首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulative phases for heavy metals in limnic sediments   总被引:3,自引:1,他引:2  
Förstner  Ulrich 《Hydrobiologia》1982,91(1):269-284
Data from mechanical concentrates of recent sediments indicate that clay minerals, clay-rich aggregates and heavy minerals are the major carriers of heavy metals in detrital sediment fractions. Hydrous Fe/Mn oxides and carbonates and sulfides, in their specific environments, are the predominant accumulative phases for heavy metals in autochthonous fractions. Sequential chemical extraction techniques permit the estimation of characteristic heavy metal bonding forms: exchangeable metal cations, easily reducible, moderately reducible, organic and residual metal fractions, whereby both diagenetic processes and the potential availability of toxic compounds can be studied. The data from lakes affected by acid precipitation indicate that zinc, cobalt and nickel are mainly released from the easily reducible sediment fractions and cadmium from organic phases. In contrast at pH 4.4, neither lead nor copper seem to be remobilized to any significant extent. Immobilization by carbonate precipitation seems to provide an effective mechanism for the reduction of dissolved inputs 9f metals such as zinc and cadmium in pH-buffered, hard water systems.  相似文献   

2.
Abstract

Metal fractionation is a powerful tool for studying the mobility, bioavailability and toxicity of metals in sediments and soils. A seven-step sequential extraction technique was used to determine the potential mobility of selected heavy metals (Fe, Mn, Zn, Cu, Pb, Cd and Ni) in the sediments of Lake Naivasha. Results indicate that residual fraction was the most important phase for the elements Fe, Mn, Cu and Zn. However, Pb and Cd are highly enriched in the non-residual phases. Nickel on the other hand was distributed evenly between the non-residual and the residual fractions.

The total concentrations of the heavy metals suggested a decreasing order of iron ?> manganese ? zinc > nickel > copper ? lead > cadmium. However, the detailed sequential extraction data indicated an order of release or mobility of cadmium > lead ? nickel ? zinc > manganese > copper > iron. The high percentage of Cd and Pb in the mobile fractions suggests high bioavailability of these two elements in the study area and maybe a pointer to anthropogenic input of the two elements in the study area.  相似文献   

3.
The feasibility of using a biodegradable surfactant, surfactin from Bacillus subtilis, for the removal of heavy metals from a contaminated soil (890?mg/kg zinc, 420?mg/kg copper, 12.6% oil and grease) and sediments (110?mg/kg copper, 3300?mg/kg zinc) was evaluated. Results showed that after one and five batch washings of the soil, 25 and 70% of the copper, 6 and 25% of the zinc, and 5 and 15% of the cadmium could be removed by 0.1% surfactin with 1% NaOH, respectively. From the sediment, 15% of the copper and 6% of the zinc could be removed after a single washing with 0.25% surfactin/1% NaOH. The geochemical speciation of the heavy metals among the exchangeable, oxide, carbonate, organic, and residual fractions was determined by selective sequential extraction procedure. For both matrices, the exchangeable fractions were minimal, while the carbonate and the oxide fractions accounted for over 90% of the zinc present and the organic fraction constituted over 70% of the copper. Results after washing indicated that surfactin with NaOH could remove copper from the organic fraction, zinc from the oxide, and cadmium from the carbonate fractions. The residual fraction remained untouched. These experiments indicate that the sequential extraction studies could be useful in designing soil-washing procedures.  相似文献   

4.
Heavy metal levels of cadmium, copper, mercury, manganese, and zinc were examined in the mummichog, Fundulus heteroditus from industrialized and non-industrialized environments. With one exception, the environment with the highest trace metal in its waters, had the fishes with the highest metal concentration. Except for mercury, the concentration factor varied inversely with the metal concentrations of the fish and water, suggesting a possible regulatory mechanism for metals in the tissues of mummichogs from environments with high metal concentrations. There was an inverse relationship between standard length and concentrations of zinc, manganese, copper and cadmium in whole male and female fishes. The viscera contained significantly greater concentrations of these metals than somatic muscle tissue. There were also significant differences between males and females with respect to whole-body zinc and copper concentrations, but no sex differences for manganese and cadmium.  相似文献   

5.
Abstract

This article documents and interprets stratigraphical changes in fractionation of Fe, Mn, Mg, K, Pb, Cu and Zn in the Sa1/2 sediment core from a coastal freshwater lake, Lake Sarbsko (northern Poland). The elements were sequentially extracted from the samples to distinguish five geochemical fractions: exchangeable, acid-extractable, reducible, oxidisable and residual. The analyses revealed substantial variations in geochemical partitioning of the elements and showed no correlation between the fractionation patterns and lithology of the sediments. In the sediments of Lake Sarbsko, iron is mainly bound to sulfides. Potassium occurs in its residual form. Magnesium and zinc are associated with carbonates and aluminosilicates, while copper occurs in compounds with organic matter and sulfides. Lead is found in connection with aluminosilicates and, to a lesser extent, with sulfides and organic matter. Manganese is partitioned between the oxidisable, acid-extractable, and exchangeable fractions. Heavy metals and potassium display the overall tendency to reduce the contents of their residual forms towards the top of the depositional sequence. Fe, Mn, Mg and Zn were found to be the most susceptible to post-sedimentary mobilisation.  相似文献   

6.
Summary The influence of heavy metal additions on availability and uptake of cadmium, lead, zinc, copper, manganese and iron by oat was studied. The experiments were carried out as pot experiments using sandy loam, sandy soil and organic soil. Selective extractants were used to remove metals held in different soil fractions.Lead and copper were preferently bound by organics and oxides, zinc by oxides and inorganics, and cadmium by inorganics and organics.Addition of cadmium to the soils resulted in higher cadmium concentrations in all plant parts but lower concentrations of lead, zinc, copper, manganese and iron, and the accumulation indexes of these metals were also lower when cadmium was added to the soil.Addition of cadmium plus lead, zinc and copper resulted in higher cadmium concentrations in leaves and straw of plants grown in sandy loam and sandy soil, but lower concentrations when plants were grown in organic soil as compared with the results when cadmium was added separately. The transfer of cadmium, lead, zinc and copper from soil to plant was greatest from sandy soil, and zinc and cadmium were more mobile in the plant than were lead and copper.Cadmium concentrations in leaves correlated significantly with CaCl2 and CH3COOH extractions in sandy loam and sandy soil and with CH3COOH extractions in organic soil.Generally, the total metal uptake was lowest from organic soil.  相似文献   

7.
Bioreduction processes have profound influences on mobility and bioavailability of metals in soils and sediments. In this study, a series of microcosm studies were conducted to investigate bioreduction progresses (ferric iron and sulfate reduction) and their influences on manganese and copper element redistributions with the change of microbial community under various geochemical conditions. Results indicated that ethanol stimulated higher rates of bioreduction processes than acetate did. High-concentration bicarbonate and sulfate addition inhibited iron reduction but not sulfate reduction. Sequential extraction revealed that the exchangeable and carbonate bonding-iron were increased in ethanol amendment, whereas those of copper were decreased. The elevated bicarbonate concentration and sulfate addition both influenced the mobility and redistribution of metals. 16S rRNA analysis indicated that ethanol amendment stimulated the growths of microbial iron and sulfate reducer. A high concentration of bicarbonate suppressed the growth of iron reducer Geobacteraceae, but showed limited effect on sulfate reducers. This study concluded that geochemical conditions such as electron donor, bicarbonate and sulfate concentration influenced the microbial community and led to changes in bioreduction processes and metal distributions in the anerobic sediments.  相似文献   

8.
The Gulf of Cariaco is a marine ecosystem with high primary productivity, which gives it an ecological and socioeconomic importance. Nevertheless, anthropogenic activities around the Gulf produce wastes that are deposited directly or by runoff into the sediments, and consequently, increases concentrations of metals in this ecosystem. The objective of this study was to determine the distribution of cadmium, copper, lead, manganese, nickel and zinc in geochemical fractions of surface sediments, using modified BCR sequential extraction procedure. The concentrations were measured using flame atomic absorption spectroscopy. In addition, the contents of soluble and exchangeable metals associated to carbonate fractions, determined by BCR, were compared with those determined by the method of Campanella. Samples were collected in 12 stations during June 2007. The applied methodologies were evaluated with a certified reference material of marine sediments (HISS-1) and the results indicated that these methods provide adequate accuracy and precision for the extraction of metals. The total metal concentrations (microg g(-1)) were, Cd: < limit of detection (LD)-5.0; Pb: 1.79-60.41; Cu: no detected (ND)-42.18; Zn: 25.13-104.57; Mn: 66.31-80.29 and Ni: 3.29-24.58. Cd, Cu, Ni and Pb at several stations, exceeded the Canadian Sediment Quality Guidelines of the Lowest Effect Levels (LEL). Cadmium was identified as being the most mobile of the elements, having the highest concentrations in soluble and exchangeable cations and carbonates. However, Pb, Cu, Mn and Zn levels were found highly associated to organic matter and sulfide fractions. The methods did not show significant statistical differences for the extraction of soluble and exchangeable cations and the metals associated to carbonate fraction. There are several significant correlations between heavy metals, which suggest their common origin.  相似文献   

9.
Soils from cocoa plantations treated with Boudreaux mixture in two southwestern states of Nigeria were collected at different depths, 0–15 cm and 15–30 cm, and subjected to five-stage sequential extraction to obtain the speciation forms of copper: exchangeable, carbonate, manganese and iron oxides, organic and residual fractions. The Cu content in the extracts from the sequential extraction was read with an Atomic Absorption Spectrophotometer (AAS). The total Cu content of the soil and the physicochemical parameters of the soils were also determined. The results from the study showed that the soils had high organic matter and copper is mostly bounded to the more mobile exogenic phase much more than the stable lithogenic phase, indicating higher mobility. Within the exogenic species, carbonate fraction was the highest followed by the organic bound and the exchangeable fraction in decreasing order. Cu was not detected in the Fe/Mn bound fraction. The implication is that the fate of the administered Cu-based pesticide is more in the relatively stable carbonate bound species than the other, more mobile phase. The results showed variation in the distribution of the copper species from one depth to another. The most transported metal from the surface to the lower layer is the exchangeable fraction. The carbonate bound species is less mobile and is not readily transported into the bottom soil layer. The organic bound Cu has nearly equal distribution between the top and bottom soils and there was little or no transport of the residual metal specie from the top to the bottom. The existence of copper in the soil largely in the anthropogenic (exogenous) phase is not the most desirable for the ecosystem. This may increase the availability of Cu in the cocoa plant and bean and may lead to potential exposure risk.  相似文献   

10.
Changes in essential trace elements and heavy metals may affect the atherosclerotic state of patients on maintenance hemodialysis (HD). The aim of the study was to evaluate the relation between the serum levels of some trace elements and heavy metals (iron, zinc, manganese, copper, magnesium, cobalt, cadmium, lead, and copper/zinc ratio) and carotid artery intima-media thickness (CIMT) in HD patients. Fifty chronic HD patients without known atherosclerotic disease and 48 age- and sex-matched healthy individuals were included in the study. The serum levels of trace elements (iron, zinc, manganese, copper, and magnesium) and heavy metals (cobalt, cadmium, and lead) were measured by Atomic Adsorption Spectrophotometer (UNICAM-929). CIMT was assessed by carotid artery ultrasonography. The serum levels of iron, zinc, and manganese were lower; levels of copper, magnesium, cobalt, cadmium, lead, and copper/zinc ratio were higher in HD patients compared to controls. CIMT in HD patients were higher than the control group (0.64?±?0.11 vs 0.42?±?0.05, p?相似文献   

11.
Sinclair  P.  Beckett  R.  Hart  B. T. 《Hydrobiologia》1989,176(1):239-251
Suspended particulate matter (SPM) was collected from two sites in the Yarra River, Australia under a range of flow conditions using a continuous flow centrifuge. The SPM from the upstream, largely rural, site at Warrandyte had higher concentrations of organic matter, phosphorus and manganese. SPM collected from the downstream, largely urban, site at Heidelberg had elevated concentrations of lead and zinc. The concentrations of iron, copper and chromium in the SPM changed little between the two sites.Over the study period, the flow-weighted mean concentration of SPM increased 5-fold between the two sites and the load increased 7-fold. The annual load of SPM transported past Heidelberg was estimated to be 170 000 tonne, with approximately 80% occurring during high flows (> 15 m3 s-1 ). Detailed study of the SPM concentrations during flood events suggests that the northern tributaries to the Yarra are the main contributors of SPM in the region between Warrandyte and Heidelberg.The mean annual load of total phosphorus transported by the Yarra River at Heidelberg was estimated to be 220 tonne, approximately 2.5 times greater than at Warrandyte. Approximately 60% of this load was associated with SPM. The majority (ca. 80%) of this SPM-bound phosphorus was extractable with 0.1 M NaOH, and is therefore potentially biologically available.There was little difference between the two sites in the flow-weighted mean concentrations of iron, copper and chromium in SPM. The manganese concentration was approximately halved between Warrandyte and Heidelberg, with most of the loss occurring in the exchangeable and reducible fractions. Lead and zinc concentrations in SPM increased 15 to 16-fold between the two sites, with most of this increase occurring in the exchangeable and reducible fractions. This is some cause for concern, since metals in both these fractions could become available to biota under conditions known to exist in the Yarra estuary.  相似文献   

12.
The concentrations of selected heavy metals in sediments and waters in Baychebagh copper mine were determined using ICP-OES. Except for Co, the average concentrations of Cd, Cu, Pb, and Zn in sediments from the Ghalechay River in the district exceed the world-average shale and continental upper crust value. Enrichment factors for Pb, Cu, and Cd were significantly enriched in sediments, indicating environmental contamination. Geoaccumulation index calculated for different sampling stations indicates that the sediments are unpolluted with respect to Co and Zn while unpolluted to moderately polluted with Cu and highly polluted with Pb and Cd. The Sediment Quality Guidelines (SQGs) suggest that Cd and Pb may pose the highest risk for the environment. Sequential extraction analyses of sediments revealed that Cu, Co, Pb, and Zn bound to extractable, carbonate, reducible and oxidizable fractions are lower than residual fraction. About 10% of the total Pb was associated with the exchangeable fraction, indicating remobilization, while Cd (89%), Pb (73%) Co (58%), Cu (76%), and Zn (68%) closely associated with the residual and oxidizable fractions, resulting in their environmental immobility. The residual forms are not expected to be released under normal conditions in the river and could be considered an inert phase.  相似文献   

13.
We have used accumulated metal concentration data to investigate variability in the bioavailabilities of cadmium, copper, lead, zinc and iron to the amphipod Gammarus fossarum inhabiting the Biala Przemsza river system draining an area of lead and zinc mining. The highest bioavailabilities of most of the metals were found in a stream carrying water from mine drainage and flotation processes. Significant amounts of bioavailable cadmium entered via another stream receiving waters from ore processing. The bioavailabilities of copper varied little, indicating the lack of a local point source of entry. All metals other than copper showed seasonal variations with the highest concentrations recorded in October. Comparative data show the Biala Przemsza system to be contaminated with cadmium, lead, zinc and iron. The data presented exemplify metal concentration ranges in G. fossarum inhabiting industrial areas, and can be used as a reference for future surveys involving this species in Central Europe.  相似文献   

14.
Heavy metals in some Chinese herbal plants   总被引:1,自引:0,他引:1  
The concentrations of nine heavy metals, cadmium, cobalt, copper, iron, manganese, nickel, lead, zinc and mercury in 42 Chinese herbal medicinal plants were determined. Generally, all the samples studied had, relative to the other trace metals, higher concentrations of iron, manganese, and zinc. The concentration range of the metals determined was comparable to that in many of the East Asian vegetables and fruits. A few samples were found to contain relatively higher concentrations of the toxic metals such as cadmium, lead, and mercury. This was probably caused by contamination during air-drying and preservation.  相似文献   

15.
Pollutants deposited on the Severn Estuary from the atmosphere derive mainly from local industrial and urban centres. Atmospheric deposition accounts for 50% of the lead and zinc inputs, 10–20% of the cadmium, copper and nickel to the Estuary, but only a small proportion of the chromium, iron and manganese. Most of the cadmium, copper and lead comes from the lower atmosphere near Avonmouth and Cardiff Bay. Westerly winds have much higher sodium and chloride concentrations but generally carry lower pollution loads than the less frequent, offshore easterlies. Strong winds recycle pollutants into the atmosphere via sea spray. The hills on both sides of the Estuary encourage deep vertical mixing, and effluents may be carried well inland. Stable atmospheres, associated with southerly and easterly airflows, cause trapping and entrainment of stack emissions. Thus easterlies may deposit much higher levels of pollutants. This paper reviews present knowledge regarding the deposition of metals from the atmosphere into the waters of the Severn Estuary. Preliminary results (1989) indicate that, while distribution patterns remain broadly similar, the quantities deposited were considerably less than they were six years previously.  相似文献   

16.
Summary The uptake of trace metals by two plant species (French bean and maize) has been measured on two soils subjected to various waterlogging regimes. Uptake of both manganese and iron was increased due to soil waterlogging, although reoxidation of the soil affected iron more than manganese. Zinc and copper uptake was influenced by a species factor; French bean (Phaseolus vulgaris) showed preferential uptake of zinc, whereas maize (Zea mays) took up copper preferentially. Uptake of cobalt by both species was increased due to waterlogging, following the pattern of manganese.The abilities of these species to take up trace metals from soil followed the pattern predicted by selective extraction of soil for manganese, iron and cobalt, but not for zinc and copper.  相似文献   

17.
The lower six miles of the tidal portion of the Passaic River (Study Area) has long been heavily industrialized. The objectives of this study were to: quantify the present extent and magnitude of metals contamination in surface sediments in the Study Area, evaluate the contamination in the Study Area relative to a reference area and surrounding regional waterways, assess the potential for adverse effects to aquatic organisms, and identify spatial gradients in concentrations that may indicate potential point-sources of metals. We also examined the role of natural sediment characteristics in metals concentration variability. Study Area sediments were generally enriched in barium, cadmium, chromium, copper, lead, manganese, mercury, silver, selenium, and zinc relative to the reference area. Compared to available sediment quality benchmarks, the only metals in the Study Area presently at average concentrations sufficiently high to warrant concern about potential aquatic toxicity are lead, mercury, and zinc. Compared to the rest of the NY/NJ Harbor Estuary, the Study Area generally contains elevated levels of lead, manganese, silver, and zinc. Variability in metals concentrations can not be accounted for by TOC or percent fines. However, a substantial proportion of the spatial variability in a number of metals can be explained by normalization to either aluminum or iron.  相似文献   

18.
ABSTRACT

Total Zooplankton samples from Argentinian and Uruguayan Coastal Waters were analysed to determine their heavy metal contents. Zinc, copper, cadmium, iron, lead and manganese concentrations were measured using atomic absorption spectrophotometry and metal content distributions were geographically plotted. Except for cadmium, all the studied metals showed maximum values on the Uruguayan shores, and this was related not only to the location of the potential metal sources, but also to the hydrographical characteristics of the area. Finally, the suitability of zooplankton as an adequate biological indicator of heavy metal pollution in coastal environments is discussed.  相似文献   

19.
The molecular basis for the transport of manganese across membranes in plant cells is poorly understood. We have found that IRT1, an Arabidopsis thaliana metal ion transporter, can complement a mutant Saccharomyces cerevisiae strain defective in high-affinity manganese uptake (smf1). The IRT1 protein has previously been identified as an iron transporter. The current studies demonstrated that IRT1, when expressed in yeast, can transport manganese as well. This manganese uptake activity was inhibited by cadmium, iron(II) and zinc, suggesting that IRT1 can transport these metals. The IRT1 cDNA also complements a zinc uptake-deficient yeast mutant strain (zrt1zrt2), and IRT1-dependent zinc transport in yeast cells is inhibited by cadmium, copper, cobalt and iron(III). However, IRT1 did not complement a copper uptake-deficient yeast mutant (ctr1), implying that this transporter is not involved in the uptake of copper in plant cells. The expression of IRT1 is enhanced in A. thaliana plants grown under iron deficiency. Under these conditions, there were increased levels of root-associated manganese, zinc and cobalt, suggesting that, in addition to iron, IRT1 mediates uptake of these metals into plant cells. Taken together, these data indicate that the IRT1 protein is a broad-range metal ion transporter in plants.  相似文献   

20.
ABSTRACT

EDTA is useful to assess mobile metal pools in polluted soils and sediments. There is a need to enhance our understanding of the significance of metal fractions released. The impact of single reagent extraction with 0.05 mol L?1 EDTA on the solid phase distribution of trace metals in surface soils sampled from confined dredged sediment disposal sites was investigated. Not extracted and EDTA extracted soils were subjected to sequential extraction to fractionate the total contents into: (1) easily exchangeable and carbonate bound fraction; (2) reducible fraction; (3) oxidisable fraction; and (4) residual fraction. With EDTA, significant portions of metals associated with the acid extractable and reducible fractions were released. The oxidisable and residual fractions remained unaffected for most of the investigated metals except for the organic matter associated metals (Cu and Pb). A decrease in the residual fraction after EDTA-extraction for Cu and Pb was attributed to artifacts of the sequential extraction procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号