首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The large gap between the number of protein sequences in databases and the number of functionally characterized proteins calls for the development of a fast computational tool for the prediction of subnuclear and subcellular localizations generally applicable to protein sequences. The information on localization may reveal the molecular function of novel proteins, in addition to providing insight on the biological pathways in which they function. The bulk of past work has been focused on protein subcellular localizations. Furthermore, no specific tool has been dedicated to prediction at the subnuclear level, despite its high importance. In order to design a suitable predictive system, the extraction of subtle sequence signals that can discriminate among proteins with different subnuclear localizations is the key.  相似文献   

2.

Background  

In biological sequence analysis, position specific scoring matrices (PSSMs) are widely used to represent sequence motifs in nucleotide as well as amino acid sequences. Searching with PSSMs in complete genomes or large sequence databases is a common, but computationally expensive task.  相似文献   

3.

Background  

The automated annotation of biological sequences (protein, DNA) relies on the computation of hits (predicted features) on the sequences using various algorithms. Public databases of biological sequences provide a wealth of biological "knowledge", for example manually validated annotations (features) that are located on the sequences, but mining the sequence annotations and especially the predicted and curated features requires dedicated tools. Due to the heterogeneity and diversity of the biological information, it is difficult to handle redundancy, frequent updates, taxonomic information and "private" data together with computational algorithms in a common workflow.  相似文献   

4.

Background  

The functional annotation of proteins relies on published information concerning their close and remote homologues in sequence databases. Evidence for remote sequence similarity can be further strengthened by a similar biological background of the query sequence and identified database sequences. However, few tools exist so far, that provide a means to include functional information in sequence database searches.  相似文献   

5.

Background  

Phylogenetic analyses of protein families are used to define the evolutionary relationships between homologous proteins. The interpretation of protein-sequence phylogenetic trees requires the examination of the taxonomic properties of the species associated to those sequences. However, there is no online tool to facilitate this interpretation, for example, by automatically attaching taxonomic information to the nodes of a tree, or by interactively colouring the branches of a tree according to any combination of taxonomic divisions. This is especially problematic if the tree contains on the order of hundreds of sequences, which, given the accelerated increase in the size of the protein sequence databases, is a situation that is becoming common.  相似文献   

6.

Background  

The exponential growth of research in molecular biology has brought concomitant proliferation of databases for stocking its findings. A variety of protein sequence databases exist. While all of these strive for completeness, the range of user interests is often beyond their scope. Large databases covering a broad range of domains tend to offer less detailed information than smaller, more specialized resources, often creating a need to combine data from many sources in order to obtain a complete picture. Scientific researchers are continually developing new specific databases to enhance their understanding of biological processes.  相似文献   

7.

Background  

Sequence similarity searching is a powerful tool to help develop hypotheses in the quest to assign functional, structural and evolutionary information to DNA and protein sequences. As sequence databases continue to grow exponentially, it becomes increasingly important to repeat searches at frequent intervals, and similarity searches retrieve larger and larger sets of results. New and potentially significant results may be buried in a long list of previously obtained sequence hits from past searches.  相似文献   

8.

Background  

Minimotifs are short peptide sequences within one protein, which are recognized by other proteins or molecules. While there are now several minimotif databases, they are incomplete. There are reports of many minimotifs in the primary literature, which have yet to be annotated, while entirely novel minimotifs continue to be published on a weekly basis. Our recently proposed function and sequence syntax for minimotifs enables us to build a general tool that will facilitate structured annotation and management of minimotif data from the biomedical literature.  相似文献   

9.
10.

Background  

The post-genomic era is characterised by a torrent of biological information flooding the public databases. As a direct consequence, similarity searches starting with a single query sequence frequently lead to the identification of hundreds, or even thousands of potential homologues. The huge volume of data renders the subsequent structural, functional and evolutionary analyses very difficult. It is therefore essential to develop new strategies for efficient sampling of this large sequence space, in order to reduce the number of sequences to be processed. At the same time, it is important to retain the most pertinent sequences for structural and functional studies.  相似文献   

11.

Background  

Large molecular sequence databases are fundamental resources for modern bioscientists. Whether for project-specific purposes or sharing data with colleagues, it is often advantageous to maintain smaller sequence databases. However, this is usually not an easy task for the average bench scientist.  相似文献   

12.
13.

Background  

Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip) compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil.  相似文献   

14.

Background

Single nucleotide polymorphisms (SNPs) and small insertions or deletions (indels) are the most common type of polymorphisms and are frequently used for molecular marker development. Such markers have become very popular for all kinds of genetic analysis, including haplotype reconstruction. Haplotypes can be reconstructed for whole chromosomes but also for specific genes, based on the SNPs present. Haplotypes in the latter context represent the different alleles of a gene. The computational approach to SNP mining is becoming increasingly popular because of the continuously increasing number of sequences deposited in databases, which allows a more accurate identification of SNPs. Several software packages have been developed for SNP mining from databases. From these, QualitySNP is the only tool that combines SNP detection with the reconstruction of alleles, which results in a lower number of false positive SNPs and also works much faster than other programs. We have build a web-based SNP discovery and allele detection tool (HaploSNPer) based on QualitySNP.

Results

HaploSNPer is a flexible web-based tool for detecting SNPs and alleles in user-specified input sequences from both diploid and polyploid species. It includes BLAST for finding homologous sequences in public EST databases, CAP3 or PHRAP for aligning them, and QualitySNP for discovering reliable allelic sequences and SNPs. All possible and reliable alleles are detected by a mathematical algorithm using potential SNP information. Reliable SNPs are then identified based on the reconstructed alleles and on sequence redundancy.

Conclusion

Thorough testing of HaploSNPer (and the underlying QualitySNP algorithm) has shown that EST information alone is sufficient for the identification of alleles and that reliable SNPs can be found efficiently. Furthermore, HaploSNPer supplies a user friendly interface for visualization of SNP and alleles. HaploSNPer is available from http://www.bioinformatics.nl/tools/haplosnper/.  相似文献   

15.

Background  

Sequence comparison by alignment is a fundamental tool of molecular biology. In this paper we show how a number of sequence comparison tasks, including the detection of unique genomic regions, can be accomplished efficiently without an alignment step. Our procedure for nucleotide sequence comparison is based on shortest unique substrings. These are substrings which occur only once within the sequence or set of sequences analysed and which cannot be further reduced in length without losing the property of uniqueness. Such substrings can be detected using generalized suffix trees.  相似文献   

16.

Background  

We propose a sequence clustering algorithm and compare the partition quality and execution time of the proposed algorithm with those of a popular existing algorithm. The proposed clustering algorithm uses a grammar-based distance metric to determine partitioning for a set of biological sequences. The algorithm performs clustering in which new sequences are compared with cluster-representative sequences to determine membership. If comparison fails to identify a suitable cluster, a new cluster is created.  相似文献   

17.
18.

Background  

Searching a biological sequence database with a query sequence looking for homologues has become a routine operation in computational biology. In spite of the high degree of sophistication of currently available search routines it is still virtually impossible to identify quickly and clearly a group of sequences that a given query sequence belongs to.  相似文献   

19.

Background  

High-throughput sequencing makes it possible to rapidly obtain thousands of 16S rDNA sequences from environmental samples. Bioinformatic tools for the analyses of large 16S rDNA sequence databases are needed to comprehensively describe and compare these datasets.  相似文献   

20.

Background  

Single nucleotide polymorphisms (SNPs) are important tools in studying complex genetic traits and genome evolution. Computational strategies for SNP discovery make use of the large number of sequences present in public databases (in most cases as expressed sequence tags (ESTs)) and are considered to be faster and more cost-effective than experimental procedures. A major challenge in computational SNP discovery is distinguishing allelic variation from sequence variation between paralogous sequences, in addition to recognizing sequencing errors. For the majority of the public EST sequences, trace or quality files are lacking which makes detection of reliable SNPs even more difficult because it has to rely on sequence comparisons only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号