首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrophobicities and electrophoretic mobilities of isolates from methanogenic anaerobic granular sludge were measured and compared with those of strains from culture collections. All new isolates were highly hydrophobic, indicating that the upflow anaerobic sludge blanket reactor concept selects for hydrophobic bacteria. Methanothrix soehngenii, a methanogen often observed in methanogenic granular sludge, was highly hydrophobic and showed low electrophoretic mobility at pH 7. The role of this strain in the formation of methanogenic granular sludge is discussed.  相似文献   

2.
The development of granular sludge in thermophilic (55 degrees C) upflow anaerobic sludge blanket reactors was investigated. Acetate and a mixture of acetate and butyrate were used as substrates, serving as models for acidified waste-waters. Granular sludge with either Methanothrix or Methanosarcina as the predominant acetate utilizing methanogen was cultivated by allowing the loading rate to increase whenever the acetate concentration in the effluent dropped below 200 and 700 mg COD/L, respectively. The highest methane generation rates, up to 162 kg CH(4)-COD/m(3) day, or 2.53 mole CH(4)/L day, were achieved at hydraulic retention times down to 21 min, with granules consisting of Methanothrix. The formation of Methanothrix granules did not depend on the type of seed material, nor on the addition of inert support particles. The growth of granules proceeded rapidly with adapted seed material, even when the reactors were inoculated with low concentrations. With mesophilic seed materials growth of granules took much longer. Thermophilic Methanothrix granules strongly resemble mesophilic granules of the "filamentous" type. Some factors governing the thermophilic granulation process are discussed.  相似文献   

3.
A thermophilic upflow anaerobic sludge blanket (UASB) reactor was combined with a mesophilic aerobic fluidized bed (AFB) reactor for treatment of a medium strength wastewater with 2,700?mg COD?l?1. The COD removal efficiency reached 75% with a removal rate of 0.2 g COD?l?1 h?1 at an overall hydraulic retention time 14 hours. The distribution of microbial activity and its change with hydraulic retention time in the two reactors were investigated by measuring ATP concentration in the reactors and specific ATP content of the biomass. In the UASB reactor, the difference in specific ATP was significant between the sludge bed and blanket solution (0.02?mg ATP g VS?1 versus 0.85?mg ATP g VS?1) even though the ATP concentrations in these two zones were similar. A great pH gradient up to 4 was developed along the UASB reactor. Since a high ATP or biological activity in the blanket solution could only be maintained in a narrow pH range from 6.5 to 7.5, the sludge granules showed a high pH tolerance and buffering capacity up to pH 11. The suspended biomass in AFB reactor had a higher specific ATP than the biomass fixed in polyurethane carriers (1.6?mg ATP g VS?1 versus 1.1?mg ATP g VS?1), which implies a starvation status of the immobilized cells due to mass transfer limitation. The aerobes had to work under starvation conditions in this polishing reactor. The anaerobic biomass brought into AFB reactor contributed to an increase in suspended solids, but not the COD removal because of its fast deactivation under aerobic conditions. A second order kinetic model was proposed for ATP decline of the anaerobes. The results on distribution of microbial activity in the two reactors as well as its change with hydraulic retention time lead to further performance improvement of the combined anaerobic/aerobic reactor system.  相似文献   

4.
Three laboratory-scale, upflow anaerobic reactors were operated for about 250 d to determine the effect of activated granular sludge with high density of sulfate reducing bacteria in the treatment of artificial acid mine drainage. Sulfate reducing bacteria in the granular sludge taken from the upflow anaerobic sludge blanket reactor were 1–2×106 c.f.u. g–1, which is at least 10 times higher than that of organic substrates such as cow manure and oak compost. The reactors with granular sludge effectively removed over 99% of heavy metals, such as Fe, Al, Cu, and Cd during the experiment. This result suggests a feasibility of the application of granular sludge as a source of sulfate reducing bacteria for the treatment of acid mine drainage.  相似文献   

5.
Summary Since the mixing characteristics of anaerobic reactors would appear to have an effect on their operational performance, lithium tracer studies were made on two different digester types; the upflow sludge blanket and the expanded bed reactors. The mixing characteristics of both types of reactor, defined by this technique, were found to be of the intermediate type with a bias towards good mixing.  相似文献   

6.
A model has been developed and experimentally checked for the physical behavior of sludge in the blanket in upflow reactors. The model is based on the mass balance for the sludge in the blanket, and can be used to predict the distribution of sludge in an upflow reactor in relation with the gas production, sludge settling characteristics, and the linear fluid velocity in the reactor. The quantitative values of the transport factors that are a measure of the efficiency of the transport of sludge by the fluid streams occurring in the reactor were determined experimentally in reactors of 30- and 200-m(3) volumes. As this was done for wastewater containing lower fatty acids as the main organic pollutants and for sludge with good settling characteristics, the predictive value of the model is limited. It may be used for the second (methane forming) step of anaerobic treatment of wastewater.  相似文献   

7.
Denitrifying granular sludge reactor holds better nitrogen removal efficiency than other kinds of denitrifying reactors, while this reactor commonly needs seeding anaerobic granular sludge and longer period for start-up in practice, which restricted the application of denitrifying granular sludge reactor. This study presented a rapid and stable start-up method for denitrifying granular sludge. An upflow sludge blanket (USB) reactor with packings was established with flocculent activated sludge for treatment of high concentration nitrite wastewater. Results showed mature denitrifying granular sludge appeared only after 15 days with highest nitrogen removal rate of 5.844 kg N/(m3 day), which was much higher than that of compared anoxic sequencing batch reactor (ASBR). No significant nitrite inhibition occurred in USB and denitrification performance was mainly influenced by hydraulic retention time, influent C/N ratio and internal reflux ratio. Hydraulic shear force created by upflow fluid, shearing of gaseous products and stable microorganisms adhesion on the packings might be the reasons for rapid achievement of granular sludge. Compared to inoculated sludge and ASBR, remarkable microbial communitiy variations were detected in USB. The dominance of Proteobacteria and Bacteroidetes and enrichment of species Pseudomonas_stutzeri should be responsible for the excellent denitrification performance, which further verified the feasibility of start-up method.  相似文献   

8.
《Process Biochemistry》2004,39(10):1249-1256
The granulation process using synthetic wastewater containing pentachlorophenol (PCP) in four 1.1 l laboratory scale upflow anaerobic sludge blanket (UASB) reactors was studied, and the anaerobic biotransformation of PCP during the granulation process investigated. After 110 days granular sludge was developed and up to 160 and 180 mg/l of PCP was added into the reactors R1 and R2, respectively, when they were inoculated with acclimated anaerobic sludge from an anaerobic digester of a citric acid plant. The inoculum was predominately composed of bacilli and filamentous bacteria. Granulation did not occur in reactors R3 and R4 which were inoculated with acclimated anaerobic sludge from aerobic sludge of the municipal sewage treatment plant which consisted mainly of cocci. Despite similar bacilli in the granule, the filamentous bacteria from reactor R1 were thicker than those of reactor R2. The granular sludge had a maximum diameter of 2.5 and 2.2 mm, and SMA of 1.44 and 1.32 gCOD/gTVS per day for reactors R1 and R2, respectively. Over 98% chemical oxygen demand (COD) removal rate and 99% of PCP removal rate were achieved when reactors R1 and R2 were operated at PCP and COD loading rates of 150 and 7.5 g/l per day, respectively. H2-producing acetogens were the dominant anaerobes in the granular sludge.  相似文献   

9.
Longterm performance and stability of two upflow anaerobic sludge blanket (UASB) reactors inoculated with granular sludge and treating a synthetic waste water containing pentachlorophenol (PCP) and phenol were studied. A similar system consisting of two fixed-film reactors inoculated with anaerobic digested sewage sludge were further studied. One reactor in each series received glucose in addition to the phenols. Dechlorination of PCP proceeded via two different dominating pathways in the respective reactor systems, suggesting that two distinct microbial populations were present, probably originating from the different inocula. Dechlorinating activity was maintained for more than 18 months in the UASB reactors and was generally higher than in the fixed-film reactors. In the fixed-film reactors, dechlorination of PCP suddenly decreased after 15.5 months of operation compared to earlier performance. Since no operational parameters had been changed, this indicated that the enriched culture was unstable on a longterm basis. Addition of yeast extract to the medium restored activity. General process stability in both reactor systems was clearly enhanced by the addition of glucose and was superior in the UASB/granular sludge system. The better performance and the higher stability in the UASB/granular sludge reactor highlights the importance of thorough screening of inocular prior to start-up of processes treating waste waters containing xenobiotic compounds.Abbreviations PCP pentachlorophenol - TeCP tetrachlorophenol - TCP trichlorophenol - DCP dichlorophenol - UASB upflow anaerobic sludge blanket - HRT hydraulic retention time  相似文献   

10.
Summary Scanning electron microscopy was applied to evaluate the influence of inoculum on efficiency of initial biofilm formation and reactor performance. Five anaerobic fixed-bed reactors were inoculated with anaerobic sludges from different sources and operated in parallel under identical conditions with defined wastewater and acetate, propionate and butyrate as constituents In all sludges Methanothrix sp. was the predominant acetotroph. The reactors inoculated with anaerobic sludge adapted to the wastewater achieved the highest space loading with 21.0 g COD/l·d after 58 days. The inoculation with granular sludge from an upflow anaerobic sludge blanket (UASB) reactor resulted in significantly less reactor efficiency. Time course of biofilm formation and biofilm thickness (ranging from 20–200 m) depended on the type of inoculum.  相似文献   

11.
The effect of sulfate on the anaerobic breakdown of mixtures of acetate, propionate and butyrate at three different sulfate to fatty acid ratios was studied in upflow anaerobic sludge blanket reactors. Sludge characteristics were followed with time by means of sludge activity tests and by enumeration of the different physiological bacterial groups. At each sulfate concentration acetate was completely converted into methane and CO2, and acetotrophic sulfate-reducing bacteria were not detected. Hydrogenotrophic methanogenic bacteria and hydrogenotrophic sulfate-reducing bacteria were present in high numbers in the sludge of all reactors. However, a complete conversion of H2 by sulfate reducers was found in the reactor operated with excess sulfate. At higher sulfate concentrations, oxidation of propionate by sulfate-reducing bacteria became more important. Only under sulfate-limiting conditions did syntrophic propionate oxidizers out-compete propionate-degrading sulfate reducers. Remarkably, syntrophic butyrate oxidizers were well able to compete with sulfate reducers for the available butyrate, even with an excess of sulfate. Correspondence to: A. Visser  相似文献   

12.
Five laboratory scale upflow anaerobic sludge blanket (UASB) reactors were seeded with nongranular sewage sludge. Granulation was obtained after 15–35 days when between 0.5 and 2.0m/h upflow liquid velocity was applied, with an organic loading rate (OLR) of 8g COD/l.d (COD is the chemical oxygen demand). Granules had different physical characteristics and specific activity (g CODREMOVED/g volatile suspended solids) depending on the upflow liquid velocity applied. Granules were obtained in short startup periods (5 and 14 days) when a pilot-scale (180l) UASB reactor with a height of 4.7m was used to study hydraulic effects on the granulation process.  相似文献   

13.
Summary Anaerobic treatment of gelatine-containing model waste water and baker's yeast manufacturing effluent was investigated in upflow anaerobic sludge blanket (UASB) reactors. During start up a correlation between coenzyme F 420 content and methane production in the reactor was observed. By monitoring coenzyme F 420 concentrations a certain prediction of methanogenic activities was possible.  相似文献   

14.
The formation of anaerobic granular sludge on wastewater from sugar-beet processing was examined in upflow anaerobic sludge blanket reactors. Two strategies were investigated: addition of high-energy substrate, i.e. sugars, and varying the reactor liquid surface tension. When there were insufficient amounts of sugars i.e. less than 7% of the chemical O2 demand of the influent, no granulation was observed; moreover lowering the reactor liquid surface tension below 48 mN/m was found to increase biomass wash-out. On the other hand, when there were sufficient sugars, granular sludge growth occurred; moreover operating the reactor at a low reactor liquid surface tension reduced biomass wash-out and increased granular yield.  相似文献   

15.
Anaerobic Granular Sludge Bioreactor Technology   总被引:1,自引:0,他引:1  
Anaerobic digestion is a mature wastewater treatment technology, with worldwide application. The predominantly applied bioreactor designs, such as the upflow anaerobic sludge blanket and expanded granular sludge bed, are based on the spontaneous formation of granular sludge. Despite the exploitation of granular reactors at full-scale for more than two decades, the mechanisms of granulation are not completely understood and numerous theories have been put forward to describe the process from a biological, ecological and engineering point of view. New technological opportunities are emerging for anaerobic digestion, aided by an improved understanding of microbiological and environmental factors affecting the formation and activity of anaerobic granular sludge.  相似文献   

16.
A laboratory upflow anaerobic sludge blanket reactor, seeded with fine, suspended, bacterial floc with 1.76 g volatile suspended solids/l, was used to treat synthetic methanolic waste. After 180 days of continuous peration, granular sludge with discrete granules of 1 to 2 mm diam. was formed, with 52 g volatile suspended solids/l. Granules were brown, relatively soft and had a settling velocity of 1.61 cm/s. Extracellular polymeric matter extracted from the granular sludge had high carbohydrate content but low nucleic acid content. The ash of the granular sludge contained Na+, K+ and Mg2+ up to 15.0, 11.7 and 3.75 mg/g, respectively. Scanning and transmission electron microscopy revealed that the granular sludge was dominated by methanogens resembling Methanosarcina.The authors are with the Department of Environmental Engineering, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565, Japan  相似文献   

17.
Wastewater from a food-manufacturing plant with a low concentration of organic matter below 100 mg/l TOC was first treated at 37°C in an anaerobic fluidized-bed reactor (AFBR) or in an upflow anaerobic sludge blanket (UASB). The TOC removal efficiency in both reactors decreased from 85% to 65% as the influent TOC concentration decreased from 100 to 35 mg/l at a hydraulic retention time (HRT) of 6 h. Treatment at an HRT of 4 h resulted in an effluent TOC concentration of 11 to 15 mg/l. The concentration of suspended solids in the effluent could be reduced to 20 mg/l, which corresponded to 7% of that of the influent. The effluent from both reactors was then treated anaerobically in a fixed-bed reactor system. The TOC concentration and optical density (OD) of the effluent from the aerobic treatment were reduced to 5 mg/l and 0.005, respectively, at an HRT of 2 h. When anaerobically or aerobically treated effluent was passed over an activated carbon column, the effluent TOC concentration was reduced to 2 to 3 mg/l. The conductivity of 1.3 mS/cm in raw wastewater, which was not removed through the above treatments, was reduced to 0.001 mS/cm on an ion-exchange resin column. An effluent quality corresponding to that of ultra-pure water for industrial use was finally attained by the treatment in this multi-step system.  相似文献   

18.
《Anaerobe》2001,7(3):143-149
Design, construction, and starting-up of an upflow anaerobic sludge blanket reactor was carried out. This system was proposed for excess sludge stabilisation, particularly that generated at an activated sludge wastewater treatment facility installed in a sugarcane mill. The upflow anaerobic sludge blanket (UASB) reactor built, had a working volume of 22.3 m3and a hydraulic residence time of 22 days. Methane production was at a maximum of 79% volume with an average of 60% for this treatment. For starting up the anaerobic reactor, a suitable inoculum from a neighboring plant was used. As the waste characteristics in both plants were different, an acclimation procedure was followed to achieve granulation. Control and stability of anaerobic reactions were monitored with alkalinity data, using the so-called ‘alfa alkalinity’ to try to keep its value at around 0.4. Once pseudosteady-state conditions were reached (chemical oxygen demand reduction and methane-rich biogas production within ±10 percent), the organic load was steadily increased up to feeding 100% excess sludge. The UASB reactor used to stabilise the excess biomass generated a sludge with a much lower volume than that originally fed. Its design ensured adequate hydraulic flow and biogas production with a high methane content. The bacteria were attached constituting spheres and very minor maintenance operations were required.  相似文献   

19.
The effect of a continuous supply of a water extract of Moringa oleifera seeds (WEMOS) on the hydrolytic microbial population of biomass grown in mesophilic upflow anaerobic sludge blanket reactors treating domestic wastewater was investigated. The WEMOS-treated sludge had seemingly a wider diversity, with enterobacter and klebsiella as dominant hydrolytic bacteria, compared with the control sludge. Additional tests indicated that various hydrolytic bacteria could degrade WEMOS. It appeared that a continuous supply of WEMOS to an anaerobic digester, treating domestic wastewater, increased the diversity of hydrolytic bacteria and therefore enhanced the biological start-up of the reactor.  相似文献   

20.
Summary Biogranules developed in the upflow anaerobic sludge blanket (UASB) reactors were analysed by X-ray spectrometry for the local concentration of individual inorganic elements and by X-ray dot mapping for the pictorial distribution of these elements in the cross-section of the biogranules. This information is of significance for the understanding of the sludge granulation mechanism and the role of inorganic elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号