanics Poisson–Boltzmann surface area method were performed to study interaction modes of four inhibitors MKP56, MKP73, MKP86, and MKP97 with PR. The results suggest that the main force controlling interactions of inhibitors with PR should be contributed by van der Waals interactions between inhibitors and PR. The cross-correlation analyses based on MD trajectories show that inhibitor binding produces significant effect on the flap dynamics of PR. Hydrogen bond analyses indicate that inhibitors can form stable hydrogen bonding interactions with the residues from the catalytic strands of PR. The contributions of separate residues to inhibitor bindings are evaluated by using residue-based free energy decomposition method and the results demonstrate that the CH–π and CH–CH interactions between the hydrophobic groups of inhibitors with residues drive the associations of inhibitors with PR. We expect that this study can provide a significant theoretical aid for design of potent inhibitors targeting PR.  相似文献   

12.
High-resolution crystal structures are described for seven macrocycles complexed with HIV-1 protease (HIVPR). The macrocycles possess two amides and an aromatic group within 15-17 membered rings designed to replace N- or C-terminal tripeptides from peptidic inhibitors of HIVPR. Appended to each macrocycle is a transition state isostere and either an acyclic peptide, nonpeptide, or another macrocycle. These cyclic analogues are potent inhibitors of HIVPR, and the crystal structures show them to be structural mimics of acyclic peptides, binding in the active site of HIVPR via the same interactions. Each macrocycle is restrained to adopt a beta-strand conformation which is preorganized for protease binding. An unusual feature of the binding of C-terminal macrocyclic inhibitors is the interaction between a positively charged secondary amine and a catalytic aspartate of HIVPR. A bicyclic inhibitor binds similarly through its secondary amine that lies between its component N-terminal and C-terminal macrocycles. In contrast, the corresponding tertiary amine of the N-terminal macrocycles does not interact with the catalytic aspartates. The amine-aspartate interaction induces a 1.5 A N-terminal translation of the inhibitors in the active site and is accompanied by weakened interactions with a water molecule that bridges the ligand to the enzyme, as well as static disorder in enzyme flap residues. This flexibility may facilitate peptide cleavage and product dissociation during catalysis. Proteases [Aba67,95]HIVPR and [Lys7,Ile33,Aba67,95]HIVPR used in this work were shown to have very similar crystal structures.  相似文献   

13.
The human immunodeficiency virus 1 (HIV-1) protease (PR) is an aspartyl protease essential for HIV-1 viral infectivity. HIV-1 PR has one catalytic site formed by the homodimeric enzyme. We chemically synthesized fully active HIV-1 PR using modern ligation methods. When complexed with the classic substrate-derived inhibitors JG-365 and MVT-101, the synthetic HIV-1 PR formed crystals that diffracted to 1.04- and 1.2-A resolution, respectively. These atomic-resolution structures revealed additional structural details of the HIV-1 PR's interactions with its active site ligands. Heptapeptide inhibitor JG-365, which has a hydroxyethylamine moiety in place of the scissile bond, binds in two equivalent antiparallel orientations within the catalytic groove, whereas the reduced isostere hexapeptide MVT-101 binds in a single orientation. When JG-365 was converted into the natural peptide substrate for molecular dynamic simulations, we found putative catalytically competent reactant states for both lytic water and direct nucleophilic attack mechanisms. Moreover, free energy perturbation calculations indicated that the insertion of catalytic water into the catalytic site is an energetically favorable process.  相似文献   

14.
HIV-1 encodes an aspartic protease, an enzyme crucial to viral maturation and infectivity. It is responsible for the cleavage of various protein precursors into viral proteins. Inhibition of this enzyme prevents the formation of mature, infective viral particles and therefore, it is a potential target for therapeutic intervention following infection. Several drugs that inhibit the action of this enzyme have been discovered. These include peptidomimetic inhibitors such as ABT-538 and saquinavir, and structure based inhibitors such as indinavir and nelfinavir. Several of these have been tested in human clinical trials and have demonstrated significant reduction in viral load. However, most of them have been found to be of limited clinical utility because of their poor pharmacological properties and also because the viral protease becomes rapidly resistant to these drugs on account of mutations in the enzyme. One way to overcome these limitations is to design an inhibitor that interacts mainly with the conserved residues of HIV-1 protease. By a rational drug design approach based on the high resolution X-ray crystal structure of the HIV-1 protease with--MVT 101 (a substrate based inhibitor) and the specific design principles of peptides containing dehydro-Alanine (delta Ala) derived from our earlier studies, we have designed a tetrapeptide with the sequence: NH2-Thr-delta Ala-delta Ala-Gln-COOH. Energy minimization and molecular modelling of the interaction of the designed tetrapeptide with the inhibitor binding site indicate that the inhibitor is in an extended conformation and makes excessive contacts with the viral enzyme at the interface between the protein subunits. The designed inhibitor has 33% of its interaction with the conserved region of HIV-1 protease which is of the same order as that of MVT 101 with the enzyme.  相似文献   

15.
The HIV-1 protease is a validated drug target for the design of antiretroviral drugs to combat AIDS. We previously established the sulfoximine functionality as a valid transition state mimetic (TSM) in the HIV-1 protease inhibitors (PI) design and have identified a lead pseudosymmetric compound with nanomolar enzymatic inhibitory activity. Here, we report the asymmetric synthesis of this compound and its application in the synthesis of sulfoximine-based peptidomimetic HIV-1 protease inhibitors. Molecular modeling revealed the potential mode of binding of the sulfoximine inhibitor as a TSM. The predicted absolute binding free energies suggested similar inhibitory effect as observed in our enzymatic inhibitory studies.  相似文献   

16.
A Gustchina  I T Weber 《Proteins》1991,10(4):325-339
The different isolates available for HIV-1 and HIV-2 were compared for the region of the protease (PR) sequence, and the variations in amino acids were analyzed with respect to the crystal structure of HIV-1 PR with inhibitor. Based on the extensive homology (39 identical out of 99 residues), models were built of the HIV-2 PR complexed with two different aspartic protease inhibitors, acetylpepstatin and a renin inhibitor, H-261. Comparison of the HIV-1 PR crystal structure and the HIV-2 PR model structure and the analysis of the changes found in different isolates showed that correlated substitutions occur in the hydrophobic interior of the molecule and at surface residues involved in ionic or hydrogen bond interactions. The substrate binding residues of HIV-1 and HIV-2 PRs show conservative substitutions of four residues. The difference in affinity of HIV-1 and HIV-2 PRs for the two inhibitors appears to be due in part to the change of Val 32 in HIV-1 PR to Ile in HIV-2 PR.  相似文献   

17.
Three forms of feline immunodeficiency virus protease (FIV PR), the wild type (wt) and two single point mutants, V59I and Q99V, as well as human immunodeficiency virus type 1 protease (HIV-1 PR), were cocrystallized with the C2-symmetric inhibitor, TL-3. The mutants of FIV PR were designed to replace residues involved in enzyme-ligand interactions by the corresponding HIV-1 PR residues at the structurally equivalent position. TL-3 shows decreased (improved) inhibition constants with these FIV PR mutants relative to wt FIV PR. Despite similar modes of binding of the inhibitor to all PRs (from P3 to P3'), small differences are evident in the conformation of the Phe side chains of TL-3 at the P1 and P1' positions in the complexes with the mutated FIV PRs. The differences mimick the observed binding of TL-3 in HIV-1 PR and correlate with a significant improvement in the inhibition constants of TL-3 with the two mutant FIV PRs. Large differences between the HIV-1 and FIV PR complexes are evident in the binding modes of the carboxybenzyl groups of TL-3 at P4 and P4'. In HIV-1 PR:TL-3, these groups bind over the flap region, whereas in the FIV PR complexes, the rings are located along the major axis of the active site. A significant difference in the location of the flaps in this region of the HIV-1 and FIV PRs correlates with the observed conformational changes in the binding mode of the peptidomimetic inhibitor at the P4 and P4' positions. These findings provide a structural explanation of the observed Ki values for TL-3 with the different PRs and will further assist in the development of improved inhibitors.  相似文献   

18.
Li D  Ji B  Hwang KC  Huang Y 《PloS one》2011,6(4):e19268
To understand the underlying mechanisms of significant differences in dissociation rate constant among different inhibitors for HIV-1 protease, we performed steered molecular dynamics (SMD) simulations to analyze the entire dissociation processes of inhibitors from the binding pocket of protease at atomistic details. We found that the strength of hydrogen bond network between inhibitor and the protease takes crucial roles in the dissociation process. We showed that the hydrogen bond network in the cyclic urea inhibitors AHA001/XK263 is less stable than that of the approved inhibitor ABT538 because of their large differences in the structures of the networks. In the cyclic urea inhibitor bound complex, the hydrogen bonds often distribute at the flap tips and the active site. In contrast, there are additional accessorial hydrogen bonds formed at the lateral sides of the flaps and the active site in the ABT538 bound complex, which take crucial roles in stabilizing the hydrogen bond network. In addition, the water molecule W301 also plays important roles in stabilizing the hydrogen bond network through its flexible movement by acting as a collision buffer and helping the rebinding of hydrogen bonds at the flap tips. Because of its high stability, the hydrogen bond network of ABT538 complex can work together with the hydrophobic clusters to resist the dissociation, resulting in much lower dissociation rate constant than those of cyclic urea inhibitor complexes. This study may provide useful guidelines for design of novel potent inhibitors with optimized interactions.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) protease optimally catalyzes in the pH range of 4-6 in contrast to nearly all of the other eukaryotic aspartic proteases, which catalyze best in the pH range of 2-4. A possible structural reason for the higher optimal pH of HIV-1 protease is the absence of a hydrogen bond to the carboxyl group of active-site Asp25, which is nearly universally present in others. To investigate this hypothesis, we have mutated residue 28 in HIV-1 protease from alanine to serine. Both the wild-type and the mutant A28S enzymes have been overexpressed in Escherichia coli using a chemically synthesized gene and purified for a comparative study in enzyme kinetics. The kcat and Km values were determined by a radiometric assay for the wild-type enzyme from pH 3.2 to 7.0, and for the mutant enzyme from pH 3.2 to 6.0. The low pK values of the active site of the free enzyme, pKe1, are 3.3 and 3.4 for the wild-type and mutant enzymes, respectively. The low pK values of the active site of the enzyme bound to substrate, pKes1, are 5.1 and 4.3 for the wild-type and mutant enzymes, respectively. The high pK values of the free enzyme, pKe2, are 6.8 and 5.6, and the corresponding ones for the substrate-bound enzyme, pKes2, are 6.9 and 6.0 for the wild-type and mutant enzymes, respectively. The lowering of pK values in mutant HIV-1 protease indicates that the hydroxyl group of Ser28 forms a new hydrogen bond to active-site Asp25 to increase its acidity.  相似文献   

20.
Highly purified, recombinant preparations of the virally encoded proteases from human immunodeficiency viruses (HIV) 1 and 2 have been compared relative to 1) their specificities toward non-viral protein and synthetic peptide substrates, and 2) their inhibition by several P1-P1' pseudodipeptidyl-modified substrate analogs. Hydrolysis of the Leu-Leu and Leu-Ala bonds in the Pseudomonas exotoxin derivative, Lys-PE40, is qualitatively the same for HIV-2 protease as published earlier for the HIV-1 enzyme (Tomasselli, A. G., Hui, J. O., Sawyer, T. K., Staples, D. J., FitzGerald, D. J., Chaudhary, V. K., Pastan, I., and Heinrikson, R. L. (1990) J. Biol. Chem. 265, 408-413). However, the rates of cleavage at these two sites are reversed for the HIV-2 protease which prefers the Leu-Ala bond. The kinetics of hydrolysis of this protein substrate by both enzymes are mirrored by those obtained from cleavage of model peptides. Hydrolysis by the two proteases of other synthetic peptides modeled after processing sites in HIV-1 and HIV-2 gag polyproteins and selected analogs thereof demonstrated differences, as well as similarities, in selectivity. For example, while the two proteases were nearly identical in their rates of cleavage of the Tyr-Pro bond in the HIV-1 gag fragment, Val-Ser-Gln-Asn-Tyr-Pro-Ile-Val, the HIV-1 protease showed a 64-fold enhancement over the HIV-2 enzyme in hydrolysis of a Tyr-Val bond in the same template. Accordingly, the HIV-2 protease appears to have a different specificity than the HIV-1 enzyme; it is better able to hydrolyze substrates with small amino acids in P1 and P1', but is variable in its rate of hydrolysis of peptides with bulky substituents in these positions. In addition to these comparisons of the two proteases with respect to substrate specificity, we present inhibitor structure-activity data for the HIV-2 protease. Relative to P1-P1' statine or Phe psi [CH2N]Pro-modified pseudopeptidyl inhibitors, compounds having Xaa psi[CH(OH)CH2]Yaa inserts were found to show significantly higher affinities to both enzymes, generally binding from 10 to 100 times stronger to HIV-1 protease than to the HIV-2 enzyme. Molecular modeling comparisons based upon the sequence homology of the two enzymes and x-ray crystal structures of HIV-1 protease suggest that most of the nonconservative amino acid replacements occur in regions well outside the catalytic cleft, while only subtle structural differences exist within the active site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号