首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S-(1,2-Dichlorovinyl)glutathione (DCVG) and S-(1,2-dichlorovinyl)-L-cysteine (DCVC) produced time- and concentration-dependent cell death in isolated rat kidney proximal tubular cells. AT-125 blocked and glycylglycine potentiated DCVG toxicity, indicating that metabolism by gamma-glutamyltransferase is required. S-(1,2-Dichlorovinyl)-L-cysteinylglycine, a putative metabolite of DCVG, also produced cell death, which was prevented by 1,10-phenanthroline, phenylalanylglycine, and aminooxyacetic acid, inhibitors of aminopeptidase M, cysteinylglycine dipeptidase, and cysteine conjugate beta-lyase, respectively. Aminooxyacetic acid and probenecid protected against DCVC toxicity, indicating a role for metabolism by cysteine conjugate beta-lyase and organic anion transport, respectively. DCVC produced a small decrease in cellular glutathione concentrations and did not change cellular glutathione disulfide concentrations or initiate lipid peroxidation. DCVC caused a large decrease in cellular glutamate and ATP concentrations with a parallel decrease in the total adenine nucleotide pool; these changes were partially prevented by aminooxyacetic acid. Both DCVG and DCVC inhibited succinate-dependent oxygen consumption, but DCVC had no effect when glutamate + malate or ascorbate + N,N,N',N'-tetramethyl-p-phenylenediamine were the electron donors. DCVC inhibited mitochondrial, but not microsomal, Ca2+ sequestration. These alterations in mitochondrial function were partially prevented by inhibition of DCVG and DCVC metabolism and were strongly correlated with decreases in cell viability, indicating that mitochondria may be the primary targets of nephrotoxic cysteine S-conjugates.  相似文献   

2.
The metabolism of beta-lyase and the mutagenicity of the synthetic cysteine conjugates S-1,2-dichlorovinylcysteine (DCVC), S-1,2,2-trichlorovinylcysteine (TCVC), S-1,2,3,4,4-pentachlorobuta-1,3-dienylcysteine (PCBC) and S-3-chloropropenylcysteine (CPC) were investigated in Salmonella typhimurium strains TA100, TA2638 and TA98. The bacteria contained significantly higher concentrations of beta-lyase than mammalian subcellular fractions. Bacterial 100,000 X g supernatants cleaved benzthiazolylcysteine to equimolar amounts of mercaptobenzthiazole and pyruvate. DCVC, TCVC and PCBC produced a linear time-dependent increase in pyruvate formation when incubated with bacterial 100,000 X g supernatants; pyruvate formation was inhibited by the beta-lyase inhibitor aminooxyacetic acid (AOAA). CPC was not cleaved by bacterial enzymes to pyruvate. DCVC, TCVC and PCBC were mutagenic in three strains of S. typhimurium (TA100, TA2638 and TA98) in the Ames-test without addition of mammalian subcellular fractions; their mutagenicity was decreased by the addition of AOAA to the preincubation mixture. CPC was not mutagenic in any of the strains of bacteria tested. These results indicate that beta-lyase plays a key role in the metabolism and mutagenicity of haloalkenylcysteines when tested in S. typhimurium systems. The demonstrated formation in mammals of the mutagens DCVC, TCVC and PCBC during biotransformation of trichloroethylene (Tri), tetrachloroethylene (Tetra) and hexachlorobutadiene (HCBD) may provide a molecular explanation for the nephrocarcinogenicity of these compounds.  相似文献   

3.
Incubation of isolated, rat kidney cells with S-(1,2-dichlorovinyl)-L-homocysteine (DCVHC) caused time-dependent cell death. Cytotoxicity of DCVHC was potentiated by addition of alpha-ketobutyrate, indicating the involvement of pyridoxal phosphate-dependent enzymes. A second addition of DCVHC to cells produced increased cytotoxicity, indicating that the bioactivating ability is not lost after exposure to the conjugate. DCVHC decreased cellular glutathione concentrations by 52% and substantially inhibited glutathione biosynthesis from precursors. In contrast, the cysteine analog S-(1,2-dichlorovinyl)-L-cysteine (DCVC) failed to decrease cellular glutathione concentrations and only partially inhibited glutathione biosynthesis. As with DCVC, DCVHC did not increase cellular glutathione disulfide concentrations and did not initiate lipid peroxidation, indicating that it does not produce an oxidative stress. DCVHC and DCVC produced similar alterations in mitochondrial function: Cellular ATP concentrations were decreased by 57% and cellular ADP and AMP concentrations were increased twofold, thereby decreasing the ATP/ADP ratio from 2.8 to 0.6 and the cellular energy charge from 0.80 to 0.56; DCVHC was a potent inhibitor of succinate-dependent oxygen consumption, but had little effect on respiration linked to oxidation of glutamate + malate or ascorbate + N,N,N'N'-tetramethyl-p-phenylenediamine. DCVHC was a potent inhibitor of mitochondrial Ca2+ sequestration and, in contrast to DCVC, also inhibited microsomal Ca2+ sequestration. These DCVHC-induced alterations in cellular metabolism were prevented by addition of propargylglycine or aminooxyacetic acid, and the alpha-methyl analog S-(1,2-dichlorovinyl)-DL-alpha-methylhomocysteine was not toxic. These results support a role for pyridoxal phosphate-dependent bioactivation of DCVHC and indicate that the greater nephrotoxic potency of DCVHC as compared to DCVC is partially due to the presence of both mitochondrial and extramitochondrial targets for DCVHC.  相似文献   

4.
Cysteine conjugate beta-lyase activity from rat kidney cortex was found in the cystosolic and mitochondrial fractions. With 2 mM S-(2-benzothiazolyl)-L-cysteine as the substrate, approximately two-thirds of the total beta-lyase activity was present in the cytosolic fraction. The kinetics of beta-lyase activity with three cysteine S-conjugates were different in the cytosolic and mitochondrial fractions, and the mitochondrial beta-lyase was much more sensitive to inhibition by aminooxyacetic acid than was the cytosolic activity. These results indicate that the beta-lyase activities in the two subcellular fractions are catalyzed by distinct enzymes. Nephrotoxic cysteine S-conjugates of halogenated hydrocarbons that require bioactivation by cysteine conjugate beta-lyase (S-(1,2-dichlorovinyl)-L-cysteine (DCVC), S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine, CTFC) were potent inhibitors of state 3 respiration in rat kidney mitochondria. Fractionation of mitochondria by digitonin treatment and comparison with marker enzyme distributions showed that the mitochondrial beta-lyase activity is localized in the outer mitochondrial membrane. Inhibition of the beta-lyase prevented the mitochondrial toxicity of DCVC and CTFC, and nonmetabolizable, alpha-methyl analogues of DCVC and CTFC were not toxic. Neither DCVC nor CTFC was toxic to mitoplasts, indicating that activation by the beta-lyase occurs on the outer membrane and may be essential for the expression of toxicity; in contrast, the direct acting nephrotoxin S-(2-chloroethyl)-DL-cysteine was toxic to both mitochondria and mitoplasts. Thus, the suborganelle localization of DCVC and CTFC bioactivation correlates with the observed pattern of toxicity.  相似文献   

5.
The cysteine conjugate beta-lyase mediated metabolism and the mutagenicity of the synthetic cysteine conjugates S-(2-chloroethyl)-L-cysteine (CEC), S-(2-chlorovinyl)-L-cysteine (CVC), S-(1,2,3,3,3-pentachloroprop-1-enyl)-L-cysteine (PCPC), S-(pentachlorophenyl)-L-cysteine (PCPhC), S-(chloro-1,2,2-trifluoroethyl)-L-cysteine (CTFEC), S-benzyl-L-cysteine (SBC) and S-methyl-L-cysteine (SMC) were investigated in Salmonella typhimurium strains TA100, TA2638, TA102 and TA98 to establish structure/activity relationships. Bacterial 100,000 X g supernatants cleaved CTFEC, PCPC, CVC, PCPhC and SBC to pyruvate; pyruvate formation was inhibited by the beta-lyase inhibitor aminooxyacetic acid (AOAA) in all cases. Of the compounds tested, CEC, PCPC and CVC were mutagenic in the Ames-test. CTFEC, PCPhC and SBC failed to increase the number of revertants above control levels. The mutagenicity of PCPC and CVC could be inhibited by AOAA. CEC exerted a potent mutagenic effect in the Ames-test which was not affected by AOAA; CEC was not transformed to pyruvate by bacterial beta-lyase. Neither pyruvate formation nor mutagenicity were observed with SMC. These results indicate that the structure of the substituent on the sulfur atom is an important determinant for the biological activity of cysteine S-conjugates. Electronegative and/or unsaturated substituents are required for beta-lyase catalysed beta-elimination reactions. The formation of chemically unstable thiols, which may be converted to thioacylating intermediates, seems to be a prerequisite for beta-lyase dependent mutagenicity of S-conjugates.  相似文献   

6.
The metabolism of trichloroethene by glutathione conjugation was investigated in rat liver subcellular fractions and in male rats in vivo. In the presence of glutathione, rat liver microsomes transformed [14C]trichloroethene to S-(1,2-dichlorovinyl)glutathione (DCVG) identified by gas chromatography mass spectrometry after hydrolysis to the corresponding cysteine S-conjugate and chemical derivatisation. In bile of rats given 2.2 g/kg trichloroethene. DCVG was present in concentrations of 5 nmol (7 ml bile collected over 9 h) and identified by thermospray mass spectrometry after HPLC-purification. E- and Z-N-acetyl-dichlorovinyl-L-cysteine (3.1 nmol present in the pooled 24-h urine) were identified by GC/MS after methylation and butylation as urinary metabolites of trichloroethene (2.2 g/kg, orally). The presented results demonstrate that glutathione-dependent metabolism of trichloroethene is a minor route in the biotransformation of this haloalkene in rats. Formation of S-(1,2-dichlorovinyl)-glutathione, processing to S-(1,2-dichlorovinyl)-L-cysteine and metabolism of this S-conjugate by cysteine beta-lyase in the kidney to reactive and genotoxic intermediates may account for the nephrocarcinogenicity observed after long time administration of trichloroethene in male rats.  相似文献   

7.
The ability of S-(1,2-dichlorovinyl)-L-cysteine (DCVC), S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC), S-(1,2,3,4,4-pentachlorobutadienyl)-L-cysteine (PCBC), S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine (CTFEC) and S-(2-chloroethyl)-L-cysteine (CEC) to induce DNA repair was investigated in LLC-PK1, a cultured line of porcine kidney tubular epithelial cells. DNA repair due to exposure of the cells to the S-conjugates was determined as unscheduled DNA synthesis (UDS) after inhibition of replicative DNA synthesis in confluent LLC-PK1 monolayers. DCVC, TCVC and PCBC induced dose-dependent UDS in LLC-PK1 at concentrations which did not impair the viability of the cells compared to untreated controls; higher concentrations were cytotoxic, resulting in lactate dehydrogenase leakage into the medium. Cell death was also induced by CTFEC, which failed to exert genotoxicity. CEC induced the highest response among these cysteine conjugates without impairing cell viability. Inhibition of cysteine conjugate beta-lyase with aminooxyacetic acid abolished the effects of DCVC, TCVC, PCBC and CTFEC but did not influence the genotoxicity of CEC.  相似文献   

8.
Nephrotoxic cysteine conjugates kill cells after they are metabolized by the enzyme cysteine conjugate beta-lyase to reactive fragments which bind to cellular macromolecules. We have investigated the cellular events which occur after the binding and lead ultimately to cell death in renal epithelial cells. Using S-(1,2-dichlorovinyl)-L-cysteine (DCVC) as a model conjugate, we found that the phenolic antioxidants N,N'-diphenyl-p-phenylenediamine (DPPD), butylated hydroxyanisole, butylated hydroxytoluene, propyl galate, and butylated hydroxyquinone, and the iron chelator deferoxamine inhibited the cytotoxicity significantly. Among the five antioxidants, DPPD was most potent. DPPD blocked DCVC toxicity over an extended time period, and the rescued cells remained functional as measured by protein synthetic activity. DPPD was able to block the toxicity of two other toxic cysteine conjugates S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine and S-(1,1,2,2-tetrafluoroethyl)-L-cysteine. In addition to LLC-PK1 cells, DPPD also protected freshly isolated rat kidney epithelial cells in suspension and in primary culture. In suspension cells, DPPD was effective at low doses of DCVC (25-50 microM) but not at high concentrations (250-500 microM). DPPD inhibition was not due to an inactivation of beta-lyase or a decrease in the binding of [35S]DCVC metabolites to cellular macromolecules and occurred at a step after the activation of the toxins. During DCVC treatment, lipid peroxidation products were detectable prior to cell death. DPPD blocked lipid peroxidation over the whole time course. Depletion of nonprotein thiols also occurred prior to cell death. DPPD did not prevent the loss of nonprotein thiols. However, the sulfhydryl-reducing agent DTT blocked lipid peroxidation and toxicity at a step after the activation of DCVC. Therefore, it appears that cysteine conjugates kill renal epithelial cells by a combination of covalent binding, depletion of nonprotein thiols, and lipid peroxidation.  相似文献   

9.
Kidney cortex cysteine conjugate beta-lyase enzymes were characterized using S-(2-benzothiazolyl)-L-cysteine and S-(1,2-dichlorovinyl)-L-cysteine as substrates. The contribution of the hepatic form of cysteine conjugate beta-lyase to renal metabolism of these S-cysteine conjugates is not substantial. No cysteine conjugate beta-lyase activity was found in kidney cortex brush border membrane vesicles. Two cysteine conjugate beta-lyase activities with densities corresponding to the mitochondrial and soluble fractions were separated on Percoll gradients.  相似文献   

10.
S-(chloroethyl)-cysteine (CEC) and S-(1,2-dichlorovinyl)cysteine (DCVO) have been proposed as intermediates in the metabolic transformation of the carcinogens 1,2-dichloroethane and 1,1,2-trichloroethylene. We have tested the ability of CEC and DCVC to induce DNA repair and genotoxic effects at the chromosomal level by comparative assessment of unscheduled DNA synthesis induction and micronucleus formation in Syrian hamster embryo fibroblasts. CEC induced a potent and dose-dependent response in both assays, whereas DCVC treatment resulted in a comparatively weak induction of DNA repair and failed to raise micronucleus formation above control rates. Inhibition of cysteine conjugate \gB-lyase diminished the effect of DCVC, but had no influence on the genotoxicity of CEC either in the unscheduled DNA synthesis or micronucleus assay.Abbreviations AOAA aminooxyacetic acid - CEC S-(chloroethyl)-cysteine; \gB-lyase, cysteine conjugate -lyase - DCE 1,2-dichloroethane - DCVC S(1,2-dichlorovinyl)-cysteine - GSH glutathione - HU hydroxyurea - IBR IBR-modified Dulbecco's Eagle's reinforced medium - MN2 micronuclei/2,000 cells - 4-NQO 4-nitroquinoline-1-oxide - SHE Syrian hamster embryo fibroblasts; 3H-Thd, 3H-thymidine - TCE 1,1,2-trichloroethylene - UDS unscheduled DNA synthesis  相似文献   

11.
To determine the role of cysteine conjugate beta-lyase (beta-lyase) in the metabolism of mutagenic nitropolycyclic aromatic hydrocarbons, we determined the effect of beta-lyase on the mutagenicities and DNA binding of cysteine conjugates of 4,5-epoxy-4,5-dihydro-1-nitropyrene (1-NP 4,5-oxide) and 9,10-epoxy-9,10-dihydro-1-nitropyrene (1-NP 9,10-oxide), which are detoxified metabolites of the mutagenic compound 1-nitropyrene. We purified beta-lyase from Peptostreptococcus magnus GAI0663, since P. magnus is one of the constituents of the intestinal microflora and exhibits high levels of degrading activity with cysteine conjugates of 1-nitropyrene oxides (1-NP oxide-Cys). The activity of purified beta-lyase was optimal at pH 7.5 to 8.0, was completely inhibited by aminooxyacetic acid and hydroxylamine, and was eliminated by heating the enzyme at 55 degrees C for 5 min. The molecular weight of beta-lyase was 150,000, as determined by fast protein liquid chromatography. S-Arylcysteine conjugates were good substrates for this enzyme. As determined by the Salmonella mutagenicity test, 5 ng of beta-lyase protein increased the mutagenicity of the cysteine conjugate of 1-NP 9,10-oxide (10 nmol per plate) 4.5-fold in Salmonella typhimurium TA98 and 4.1-fold in strain TA100. However, beta-lyase had little effect on the cysteine conjugate of 1-NP 4,5-oxide (10 nmol per plate). Both conjugates exhibited only low levels of mutagenicity with nitroreductase-deficient strain TA98NR. In vitro binding of 1-NP oxide-Cys to calf thymus DNA was increased by adding purified beta-lyase or xanthine oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A cell line derived from pig kidney, LLC-PK1, was grown in a culture system in which the cells express morphological and biochemical characteristics of the proximal tubule. This model was used to investigate the mechanism of S-cysteine conjugate toxicity and the role of glutathione conjugate metabolism. LLC-PK1 cells have the degradative enzymes of the mercapturate pathway, and S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-L-glutathione are toxic. S-(1,2-Dichlorovinyl)-L-glutathione is not toxic when the cells are pretreated with AT-125, an inhibitor of gamma-glutamyl transpeptidase. The cells respond to a variety of toxic cysteine conjugates. Cysteine conjugate beta-lyase activity is not detectable by standard assays, but can be measured using radiolabeled S-(1,2-dichlorovinyl)-L-cysteine. Pyruvate stimulates the beta-elimination reaction with S-(1,2-dichlorovinyl)-L-cysteine as substrate 2-3-fold. The data suggest that a side transamination reaction regulates the flux of substrate through the beta-elimination pathway; therefore, cysteine conjugate beta-lyase in LLC-PK1 cells may be regulated by transamination, and measurement of lyase activity in some systems may require the presence of alpha-ketoacids. Aminoxyacetic acid blocks both the metabolism of S-(1,2-dichlorovinyl)-L-cysteine to a reactive species which covalently binds to cellular macromolecules and toxicity. Glutathione inhibits the binding of the sulfur containing cleavage fragment to acid insoluble material in vitro. The data provide direct evidence that S-(1,2-dichlorovinyl)-L-cysteine is metabolized to a reactive species which covalently binds to cellular macromolecules, and the binding is proportional to toxicity.  相似文献   

13.
Cysteine conjugate beta-lyase has been purified from rat kidney cytosol. The enzyme is a 100,000-dalton dimer of two 55,000-dalton subunits and has an absorption maximum at 432 nm. The enzyme has phenylalanine alpha-keto-gamma-methiolbutyrate transaminase activity and appears to be identical to rat kidney cytosolic glutamine transaminase K. Metabolism of S-1,2-dichlorovinyl-L-cysteine (DCVC) by the purified enzyme was dependent on the presence of either alpha-keto-gamma-methiolbutyrate or a protein factor which is present in the cytosolic fraction of rat kidney cortex. The protein factor was identified as a flavin containing L-amino acid oxidase which oxidized DCVC to S-(1,2-dichlorovinyl)-3-mercapto-2-oxopropionic acid. S-(1,2-Dichlorovinyl)-3-mercapto-2-oxopropionic acid has not been previously reported as a metabolite of DCVC. The data also show that rat kidney cytosolic glutamine transaminase K catalyzes both a beta-elimination and a transamination reaction with DCVC when alpha-keto-gamma-methiolbutyrate is present and that amino acid oxidase and alpha-keto-gamma-methiolbutyrate stimulate the enzyme activity by providing amino acceptors. When incubations were done with DCVC as substrate in the presence of excess alpha-keto-gamma-methiolbutyrate, the beta-lyase catalyzed beta-elimination and transamination in a ratio of 1:1.3, respectively. Under conditions where most of the alpha-keto-gamma-methiolbutyrate was consumed, the beta-elimination predominated indicating that the S-1,2-dichlorovinyl-3-mercapto-2-oxopropionic acid pool was consumed by transamination after the alpha-keto-gamma-methiolbutyrate had been depleted. The data are discussed with regard to the importance of these pathways as regulators or participants in the toxicity of S-cysteine conjugates.  相似文献   

14.
The nephrotoxicity of chlorotrifluoroethylene (CTFE) was examined using isolated rabbit renal tubules suspensions. Exposure of the tubules to CTFE resulted in consumption of CTFE, formation of a glutathione conjugate and inhibition of active organic acid transport. Synthetic cysteine, N-acetylcysteine or glutathione conjugates of CTFE inhibited transport indicating S-conjugation as a possible toxic pathway. 1,2-dichlorovinyl glutathione (DCVG), a model synthetic glutathione conjugate, was used to examine the degradation and toxicity of these conjugates. DCVG inhibited rabbit renal tubule transport in vivo and in vitro. The DCVG was found to be degraded with the evolution of glutamine and glycine to produce the ultimate nephrotoxicant, dichlorovinyl cysteine. Dichlorovinyl cysteine is then bioactivated with the release of ammonia. This sequential degradation explains the latency of DCVG-induced renal transport inhibition relative to dichlorovinyl cysteine. It is now evident that certain halogenated ethylenes are capable of being biotransformed to glutathione conjugates in the kidney with their subsequent hydrolysis to nephrotoxic cysteine conjugates.  相似文献   

15.
The cellular and biochemical events which transduce chemical insults into signals for increased expression of the stress-responsive gene gadd 153 were investigated using nephrotoxic cysteine conjugates. In LLC-PK1 cells, cysteine conjugate toxicity is initiated by covalent binding, but depletion of cellular thiols, an increase in cytosolic free calcium, and lipid peroxidation couple the binding to cell death (Chen, Q., Jones, T. W., Brown, P. C., and Stevens, J. L. (1990) J. Biol. Chem. 265, 21603-21611; Chen, Q., Jones, T. W., and Stevens, J. L. (1991) Toxicologist 11, 101, 1991). Three different toxic cysteine conjugates induced gadd 153 mRNA. With S-(1,2-dichlorovinyl)-L-cysteine (DCVC), the induction was both concentration and time-dependent. Preventing the metabolism of DCVC and covalent binding of DCVC-derived reactive metabolites to cellular macromolecules with the beta-lyase inhibitor (aminooxy)acetic acid blocked the induction. However, buffering free calcium with a cell permeable calcium chelator or blocking lipid peroxidation with an antioxidant did not affect the induction of gadd 153 mRNA by DCVC even though these treatments inhibit toxicity. These data suggest that covalent binding of reactive metabolites to cellular macromolecules may serve as a primary signal for the induction of gadd 153 mRNA by nephrotoxic cysteine conjugates. Interestingly, the sulfhydryl agent dithiothreitol, which was nontoxic and prevented the toxicity of DCVC, also induced an increase in gadd 153 mRNA. When both dithiothreitol and DCVC were added to cells, there were no inhibitory or additive effects on expression. Therefore, cellular thiol-disulfide status may also play a role in gadd 153 induction.  相似文献   

16.
An activity stain to detect glutamine transaminase K subjected to nondenaturing polyacrylamide gel electrophoresis (ND-PAGE) was developed. The gel is incubated with a reaction mixture containing L-phenyl-alanine, alpha-keto-gamma-methiolbutyrate (alpha KMB), glutamate dehydrogenase, phenazine methosulfate (PMS) and nitroblue tetrazolium (NBT). Glutamine transaminase K catalyzes a transamination reaction between phenylalanine and alpha KMB. The resultant methionine is a substrate of glutamate dehydrogenase. The NADH formed in the oxidative deamination of methionine reacts with PMS and NBT to form a blue band on the surface of the gel coincident with glutamine transaminase K activity. Cysteine S-conjugate beta-lyase activity is detected in the gel by incubating the gel with a reaction mixture containing alpha KMB (to ensure maintenance of the enzyme in the pyridoxal 5'-phosphate form), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), PMS, and NBT. The products of the lyase reaction interact with PMS and NBT to form a blue dye coincident with the lyase activity. In addition, a new assay procedure for measuring cysteine S-conjugate beta-lyase activity was devised. This procedure couples pyruvate formation from DCVC to the alanine dehydrogenase reaction. Preparations of purified rat kidney glutamine transaminase K yield a single protein band on ND-PAGE (apparent Mr approximately 95,000). This band coincides with both the cysteine S-conjugate beta-lyase and glutamine transaminase K activities. Activity staining showed that homogenates of rat kidney, liver, skeletal muscle, and heart possess a glutamine transaminase K/cysteine S-conjugate beta-lyase activity with an Rf value on ND-PAGE identical to that of purified rat kidney glutamine transaminase K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The mutagenicity of tetrachloroethene (tetra) and its S conjugate, S-(1,2,2-trichlorovinyl)glutathione (TCVG) was investigated using a modified Ames preincubation assay. TCVG was a potent mutagen in presence of rat kidney particulate fractions containing high concentrations of gamma-glutamyl transpeptidase (GGT) and dipeptidases. Purified tetra was not mutagenic without exogenous metabolic activation or under conditions favoring oxidative metabolism. Preincubation of tetra with purified rat liver glutathione (GSH) S-transferases in presence of GSH and rat kidney fractions resulted in a time-dependent formation of TCVG as determined by (HPLC) analysis and in an unequivocal mutagenic response in the Ames test. Experiments with tetra in the isolated perfused rat liver demonstrated TCVG formation and its excretion with the bile; bile collected after the addition of tetra to the isolated perfused liver was unequivocally mutagenic in bacteria in the presence of kidney particulate fractions. The mutagenicity was reduced in all cases by the GGT inhibitor serine borate or the beta-lyase inhibitor aminooxyacetic acid. These results support the suggestion that cleavage of the GSH S conjugate formed from tetra by the enzymes of the mercapturic acid pathway and by beta-lyase may be involved in the nephrocarcinogenic effects of this haloalkene in rats.  相似文献   

18.
The nephrotoxic and nephrocarcinogenic potential of the haloalkenes is associated with the conjugation of the chemicals to L-glutathione. Subsequent processing of the haloalkene glutathione S-conjugates via the cysteine conjugate beta-lyase pathway in the mammalian kidney yields nephrotoxic and mutagenic species. To investigate whether S-conjugates of the model chlorofluoroalkenes 1,1,2-trichloro-3,3,3-trifluoro-1-propene (CAS # 431-52-7) and trichlorofluoroethene (CAS # 359-29-5) show comparable effects, we have synthesised the respective cysteine and glutathione S-conjugates and subjected them to the Ames test. The cysteine and glutathione S-conjugates of tetrachloroethene (CAS # 127-18-4), S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC) and S-(1,2,2-trichlorovinyl)glutathione (TCVG) were used as positive controls and reference substances. S-(1,2-dichloro-3,3,3-trifluoro-1-propenyl)-L-cysteine (DCTFPC) and S-(2,2-dichloro-1-fluorovinyl)-L-cysteine (DCFVC) showed clear dose-dependent mutagenic effects with the Salmonella typhimurium tester strains TA100 and TA98. Using TCVC as a reference substance the following ranking in mutagenic response was established: TCVC>DCTFPC>DCFVC. S-(1,2-dichloro-3,3,3-trifluoro-1-propenyl)glutathione (DCTFPG) and S-(2,2-dichloro-1-fluorovinyl)glutathione (DCFVG) showed potent dose-dependent mutagenic effects with the S. typhimurium tester strain TA100 in the presence of a rat kidney S9-protein fraction; tests carried out in the absence of the bioactivation system resulted only in background rates of revertants. Using TCVG as a reference substance the following ranking in mutagenic response was established: TCVG=DCTFPG>DCFVG.The data obtained provide a basis for further studies on the mutagenic and presumable carcinogenic potential of the substances.  相似文献   

19.
Chemical cleavage of the sulfur-sulfur bond in halovinyl and fluoroalkyl 2-nitrophenyl disulfides is expected to yield halovinyl and fluoroalkyl thiols identical to those formed by cysteine conjugate beta-lyase catalyzed cleavage of the corresponding cysteine S-conjugates. To study the potential use of disulfides as precursors for these thiols, whose transformation to acylating agents is most likely responsible for cysteine S-conjugate mutagenicity, we determined the mutagenicity of several halovinyl and fluoroalkyl 2-nitrophenyl disulfides and identified products formed by hydrolysis of these disulfides, 1,2,3,4,4-Pentachlorobutadienyl 2-nitrophenyl disulfide, 1,2,2-trichlorovinyl 2-nitrophenyl disulfide, 1-fluro-2,2-dichlorovinyl 2-nitrophenyl disulfide and 1,2-dichloro-3,3,3-trifluropropenyl 2-nitrophenyl disulfide were mutagenic in nitroreductase deficient strains of Salmonella typhimurium TA100; as haloalkyl cysteine S-conjugates, 1,1-difluoro-2,2-dichloroethyl 2-nitrophenyl disulfide and 1-chloro-1,2,2-trifluroethyl 2-nitrophenyl disulfide were not mutagenic. Hydrolysis of 1,2,3,4,4-pentachlorobutadienyl 2-nitrophenyl disulfide and 1,2,2-trifluorethyl 2-nitrophenyl disulfide in presence of diethylamine resulted in tetrachlorothiobutenoic acid diethylamide and chlorofluorothionoacetic acid diethylamide. The differences in mutagenicity between halovinyl and fluoroalkyl disulfides are most likely responsible to their different abilities to react with DNA-constituents. Products formed from the mutagenic 1,2,3,4,4-pentachlorobutadienyl 2-nitrophenyl disulfide modified 2'-deoxyguanosine-3'-monophosphate and DNA as detected by 32Phosphorus-postlabeling, whereas products formed from the nonmutagenic 1-chloro-1,2,2-trifluoroethyl 2-nitrophenyl disulfide did not result in detectable 2'-deoxyguanosine-3'-monophosphate and DNA modification.  相似文献   

20.
Disturbances in intracellular calcium homeostasis may play a role in the injury induced by various haloalkene cysteine conjugates. The effects of S-(1,2,3,4,4-pentachloro-1,3-butadienyl)-L-cysteine (PCBC), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and S-(1,1,2,2-tetrafluoroethyl)-L-cysteine (TFEC) on cytosolic free calcium levels were examined in suspensions of rat renal proximal tubules. Cytosolic free calcium levels, measured with fura 2, in control tubules, were 112 +/- 3 nM and increased more than 200% within 1 minute after exposure to the calcium ionophore ionomycin (0.005 mM). PCBC (0.1 mM) increased cytosolic free calcium levels 18% after 5 minutes, while tubular oxygen consumption was unaffected. DCVC (1 mM) did not alter tubular cytosolic free calcium levels or oxygen consumption under similar conditions. TFEC (1 mM) increased cytosolic free calcium levels 36%, had no effect on basal oxygen consumption, and decreased nystatin-stimulated oxygen consumption 30% after 5 minutes. TFEC increased cytosolic free calcium levels in tubules incubated in a nominally calcium-free buffer but not in a calcium containing buffer in the presence of EGTA. The data suggest that the TFEC-induced increase in cytosolic free calcium levels may result from an influx of extracellular calcium or from inhibition of calcium efflux. The increase in cytosolic free calcium levels preceded changes in basal oxygen consumption in tubules exposed to PCBC and TFEC. This study shows that an increase in cytosolic free calcium levels is an early event following PCBC and TFEC but not DCVC exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号