首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 168 毫秒
1.

Background  

Vasopressin and oxytocin are mammalian neurohypophysial hormones with distinct functions. Vasopressin is involved mainly in osmoregulation and oxytocin is involved primarily in parturition and lactation. Jawed vertebrates contain at least one homolog each of vasopressin and oxytocin, whereas only a vasopressin-family hormone, vasotocin, has been identified in jawless vertebrates. The genes encoding vasopressin and oxytocin are closely linked tail-to-tail in eutherian mammals whereas their homologs in chicken, Xenopus and coelacanth (vasotocin and mesotocin) are linked tail-to-head. In contrast, their pufferfish homologs, vasotocin and isotocin, are located on the same strand of DNA with isotocin located upstream of vasotocin and separated by five genes. These differences in the arrangement of the two genes in different bony vertebrate lineages raise questions about their origin and ancestral arrangement. To trace the origin of these genes, we have sequenced BAC clones from the neurohypophysial gene loci in a cartilaginous fish, the elephant shark (Callorhinchus milii), and in a jawless vertebrate, the Japanese lamprey (Lethenteron japonicum). We have also analyzed the neurohypophysial hormone gene locus in an invertebrate chordate, the amphioxus (Branchiostoma floridae).  相似文献   

2.
Summary The nucleotide sequences of cloned cDNAs were used to determine the primary structures of the precursors of vasotocin (sVT) and isotocin (sIT) from the hypothalamus of the chum salmon,Oncorhynchus keta. Two different cDNAs were obtained for each of sVT and sIT precursors (sVT-I and sVT-II; sIT-I and sIT-II). Both sVT and sIT precursors were found to contain a signal peptide and hormone that is connected to a neurophysin by a Gly-Lys-Arg sequence. Northern and Southern blot analyses showed that the sVT and sIT genes are expressed by the same chum salmon hypothalamus, but not by the liver and kidney. Microheterogeneity was found in the nucleotide and amino acid sequences of sVT precursors between our results and the previously reported data (Heierhorst et al. 1990). The conspicuous difference is the occurrence of a stop codon in the middle of sVT-II cDNA. The carboxyl termini of both sVT and sIT neurophysins are about 30 amino acids longer than neurophysins of toad and mammalian neurohypophysial hormone precursors. Although these extended regions do not contain a glycosylation site, they show striking similarity with the glycopeptide moiety (copeptin) of toad vasotocin and mammalian vasopressin precursors. The central portion of the neurophysins shows highest homology among corresponding regions of sVT and sIT precursors. Moreover, calculation of nucleotide substitution rates suggests that a recent gene conversion may have occurred which encompasses the exon that encodes the central segment of the sVT and sIT precursors. A possible pathway for the evolution of precursor molecules of neurohypophysial hormones is discussed.Abbreviations AVP vasopressin - C carboxyl - h human - IT isotocin - MT mesotocin - N amino - OXT oxytocin - S chum salmon - SDS sodium dodecyl sulfate - t toad - VT vasotocin  相似文献   

3.
Present-day marsupials, which are supposed to have arisen from a single stem diverging from the placental stem some 130 million years ago, exist only in the American and Australian continents. Comparison of the homologous genes and their protein products, which evolved under different environmental conditions, may provide arguments for either selective or neutral evolution. In contrast to Australian Macropodidae, which have pecuIiar neurohypophysial peptides, namely mesotocin and two pressor peptides, lysine vasopressin and phenypressin, the South American oppossum,Didelpbis marsupialis, has oxytocin, lysine vasopressin, and arginine vasopressin. Because placental mammals have oxytocin and usually arginine vasopressin, and nonmammalian tetrapods have mesotocin and arginine vasotocin, it is assumed that (1) selective change of arginine vasotocin into arginine vasopressin occurred in mammalian ancestors and a subsequent gene duplication in the marsupial line gave rise to two pressor peptides with divergent neutral drifts in American and Australian groups, and (2) mesotocin of nonmammalian tetrapods has been preserved in Australian marsupials and reclaimed for milk-ejecting function whereas it has been converted into oxytocin in South American oppossums. The change of mesotocin into oxytocin seems neutral rather than selective.  相似文献   

4.
The neurohypophysial peptides are vasopressor or depressor inaction depending on the species. Isotocin, mesotocin and oxytocinconstrict the branchial vessels in fish and induce a reflexvasodilation in the systemic vasculature. The vasodilation haspersisted in some higher vertebrates and is particularly prominentin the snakes and birds where vasotocin and arginine vasopressinalso are vasodepressor but are much less potent than mesotocinand oxytocin. In other vertebrates including fish, vasotocinand vasopressin are pressor and exert their effects mainly onthe peripheral resistance. The newt, toads and soft-shell turtlegave pressor responses to all neurohypophysial peptides, withvasotocin showing the highest potency. The frogs, big-headedturtle and lizards were intermediate with vasotocin being pressor,mesotocin being pressor and oxytocin exhibiting a dual effect.  相似文献   

5.
6.
Precursors of neurohypophysial hormones are small proteins processed into nonapeptide hormones and neurophysins during axonal transport to the neurohypophysis. In mammals, oxytocin is associated with VLDV-neurophysin and vasopressin with MSEL-neurophysin. In birds, mesotocin and vasotocin are found instead of mammalian oxytocin and vasopressin. From goose, chicken and ostrich posterior pituitary glands, two types of neurophysins related to mammalian VLDV-and MSEL-neurophysins, respectively, have been identified by their N-terminal sequences. It is assumed that, as in mammals, hormonal peptide and the first 9 residues of the corresponding neurophysin are encoded by a common exon and that mesotocin and vasotocin, evolutionary predecessors of oxytocin and vasopressin, are associated in the precursors with VLDV-neurophysin and MSEL-neurophysin, respectively.  相似文献   

7.
Summary The cardiac effects of neurohypophysial hormones in the Japanese eel, Anguilla japonica (Temminck and Schlegel), were studied in isolated atrial preparations at room temperatures of 17–20°C, 25–28°C, or 28°C. Arginine vasotocin (AVT), oxytocin (OXY), mesotocin (MSN), and isotocin (ISN) produced dose-related positive chronotropic and inotropic responses. Arginine vasopressin (AVP) was not effective. The effects of ISN on the atrial rate and tension were not affected in the presence of phentolamine or propranolol, which are and adrenergic antagonists, respectively. The activity of the eel heart and the effects of neurohypophysial hormones are temperature-dependent. The functional significance of these cardiac effects of neurohypophysial hormones is not known.  相似文献   

8.
R Acher  J Chauvet 《Biochimie》1988,70(9):1197-1207
Neurohypophysial hormones and neurophysins are derived from common precursors processed during the axonal transport from the hypothalamus to the neurohypophysis. Two neurohormones, an oxytocin-like and a vasopressin-like, on one hand, two neurophysins, termed VLDV-and MSEL-neurophysins according to residues in positions 2, 3, 6 and 7, on the other, are usually found in vertebrate species. In contrast to placental mammals that have oxytocin and arginine vasopressin, marsupials have undergone a peculiar evolution. Two pressor peptides, lysipressin and vasopressin for American species, lysipressin and phenylpressin for Australian macropods, have been identified in individual glands and it is assumed that the primordial vasopressin gene has been duplicated in these lineages. On the other hand, the reptilian mesotocin is still present in Australian species instead of the mammalian oxytocin, while the North American opossum has both hormones and South American opossums have only oxytocin. The neurophysin domain of each precursor is encoded by 3 exons and different evolutionary rates have been found for the 3 corresponding parts of the protein. The central parts, encoded by the central exons, are evolutionarily very stable and nearly identical in the 2 neurophysins of a given species. Recurrent gene conversions have apparently linked the evolutions of the 2 precursor lineages. In mammals, the 3-domain precursor of vasopressin is processed in 2 stages: a first cleavage splitting off vasopressin and a second cleavage separating MSEL-neurophysin from copeptin. Two distinct enzymatic systems seem to be involved in these cleavages. Processing is usually complete at the level of the neurohypophysis, but an intermediate precursor encompassing MSEL -neurophysin and copeptin linked by an arginine residue has been characterized in guinea pig. In vitro processing of this intermediate through trypsin--Sepharose reveals cleavages only in the interdomain region. In non-mammalian tetrapods, such as birds and amphibians, mesotocin and vasotocin are associated with neurophysins in precursors similar to those found in mammals. However, processing of the vasotocin precursor seems to be different from the processing of the vasopressin precursor, with a single cleavage leading to the hormone release.  相似文献   

9.
A cDNA encoding a receptor for the oxytocin-related peptide isotocin has been identified by screening a lambda gt11 library constructed from poly(A)+ RNA of the hypothalamic region of the teleost Catostomus commersoni. The probe used was obtained by PCR amplification of white sucker genomic DNA using degenerate primers based on conserved sequences in the mammalian receptor counterparts. The full-length cDNA specifies a polypeptide of 390 amino acid residues that displays the typical hydrophobicity profile of a seven transmembrane domain receptor and which exhibits greatest similarity to mammalian oxytocin receptors. Oocytes that express the cloned receptor respond to the application of isotocin by an induction of membrane chloride currents indicating that it is coupled to the inositol phosphate/calcium pathway. The isotocin receptor (ITR) can also be activated by vasotocin, mesotocin, oxytocin and Arg-vasopressin, although these have lower potencies than isotocin. ITR-encoding mRNA has been detected in brain, intestine, bladder, skeletal muscle, lateral line, gills and kidney indicating that this receptor may mediate a variety of physiological functions.  相似文献   

10.
Acher R  Chauvet J  Chauvet M 《FEBS letters》1970,11(5):332-335
Neurohypophysial hormones have been so far identified in Neopterygii and Crossopterygii but not in species of the bird sub-class of bony fishes, the Palaeopterygii. Isolation and chemical characterization of the active principles of a primitive bony fish, Polypterus bichir, have been performed. Isotocin (Ser(4)-Ile(8)-oxytocin) and arginine vasotocin (Arg(8)-oxytocin) have been identified. Because the same peptides were found in the recent Neopterygii, it can be deduced that neurohypophysial hormones have displayed a peculiar stability in the course of the evolution of bony fishes. However isotocin and vasotocin are replaced by oxytocin and vasopressins in mammals and therefore might be regarded as "old" molecules.  相似文献   

11.
Arginine vasotocin (AVT), a neurohypophysial hormone, has many essential functions in birds including the regulation of salt and fluid balance, blood pressure, the stress response and a variety of behaviors. In addition, AVT controls reproductive functions in birds that are served by oxytocin in mammals. In the following review, we examine the functions of AVT in birds with an emphasis on the present state of knowledge concerning the cloned receptors for this important hormone. Receptor and gene structure, signal transduction mechanisms and expression pattern are all discussed. Finally, we explore the phylogenetic relationships between the cloned avian receptors and other vertebrate and invertebrate neurohypophysial hormone receptors.  相似文献   

12.
Neurohypophysial hormones of an Australian marsupial, the Northern bandicoot (Isoodon macrourus), have been identified by their retention times in high-pressure reverse-phase liquid chromatography using two solvent systems and by their molar pressor or uterotonic activities. Two pressor peptides, arginine vasopressin and lysipressin, and two uterotonic peptides, mesotocin and oxytocin, have been characterized. Because mesotocin and arginine vasopressin have been identified in three other Australian marsupial families, it is assumed that a duplication of each ancestral gene occurred in Peramelidae and subsequent mutations in one copy led to the additional oxytocin and lysipressin. A similar dual duplication of neurohypophysial hormones has previously been discovered in the North-American opossum (Didelphis virginiana) so that the duplication propensity seems peculiar to marsupials in contrast to placental mammals.  相似文献   

13.
We have cloned and determined the nucleotide sequences of cDNAs encoding precursors of neurohypophysial hormones, vasotocin (VT) and isotocin (IT), from the hypothalamus of masu salmon, Oncorhynchus masou. The deduced amino acid sequences of masu salmon VT and IT precursors (proVT-I and proIT-I) are highly homologous to those of chum salmon proVT-I and proIT-I, respectively. The VT and IT precursors are composed of a signal peptide, hormone and neurophysin (NP), the middle portion of which is highly conserved among vertebrates. Both the NPs extend about 30 amino acids at the C-terminal. The extended C-terminals have a leucin-rich segment in the carboxyl-terminal, as copeptin of vasopressin precursor. Southern bot analysis showed the presence of two types of proVT genes (proVT-I and proVT-II) and proIT genes (proIT-I and proIT-II) in an individual masu salmon, as in a chum salmon. Southern blot analysis with proVT probes further suggested that at least two different types of proVT-I genes exist in a single masu salmon. Northern blot analysis indicated that proVT-I and proIT-I genes are expressed in the hypothalamus, whereas proVT-II and proIT-II genes are not expressed. Evolutionary distance between proVT-I and proIT-I genes was statistically estimated based on synonymous nucleotide substitution in the coding region of the cDNAs. The magnitude of distance between masu salmon proVT-I and proIT-I genes suggested that the highly conserved central portion of NPs resulted from a gene conversion event. Between masu salmon and chum salmon, evolutionary distance for proVT-I genes is about 6-fold larger than that for proIT-I genes.  相似文献   

14.
Neurohypophysial hormone precursors are small proteins processed into several fragments during axonal transport from hypothalamus to neurohypophysis. From 3-month-old fetal bovine pituitaries the three fragments of vasopressin precursor, arginine vasopressin, MSEL-neurophysin and copeptin, and the two fragments of oxytocin precursor, oxytocin and VLDV-neurophysin, have been isolated and characterized. These polypeptides are identical to those previously identified in the late fetus (7-9 months old) and in the adult. It is concluded that the same genes are expressed during fetal and adult lives, the vasopressin gene appearing roughly four times more active than the oxytocin gene in the early fetus. Vasotocin, mesotocin and additional neurophysin have not been detected in the early fetus.  相似文献   

15.
Behavioural actions of neurohypophysial peptides   总被引:2,自引:0,他引:2  
The neurohypophysial hormones vasopressin and oxytocin modulate memory processes. Vasopressin facilitates while oxytocin attenuates memory consolidation and retrieval. These influences are located in different regions of the molecules. Thus, the neurohypophysial hormones act as precursor molecules for neuropeptides involved in memory processes. The covalent ring structures of both vasopressin and oxytocin mainly affect consolidation, the linear parts, retrieval processes, while nearly the whole oxytocin or vasopressin molecule is needed for attenuation of consolidation and retrieval. Regional studies by microdissection techniques in combination with a sensitive radioenzymatic catecholalmine assay, indicate that vasopressin modulates memory processes by modulation of neurotransmission in distinct catecholamine systems. Recent experiments suggest that the influence of vasopressin on memory consolidation is mediated by the dorsal noradrenergic bundle via terminal regions of this bundle. Studies on the conversion of oxytocin in synaptosomal plasma membrane preparations of rat limbic brain suggest the possible generation of fragments with specific effects on memory processes. Regional differences in enzyme activity further substantiate the implication of oxytocin as a prohormone in this respect. Clinical studies support the evidence from laboratory findings that vasopressin is also involved in memory processes in man.  相似文献   

16.
The direct regulation of testis androgen and progestin biosynthesis by neurohypophysial hormones was investigated in a primary culture of rat testis cells. Treatment with arginine vasotocin (AVT; 10(-6) M) over a 10-day period inhibited the human chorionic gonadotropin (hCG)-stimulated testosterone accumulation while enhancing hCG-stimulated progesterone accumulation. Furthermore, treatment with increasing doses (10(-11) - 10(-6) M) of AVT by itself led to dose-dependent increases in the accumulation of pregnenolone (ED50: 8.0 +/- 0.2 X 10(-9) M) and progesterone (ED50: 1.6 +/- 0.3 X 10(-8) M) but not testosterone. Under blockade of pregnenolone metabolism using cyanoketone and spironolactone, AVT, like hCG, stimulated pregnenolone accumulation with an ED50 dose of 5.8 +/- 0.3 X 10(-9) M. Similar effects were observed with several related neurohypophysial hormones, but not with nine unrelated peptides. AVT, arginine vasopressin, and lysine vasopressin were about 100-fold more potent than mesotocin, valitocin, and oxytocin. Pressor (but not antidiuretic or oxytocic)-selective agonists of the neurohypophysial hormones also exerted dose-dependent stimulation of pregnenolone accumulation. Potent pressor (but not oxytocic)-selective antagonistic analogs of the neurohypophysial hormones prevented the AVT-stimulated accumulation of pregnenolone. Thus, the neurohypophysial hormones may exert a direct stimulatory effect on testis pregnenolone and progesterone biosynthesis via putative, pressor-selective recognition sites, and this progestin-stimulatory activity may be partly due to stimulation of steroidogenic steps preceding pregnenolone formation. Since the effective doses of neurohypophysial hormones in vitro are higher than the serum hormone levels, the present results suggest an intratesticular paracrine role for these peptides.  相似文献   

17.
Despite wide variation in the complexity of social interactions across taxa, the basic behavioral components of sociality appear to be modulated by conserved hormone pathways. Specifically, the nonapeptide hormones oxytocin and vasopressin and their receptors have been implicated in regulating diverse social behaviors across vertebrates. Here, we took advantage of the repeated evolution of cooperative breeding in African cichlids to investigate whether there are consistent brain gene expression patterns of isotocin and arginine vasotocin (teleost homologues of oxytocin and vasopressin), as well as their receptors, between four closely related pairs of social (cooperative) and non-social (non-cooperative) species. We first found that the coding sequences for the five genes studied were highly conserved across the eight species. This is the first study to examine the expression of both isotocin receptors, and so we performed a phylogenetic analysis that suggests that these two isotocin receptors are paralogues that arose during the teleost genome duplication. When we then examined brain gene expression patterns relative to social system, we found that there were whole-brain gene expression differences between the social and non-social species in many of the species pairs. However, these relationships varied in both the direction and magnitude among the four species pairs. In conclusion, our results suggest high sequence conservation and species-specific gene expression patterns relative to social behavior for these candidate hormone pathways in the cichlid fishes.  相似文献   

18.
Two neurohypophysial hormones have been isolated from an avian species, the ostrich, Struthio camelus. Both have been characterized by amino acid analysis and sequence determination. The data obtained suggest that the oxytocin-like hormone is [Ile8-oxytocin] (mesotocin) and the vasopressin-like hormone is [Ile3-vasopressin] (vasotocin). Bioactivity measurements based on urinary conductivity showed vasotocin to be about five times as active as mesotocin.  相似文献   

19.
The neurohypophysial hormone, arginine vasotocin, is depletedfrom the hypothalamus, and rises in concentration in the bloodduring oviposition in hens. The contractile responses of isolatedoviducts from birds, reptiles and amphibians are more sensitiveto arginine vasotocin than to oxytocin or mesotocin. This evidenceclearly indicates that arginine vasotocin is involved in parturitionor oviposition in nonmammalian tetrapods. Evidence for a physiologicalrole for specific neurohypophysial hormones in the regulationof oviduct—or in some cases ovarian — contractilityin fishes is unclear and occasionally contradictory. However,it appears unlikely that arginine vasotocin is involved in thefish species that have been investigated. It is evident that,much like the neurohypophysial hormones, the neurohypophysialhormone receptors of the vertebrate myometrium have undergoneevolutionary change.  相似文献   

20.
Most bony vertebrate species display a great evolutionary stability of their two neurohypophysial hormones, so that two molecular lineages, isotocin-mesotocin-oxytocin and vasotocin-vasopressin, have been traced from bony fishes to mammals. Chondrichthyes, in contrast, show a striking diversity of their oxytocin-like hormones, yet show a substantial decrease in vasotocin stored in neurohypophysis when compared to nonmammalian bony vertebrates. In the rays, glumitocin ([Ser(4),Gln(8)]-oxytocin) has been identified. In the spiny dogfish, aspargtocin ([Asn4]-oxytocin) and valitocin ([Val(8)]-oxytocin) have been characterized whereas in the spotted dogfish, asvatocin ([Asn(4),Val(8)]-oxytocin) and phasvatocin ([Phe(3),Asn(4),Val(8)]-oxytocin) have been found. Finally, in the holocephalian Pacific ratfish, oxytocin, the typical peptide of placental mammals, has been discovered. The duplication of the oxytocin-like hormone gene found in dogfishes has been observed only in some Australian and American marsupials. Cartilaginous fishes have developed an original urea-based osmoregulation involving a glutamine-dependent urea synthesis and blood urea retention through renal urea transporters. Furthermore, marine species use a rectal salt gland for sodium chloride excretion. Although vasopressin, in mammals, and vasotocin, in nonmammalian tetrapods, are clearly implied in water and salt homeostasis, the hormones involved in the blood osmotic pressure regulation of elasmobranchs are still largely unknown. It is suggested that the great diversity of oxytocin-like hormones in elasmobranchs expresses a release from an evolutionary receptor-binding constraint, so that amino-acid substitutions reflect neutral evolution. In contrast, the preservation of vasotocin suggests a selective pressure, which may be related to the regulation of renal urea transporter-recruitment mechanisms, as it has been shown for vasopressin in mammals. J. Exp. Zool. 284:475-484, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号