首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 744 毫秒
1.
This paper discusses in vivo detection of nitric oxide (NO) distribution in endotoxin-treated mice using L-band (1.1 GHz) electron paramagnetic resonance spectroscopy (EPR) in combination with the hydrophilic NO trapping complex: N-methyl-D-glucamine dithiocarbamate and iron (MGD-Fe). MGD-Fe-NO complex is found in the upper abdomen (liver region), lower abdomen (kidney and urinary bladder) and head region of ICR mice. Experiments with nitric oxide synthase (NOS) inhibition and 15N-labeled L-arginine as NOS substrate verify the origin of trapped NO from L-arginine. However, contribution from a 'nonenzymatic' NO generation pathway can not be ruled out. This paper further examines potential artifacts, which may arise in experiments using dithiocarbamate-iron complexes as NO trapping agents.  相似文献   

2.
The report describes a method for tracing nitric oxide (NO) distribution in endotoxin-treated mice using in vivo low-frequency L-band (1.1 GHz) electron spin resonance spectroscopy (ESR) in combination with extracellular nitric oxide trapping complex consisting of N-methyl-D-glucamine dithiocarbamate and iron (MGD-Fe). An ESR signal characteristic of the MGD-Fe-NO complex was found in the upper abdomen (liver region), lower abdomen and head region of ICR mice. The origin of NO from the L-arginine-NO synthase (NOS) pathway was confirmed using the NOS inhibitor N(G)-monomethyl-L-arginine (NMMA) and isotopic tracing experiments with 15N-labelled L-arginine. Experiments with mice lacking inducible NOS (iNOS) and matched wild type animals were performed using the NO trapping agent diethyldithiocarbamate (DETC). These experiments demonstrated that endotoxin-induced NO generation in the liver tissue of mice occurs via the iNOS isoform of NOS. The described in vivo ESR technique using a "whole body" resonator allows in vivo on-line detection of endogenous NO in mice.  相似文献   

3.
Neuronal nitric oxide synthase (NOS I) has been shown to generate nitric oxide (NO*) and superoxide (O(2)*-)during enzymatic cycling, the ratio of each free radical is dependent upon the concentration of L-arginine. Using spin trapping and electron paramagnetic resonance (EPR) spectroscopy, we recently reported that NOS I can oxidize ethanol (EtOH) to alpha-hydroxyethyl radical (CH(3)*CHOH). We speculated that the perferryl complex of NOS, (NOS-[Fe(5+)[double bond]O](3+)) was responsible for the generation of CH(3)*CHOH. Using potassium monopersulfate (KHSO(5)) to oxidize the heme of NOS I to NOS-[Fe(5+)[double bond]O](3+), we were able to demonstrate that this perferryl complex can oxidize L-arginine to L-citrulline and NO*. Even in the absence of L-arginine, EtOH was oxidized to CH(3)*CHOH by NOS-[Fe(5+)[double bond]O](3+). Sodium cyanide (NaCN), a heme blocker, inhibited the formation of CH(3)*CHOH by NOS.  相似文献   

4.
Nitric oxide synthase (NOS) generates nitric oxide (NO*) by the oxidation of l-arginine. Spin trapping in combination with electron paramagnetic resonance (EPR) spectroscopy using ferro-chelates is considered one of the best methods to detect NO* in real time and at its site of generation. The spin trapping of NO* from isolated NOS I oxidation of L-arginine by ferro-N-dithiocarboxysarcosine (Fe(DTCS)2) and ferro-N-methyl-d-glucamide dithiocarbamate (Fe(MGD)2) in different buffers was investigated. We detected NO-Fe(DTCS)2, a nitrosyl complex, resulting from the reaction of NO* and Fe(DTCS)2, in phosphate buffer. However, Hepes and Tris buffers did not allow formation of NO-Fe(DTCS)2. Instead, both of these buffers reacted with Fe2+, generating sparingly soluble complexes in the absence of molecular oxygen. Fe(DTCS)2 and Fe(MGD)2 were found to inhibit, to a small degree, NOS I activity with a greater effect observed with Fe(MGD)2. In contrast, Fe(MGD)2 was more efficient at spin trapping NO* from the lipopolysaccharide-activated macrophage cell line RAW264.7 than was Fe(DTCS)2. Data suggested that Fe(DTCS)2 and Fe(MGD)2 are efficient at spin trapping NO* but their maximal efficiency may be affected by experimental conditions.  相似文献   

5.
Neuronal nitric oxide synthase (NOS I) has been shown to generate nitric oxide (NO*) and superoxide (O(2)* during enzymatic cycling, and the ratio of each free radical is dependent upon the concentration of L-arginine. Using spin trapping and electron paramagnetic resonance spectroscopy, we detected alpha-hydroxyethyl radical (CH(3)*CHOH), produced during the NOS I metabolism of ethanol (EtOH). The generation of CH(3)*CHOH by NOS I was found to be Ca(2+)/calmodulin dependent. Superoxide dismutase prevented CH(3)*CHOH formation in the absence of L-arginine. However, in the presence of L-arginine, the production of CH(3)*CHOH was independent of O(2)* but dependent upon the concentration of L-arginine. Formation of CH(3)*CHOH was inhibited by substituting D-arginine for L-arginine, or inclusion of the NOS inhibitors N(G)-nitro-L-arginine methyl ester, N(G)-monomethyl-L-arginine and the heme blocker, sodium cyanide. The addition of potassium hydrogen persulfate to NOS I, generating the perferryl complex (NOS-[Fe(5+)=O](3+)) in the absence of oxygen and Ca(2+)/calmodulin, and EtOH resulted in the formation of CH(3)*CHOH. NOS I was found to produce the corresponding alpha-hydroxyalkyl radical from 1-propanol and 2-propanol, but not from 2-methyl-2-propanol. Data demonstrated that the perferryl complex of NOS I in the presence of L-arginine was responsible for catalyses of these secondary reactions.  相似文献   

6.
邵韵平 《生物学杂志》2011,28(5):77-78,90
一氧化氮具有广泛的生理功能,哺乳动物体内的NO是由NO合酶(NOS)氧化L-精氨酸而合成的,合成后的NO迅速跨膜扩散释放,NO合成失调能介导多种疾病。催化NO生物合成的NOS有三种亚型:神经元型NOS(nNOS)、内皮型NOS(eNOS)和诱导型NOS(iNOS),目前,人的三型NOS已纯化并且已分子克隆成功,对一氧化氮合酶的遗传研究确认了NOS家族的基因结构和染色体定位。  相似文献   

7.
Sperm capacitation and acrosome reaction are essential for fertilization and they are considered as part of an oxidative process involving superoxide and hydrogen peroxide. In human spermatozoa, the amino acid L-arginine is a substrate for the nitric oxide synthase (NOS) producing nitric oxide (NO*), a reactive molecule that participates in capacitation as well as in acrosome reaction. L-arginine plays an important role in the physiology of spermatozoa and has been shown to enhance their metabolism and maintain their motility. Moreover, L-arginine has a protective effect on spermatozoa against the sperm plasma membrane lipid peroxidation. In this paper, we have presented, for the first time, the effect of L-arginine on cryopreserved bovine sperm capacitation and acrosome reaction and the possible participation of NOS in both processes. Frozen-thawed bovine spermatozoa have been incubated in TALP medium with different concentrations of L-arginine and the percentages of capacitated and acrosome reacted spermatozoa have been determined. L-arginine induced both capacitation and acrosome reaction. NO* produced by L-arginine has been inhibited or inactivated using NOS inhibitors or NO* scavengers in the incubation medium, respectively. Thus, the effect of NOS inhibitors and NO* scavengers in capacitated and non-capacitated spermatozoa treated with L-arginine has also been monitored. The data presented suggest the participation of NO*, produced by a sperm NOS, in cryopreseved bovine sperm capacitation and acrosome reaction.  相似文献   

8.
Bone resorption is responsible for the morbidity associated with a number of inflammatory diseases such as rheumatoid arthritis, orthopedic implant osteolysis, periodontitis and aural cholesteatoma. Previous studies have established nitric oxide (NO) as a potentially important mediator of bone resorption. NO is a unique intercellular and intracellular signaling molecule involved in many physiologic and pathologic pathways. NO is generated from L-arginine by the enzyme nitric oxide synthase (NOS). There are three known isoforms of NOS with distinct cellular distributions. In this study, we have used mice with targeted deletions in each of these isoforms to establish a role for these enzymes in the regulation of bone resorption in vivo and in vitro. In a murine model of particle induced osteolysis, NOS I-/- mice demonstrated a significantly reduced osteoclast response. In vitro, osteoclasts derived from NOS I-/- mice were larger than wild type controls but demonstrated decreased resorption. Although NOS I has been demonstrated in osteoblasts and osteocytes as a mediator of adaptive bone remodeling, it has not previously been identified in osteoclasts. These results demonstrate a critical role for NOS I in inflammatory bone resorption and osteoclast function in vitro.  相似文献   

9.
We characterized effects of nitric oxide synthase (NOS) substrate L-arginine and classical inhibitors of mammalian NOS on nitric oxide (NO) biosynthesis in probiotic bacteria Lactobacillus plantarum 8P-A3. NO-synthase origin of nitric oxide detected by fluorescent NO indicator 1,2-diaminoanthraquinone (DAA) was confirmed by induction of NO production by exogenous L-arginine. None of the used inhibitors of three isoforms of mammalian NOSs (L-NAME, L-NIL, nNOS inhibitor I) showed significant inhibitory effect of lactobacillar NO-synthase activity.  相似文献   

10.
In vivo nitric oxide (NO) formation was quantified in mice after exposure to high-dose whole-body X-ray irradiation. NO produced and accumulated in the livers of irradiated mice was determined using NO trapping method with iron-dithiocarbamate complex combined with electron paramagnetic resonance (EPR) spectroscopy. When mice were irradiated with 50 Gy X-ray, NO formation peaked in approximately 3 h after the irradiation was terminated. Dose-dependence study indicated that NO formation measured 5 h after irradiation was leveled off at the dose higher than 50 Gy. Administration of NO synthase inhibitor, N(G)-monomethyl L-arginine (L-NMMA) shortly after irradiation completely abolished the NO signal, indicating that radiation-induced NO is produced through L-arginine-dependent NO synthase pathways. These results suggest that irradiation of X-ray initiates inflammation processes, resulting in delayed NO synthase expression and NO formation.  相似文献   

11.
The possible existence of a mitochondrially localized nitric oxide (NO) synthase (mtNOS) is controversial. To clarify this, we studied the ability of intact mitochondria to generate NO and the effect of mitochondrial NO on respiration. Respiratory rates and oxygen kinetics (P(50) values) were determined by high-resolution respirometry in skeletal-muscle mitochondria from control mice and mice injected with Escherichia coli lipopolysaccharide (LPS). In the presence of the NOS substrate L-arginine, mitochondria from LPS-treated mice had lower respiration rates and higher P(50) values than control animals. These effects were prevented by the NOS inhibitor L-NMMA. Our results suggest that mitochondrially derived NO is generated by an LPS-inducible NOS protein other than iNOS and modulates oxygen consumption in mouse skeletal muscle.  相似文献   

12.
Since the interneuronal messenger nitric oxide (NO) can not be stored in neurones, the regulation of the NO-producing enzyme nitric oxide synthase (NOS) is crucial. Neuronal NOS metabolises L-arginine to nitric oxide (NO) and L-citrulline in a Ca(2+)-dependent manner. Thus, availability of L-arginine to NOS may modulate NO production. In this study, we examined the cellular distribution of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase, L-arginine and L-citrulline. Using NADPH-diaphorase histochemistry to visualise putative NO-producing cells and immunocytochemistry to localise L-arginine, we showed that the distribution of L-arginine-immunoreactive neurones correlates well with those of NADPH-diaphorase-positive neurones in cerebral ganglia of the pulmonate Helix pomatia. However, substrate and enzyme were visualised in separate but adjacent neurones. We further examined whether NADPH-diaphorase-labelled cells contain the L-citrulline. Following elevation of intracellular Ca(2+) by the Ca(2+) ionophore, ionomycin, or by a high-K(+) solution, the number of L-citrulline-immunoreactive neurones in mesocerebrum and pedal lobe increased up to tenfold. Preincubation of ganglia with the NOS inhibitor N(G)-nitro-L-arginine prevented ionomycin or high-K(+) solution-induced L-citrulline synthesis. Most L-citrulline-immunoreactive neurones contain NADPH-diaphorase activity. In conclusion, these experiments indicate a complementary distribution of NOS and L-arginine and suggest an unknown signalling pathway between neurones to maintain L-arginine and NO homeostasis.  相似文献   

13.
14.
High-output nitric oxide (NO) production by nitric oxide synthase 2 (NOS2) contributes to normal cellular processes and pathophysiological conditions. The transport of L-arginine, the substrate for NOS2, is required for sustained NO production by NOS2. L-Arginine can be transported by several kinetically defined transport systems, although the majority of arginine uptake is mediated by transport system y(+), encoded by the Cat1-3 gene family. Using macrophages from Cat2-deficient mice, we previously determined that arginine uptake via CAT2 is absolutely required for sustained NO production. Because NO production by fibroblasts is important in wound healing, we sought to determine whether CAT2 is required for NO production in cytokine-stimulated Cat2-deficient and wild-type embryonic fibroblasts. Although macrophages and fibroblasts both required extracellular L-arginine for NO production, NO synthesis by activated Cat2(-/-) fibroblasts was reduced only 19%, whereas Cat2(-/-) macrophages were virtually unable to produce NO. As expected, activated Cat2(-/-) fibroblasts had reduced system y(+)-mediated arginine uptake. However, their reduced NO output was not the result of a significant difference in intracellular L-arginine levels following cytokine stimulation. Uptake experiments revealed that the L-arginine transport system y(+)L was the major cationic amino acid carrier in fibroblasts of both genotypes. We conclude that NO production in embryonic fibroblasts is only partially dependent on CAT2 and that other compensating transporters provide arginine for NOS2-mediated NO synthesis. The data demonstrate that fibroblasts and macrophages have differential dependence on CAT2-mediated L-arginine transport for NO synthesis. The important physiological implication of this finding is discussed.  相似文献   

15.
Recent report from this lab has shown role of Rac2 in the translocation of inducible nitric oxide synthase (iNOS) to the phagosomal compartment of polymorphonuclear leukocytes (PMNs) following phagocytosis of beads. This study was undertaken to further assess the status and role of tetrahydrobiopterin (BH4), a redox-sensitive cofactor, L-arginine, and the substrate of nitric oxide synthase (NOS) in sustained nitric oxide (˙NO) production in killing of phagocytosed microbes (Escherichia coli) by human PMNs. Time-dependent study revealed consistent NO and reactive oxygen species (ROS) production in the PMNs following phagocytosis of beads. In addition, levels of L-arginine and BH4 were maintained or increased simultaneously to support the enzymatic activity of NOS in the bead activated PMNs. Moreover, translocation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) subunits along with iNOS was reconfirmed in the isolated phagosomes. We demonstrate that increase in the level of NO was supported by L-arginine and BH4 to kill E. coli, by using PMNs from NOS2?/? mice, human PMNs treated with biopterin inhibitor, N-acetyl serotonin (NAS), or by suspending human PMNs in L-arginine deficient medium. Altogether, this study demonstrates that following phagocytosis, sustained. NO production in the PMNs was well-maintained by redox sensitive cofactor, BH4 and substrate, and L-arginine to enable microbial killing. Further results suggest NO production in the human PMNs, along with ROS and myeloperoxidase (MPO) is important to execute antimicrobial activity.  相似文献   

16.
The clinical use of the widely used anticancer drug doxorubicin is limited by a dose-dependent cardiotoxicity. Doxorubicin can be reduced to its semiquinone free radical form by nitric oxide synthases (NOS). The release of lactate dehydrogenase (LDH) from doxorubicin-treated neonatal cardiac rat myocytes was used as a model of doxorubicin-induced cardiotoxicity. The NOS inhibitors N(G)-nitro-L-arginine methyl ester (L-NAME) and N(G)-monomethyl-L-arginine (L-NMMA) protected myocytes from doxorubicin as did their non-inhibitory enantiomers D-NAME and D-NMMA. Thus, these agents did not protect by inhibiting NOS. L-NAME, which does not act at the reductase domain of NOS, also had no effect on the production of the doxorubicin semiquinone by myocytes. Nitric oxide (NO) EPR spin trapping experiments showed that L-NAME reacted with various biological reducing agents to produce NO. Ascorbic acid was highly effective in reacting with L-NAME to produce NO, while glutathione, NADPH, and NADH were much less effective. Thus, these guanadino-substituted analogs of L-arginine likely protected through their ability to slowly produce NO by reaction with intracellular ascorbic acid. Thus, some caution must be exercised in their use. NO may exert its protective effects either by directly acting as an antioxidant or through some other NO-dependent pathway.  相似文献   

17.
Endothelium-derived relaxing factor (EDRF), identified as nitric oxide (NO), is derived from a guanidino nitrogen of L-arginine via its metabolism by nitric oxide synthase (NOS). Herein, we report the molecular cloning of a cDNA encoding the constitutive calcium-calmodulin (Ca2+/CaM)-regulated nitric oxide synthase (ECNOS). A full-length ECNOS clone was isolated by screening a bovine aortic endothelial cell cDNA library using a fragment of rat brain NOS (bNOS) cDNA. This cDNA has an open reading frame of 3615 nucleotides encoding a 1205-amino acid protein. Membranes prepared from COS cells transfected with the ECNOS cDNA demonstrated NADPH- and Ca2+/CaM- dependent conversion of L-, but not D-, arginine to NO and citrulline that was inhibited by NG-nitro-L-arginine methyl ester. Comparison of the deduced amino acid sequence of ECNOS to the bNOS and macrophage NOS (Mac-NOS) sequences revealed 57 and 50% identity, respectively. In addition, ECNOS contains a unique N-myristylation consensus sequence (not shared by bNOS or Mac-NOS) that may explain its membrane localization.  相似文献   

18.
Studies were designed to examine the hypothesis that the renal medulla of Dahl salt-sensitive (Dahl S) rats has a reduced capacity to generate nitric oxide (NO), which diminishes the ability to buffer against the chronic hypertensive effects of small elevations of circulating ANG II. NO synthase (NOS) activity in the outer medulla of Dahl S rats (arginine-citrulline conversion assay) was significantly reduced. This decrease in NOS activity was associated with the downregulation of protein expression of NOS I, NOS II, and NOS III isoforms in this region as determined by Western blot analysis. In anesthetized Dahl S rats, we observed that a low subpressor intravenous infusion of ANG II (5 ng. kg(-1). min(-1)) did not increase the concentration of NO in the renal medulla as measured by a microdialysis with oxyhemoglobin trapping technique. In contrast, ANG II produced a 38% increase in the concentration of NO (87 +/- 8 to 117 +/- 8 nmol/l) in the outer medulla of Brown-Norway (BN) rats. The same intravenous dose of ANG II reduced renal medullary blood flow as determined by laser-Doppler flowmetry in Dahl S, but not in BN rats. A 7-day intravenous ANG II infusion at a dose of 3 ng. kg(-1). min(-1) did not change mean arterial pressure (MAP) in the BN rats but increased MAP in Dahl S rats from 120 +/- 2 to 138 +/- 2 mmHg (P < 0.05). ANG II failed to increase MAP after NO substrate was provided by infusion of L-arginine (300 microg. kg(-1). min(-1)) into the renal medulla of Dahl S rats. Intravenous infusion of L-arginine at the same dose had no effect on the ANG II-induced hypertension. These results indicate that an impaired NO counterregulatory system in the outer medulla of Dahl S rats makes them more susceptible to the hypertensive actions of small elevations of ANG II.  相似文献   

19.
The L-arginine/nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway is known to be involved in central and peripheral nociceptive processes. This study evaluated the rhythmic pattern of the L-arginine/NO/cGMP pathway using the mouse visceral pain model. Experiments were performed at six different times (1, 5, 9, 13, 17, and 21 h after light on) per day in male mice synchronized to a 12 h:12 h light-dark cycle. Animals were injected s.c. with saline, 2 mg/kg L-arginine (a NO precursor), 75 mg/kg L-N(G)-nitroarginine methyl ester (L-NAME, a NOS inhibitor), 40 mg/kg methylene blue (a soluble guanylyl cyclase and/or NOS inhibitor), or 0.1 mg/kg sodium nitroprusside (a nonenzymatic NO donor) 15 min before counting 2.5 mg/kg (i.p.) p-benzoquinone (PBQ)-induced abdominal constrictions for 15 min. Blood samples were collected after the test, and the nitrite concentration was determined in serum samples. L-arginine or L-NAME caused both antinociception and nociception, depending on the circadian time of their injection. The analgesic effect of methylene blue or sodium nitroprusside exhibited significant biological time-dependent differences in PBQ-induced abdominal constrictions. Serum nitrite levels also displayed a significant 24 h variation in mice injected with PBQ, L-NAME, methylene blue, or sodium nitroprusside, but not saline or L-arginine. These results suggest that components of L-arginine/NO/cGMP pathway exhibit biological time-dependent effects on visceral nociceptive process.  相似文献   

20.
The ability of sperm to fertilize the egg is primarily dependent on sperm motility and membrane integrity. Nitric oxide (NO) plays a decisive role in regulating multiple functions within the male reproductive system. The aim of the present study is to determine the mechanism by which L-arginine confers a protective action on spermatozoa obtained from the goat epididymis. NO is synthesized from L-arginine by the enzyme nitric oxide-synthase (NOS) present in spermatozoa. A possible participation of NO and NOS in arginine action has been suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号