首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
McBride  M.B.  Richards  B.K.  Steenhuis  T. 《Plant and Soil》2004,262(1-2):71-84
In order to assess the potential impact of long-term sewage sludge application on soil health, the equivalent of about 25 years of agronomic applications of low-metal (`EQ') sewage sludge products were made to greenhouse soil columns. After a 6-year period of `equilibration', during which time successive crops were grown with irrigation by simulated acid rain, the plant-available quantities of trace elements were estimated in the soils by extraction with 0.01 M CaCl2 at 90 °C, and measured directly by uptake into a crop of red clover (Trifolium pratense L.). Soil pH had a strong influence on the level of extractable and plant-available metals, and because the tested sludge products affected soil pH differently, pH was directly factored into the comparison of different sludge treatments with controls. CaCl2-extractable levels of several metals (Cu, Zn, Mo), sulfur and phosphorus were found to be higher in the soils amended with organic-rich sludge products than in the control soils. However, extractable Cd and Ni were not significantly elevated by the sludge amendments, presumably because of the low total loading of these metals. Copper, Zn and Mo applied in the form of sludge ash had low soil extractability, suggesting that these trace metals were trapped in high-temperature mineral phases formed during sludge incineration, and resisted subsequent weathering in the soil environment. Extractable soil metals in the alkaline-stabilized sludge treatment were also generally low. Phytotoxicity from the sludge metal loadings (Zn≤125, Cu≤135 kg/ha), was not clearly indicated as long as soil pH was maintained in the 6–7 range by lime amendment. Nevertheless, unexplained depressions in yield were noted with some of the sludge products applied, particularly the dewatered and composted materials. On limed soil columns, the most consistent effect of sludge product amendment on red clover composition was a marked increase in plant Mo.  相似文献   

2.
Copper,Lead, Cadmium,and Zinc Sorption By Waterlogged and Air-Dry Soil   总被引:1,自引:0,他引:1  
Competitive sorption of copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) was studied in three soils of contrasting chemical and physical properties under air-dry and waterlogged conditions. Competitive sorption was determined using the standard batch technique using six solutions, each with Cu, Pb, Cd, and Zn concentrations of approximately 0, 2.5, 5, 10, 20, and 50?mg L?1Waterlogged soils tended to sorb higher amounts of added Cu, Pb, Zn and Cd relative to soils in the air-dry condition; however, this increase in sorption was generally not statistically (p<0.05) significant. The magnitude of sorption under both waterlogged and air-dry conditions was affected by the type and amount of soil materials involved in metal sorption processes, and competition between other metals for the sorption sites. Metal sorption was closely correlated with soil properties such as cation exchange capacity, organic carbon, and Fe and Mn hydrous oxides. Exchangeable Al may have markedly reduced metal sorption due to its strong affinity for the sorption sites, while increases in exchangeable Mn may have enhanced Zn and Cd sorption. Heavy metal sorption was best described as a combination of both specific and nonspecific interactions. The extractability of Cu, Pb, Cd, and Zn under waterlogged and air-dry conditions was also studied. Three solutions containing these metals were mixed with each soil to achieve a final concentration of 0, 50, and 500?mg kg?1. Each soil was extracted every 7 days using 1?M MgCl2 (pH 7) to determine metal extractability. Metal extractability initially decreased then increased due to waterlogging. The increased extractability of added metals was closely related to increased solubility of Fe and Mn suggesting that dissolution of Fe and Mn, oxides under reducing conditions caused a release of previously sorbed Cu, Pb, Cd, and Zn.  相似文献   

3.
It has been frequently suggested that root exudates play a role in trace metal mobilization and uptake by plants, but there is little in vivo evidence. We studied root exudation of dicotyledonous plants in relation to mobilization and uptake of Cu and Zn in nutrient solutions and in a calcareous soil at varying Cu and Zn supply. Spinach (Spinacia oleracea L.) and tomato (Lycopersicon esculentum L.) were grown on resin-buffered nutrient solutions at varying free ion activities of Cu (pCu 13.0–10.4) and Zn (pZn 10.1–6.6). The Cu and Zn concentrations in the nutrient solution increased with time, except in plant-free controls, indicating that the plant roots released organic ligands that mobilized Cu and Zn from the resin. At same pCu, soluble Cu increased more at low Zn supply, as long as Zn deficiency effects on growth were small. Zinc deficiency was observed in most treatment solutions with pZn ≥ 9.3, but not in nutrient solutions of a smaller volume/plant ratio in which higher Zn concentrations were observed at same pZn. Root exudates of Zn-deficient plants showed higher specific UV absorbance (SUVA, an indicator of aromaticity and metal affinity) than those of non-deficient plants. Measurement of the metal diffusion flux with the DGT technique showed that the Cu and Zn complexes in the nutrient solutions were highly labile. Diffusive transport (through the unstirred layer surrounding the roots) of the free ion only could not explain the observed plant uptake of Cu and of Zn at low Zn2+ activity. The Cu and Zn uptake by the plants was well explained if it was assumed that the complexes with root exudates contributed 0.4% (Cu) or 20% (Zn) relative to the free ion. In the soil experiment, metal concentrations and organic C concentrations were larger in the solution of planted soils than in unplanted controls. The SUVA of the soil solution after plant growth was higher for unamended soils, on which the plants were Zn-deficient, than for Zn-amended soils. In conclusion, root exudates of dicotyledonous plants are able to mobilize Cu and Zn, and plants appear to respond to Zn deficiency by exuding root exudates with higher metal affinity.  相似文献   

4.
Summary This paper reviews the evidence for impacts of metals on the growth of selected plants and on the effects of metals on soil microbial activity and soil fertility in the long-term. Less is known about adverse long-term effects of metals on soil microorganisms than on crop yields and metal uptake. This is not surprising, since the effects of metals added to soils in sewage sludge are difficult to assess, and few long-term experiments exist. Controlled field experiments with sewage sludges exist in the UK, Sweden, Germany and the USA and the data presented here are from these long-term field experiments only. Microbial activity and populations of cyanobacteria,Rhizobium leguminosarum bv.trifolii, mycorrhizae and the total microbial biomass have been adversely affected by metal concentrations which, in some cases, are below the European Community's maximum allowable concentration limits for metals in sludge-treated soils. For example, N2-fixation by free living heterotrophic bacteria was found to be inhibited at soil metal concentrations of (mg kg–1): 127 Zn, 37 Cu, 21 Ni, 3.4 Cd, 52 Cr and 71 Pb. N2-fixation by free-living cyanobacteria was reduced by 50% at metal concentrations of (mg kg–1): 114 Zn, 33 Cu, 17 Ni, 2.9 Cd, 80 Cr and 40 Pb.Rhizobium leguminosarum bv.trifolii numbers decreased by several orders of magnitude at soil metal concentrations of (mg kg–1): 130–200 Zn, 27–48 Cu, 11–15 Ni, and 0.8–1.0 Cd. Soil texture and pH were found to influence the concentrations at which toxicity occurred to both microorganisms and plants. Higher pH, and increased contents of clay and organic carbon reduced metal toxicity considerably. The evidence suggests that adverse effects on soil microbial parameters were generally found at surpringly modest concentrations of metals in soils. It is concluded that prevention of adverse effects on soil microbial processes and ultimately soil fertility, should be a factor which influences soil protection legislation.  相似文献   

5.
Trace elements in agroecosystems and impacts on the environment.   总被引:21,自引:0,他引:21  
Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.  相似文献   

6.
The main aim of this study was to compare the suitability of three single chemical extractants [EDTA, CaCl2 and the low-molecular-weight organic acids solution (LMWOAs)] to estimate Cu, Zn and Ni uptake by barley (Hordeum vulgare) from rhizosphere soils, following a single application of a metal salts-spiked sewage sludge. Thirty-six contrasting soils from different parts of Spain were amended with the same dose (15.71 g dry weight kg-1) of polluted sewage sludge and sown with barley seeds under greenhouse conditions. Eight weeks after sowing, the plants were harvested and Cu, Zn and Ni were analysed in the roots. Heavy metal uptake was then compared with the theoretically available heavy metals in the rhizosphere soils, assessed by the three single chemical extractants. These three extractants alone failed to predict heavy metal uptake, and soil properties were needed to obtain accurate predictions. Thus, none of the methods tested in this study can be used as a universal soil extraction for estimating Cu, Zn and Ni uptake by barley.  相似文献   

7.
Non-native earthworms are a continued source of environmental change in the northeastern United States that may affect trace metals in the plant-soil system, with largely unknown effects. We assessed earthworm impacts on exchangeable and strong acid extractable (total) concentrations and pools of Al, Fe, Cu, Zn, Mo, Pb in non-point source polluted, forest soil horizons (Organic, A, and B) and foliar metals concentrations in young (<?3 years) Acer saccharum and Polystichum acrostichoides at four proximal forests in the Finger Lakes Region of New York. We observed decreasing total trace metal Organic horizon pools and increasing total trace metal A horizon concentrations as a function of increasing earthworm biomass. Earthworms had limited effects on exchangeable concentrations in A and B horizons and total metal concentrations in the B horizon. Foliar trace metal concentrations in Acer were better explained by earthworm biomass than soil concentrations but foliar concentrations for Polystichum were poorly predicted by both earthworm biomass and soil metal concentrations. Our results suggest that earthworms can affect trace metal uptake by some plants, but not by increasing soil trace metal exchangeability or from changing soil properties (pH, %SOM, or cation exchange capacity). Instead, non-native earthworms may indirectly alter understory plant uptake of trace metals.  相似文献   

8.
This study determined rates of in situ fine root decomposition and changes in trace metals concentration during decomposition at sites in Sudbury, ON, and Rouyn-Noranda, QU, with elevated or background concentrations of Cu, Ni, Pb, and/or Zn in the soil, and correlated the depth gradients of Cu, Ni, Pb, and Zn for soils and roots at the same sites. Fine roots were extracted from soil cores within root traps several times over 12 months; biomass and metal concentrations were measured. Live roots were collected from 30-cm soil cores, separated into three depths. Elevated soil metal concentrations did not necessarily reduce fine root decomposition, and effects on decomposition were similar to those previously reported for surface foliar litter at the same sites. Decomposing roots at only the high metal sites demonstrated increased metal concentrations with time. Root tissue concentrations of Cu, Ni, and Zn, but not Pb, at lower soil depths were generally higher than expected from soil metal concentrations. This could be explained by reallocation of essential metals, although these metals were likely also more available for uptake at depth due to lower DOC concentrations. This study means that for risk assessment, separate determinations of altered decomposition for roots and leaf litter are likely not necessary for predicting ecosystem effects, a pragmatically useful conclusion given the labor intensity of the fine root studies. This study also suggests that for risk assessment of plant community exposure to metals, prediction of exposure to metals should probably consider soil layers that do not have substantially elevated metal concentrations, as their soil characteristics, or plant processes, may result in unexpected exposure.  相似文献   

9.
The present study was conducted to assess the suitability of sewage sludge amendment (SSA) in soil for Beta vulgaris var. saccharifera (sugar beet) by evaluating the heavy metal accumulation and physiological responses of plants grown at a 10%, 25%, and 50% sewage sludge amendment rate. The sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently increasing accumulation in plant parts. Cd, Pb, Ni, and Cu concentrations in roots were significantly higher in plants grown at 25% as compared to 50% SSA; however, Cr and Zn concentration was higher at 50% than 25% SSA. The concentrations of heavy metal showed a trend of Zn > Ni > Cu > Cr > Pb > Cd in roots and Zn > Cu > Ni > Cr > Pb > Cd in leaves. The only instance in which the chlorophyll content did not increase after the sewage sludge treatments was 50%. There were approximately 1.12-fold differences between the control and 50% sewage sludge application for chlorophyll content. The sewage sludge amendment led to a significant increase in Pb, Cr, Cd, Cu, Zn, and Ni concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency (US EPA). The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake and the leaf and root concentrations of Ni, Zn, Cd, Cu, Cr, Pb, and Zn in plants as compared to those grown on unamended soil. More accumulation occurred in roots and leaves than in shoots for most of the heavy metals. The concentrations of Cd, Cr, and Pb were more than the permissible limits of national standards in the edible portion of sugar beet grown on different sewage sludge amendment ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet may not be a good option due to risk of contamination of Cr, Pb, and Cd.  相似文献   

10.
The recycling of livestock manure in cropping systems is considered to enhance soil fertility and crop productivity. However, there have been no systematic long-term studies of the effects of manure application on soil and crop macro- and micro-nutrients, heavy metals, and crop yields in China, despite their great importance for sustainable crop production and food safety. Thus, we conducted field experiments in a typical cereal crop production area of the North China Plain to investigate the effects of compost manure application rates on wheat yield, as well as on the macro-/micro-nutrients and heavy metals contents of soil and wheat. We found that compost application increased the soil total N and the available K, Fe, Zn, and Mn concentrations, whereas the available P in soil was not affected, and the available Cu decreased. In general, compost application had no significant effects on the grain yield, biomass, and harvest index of winter wheat. However, during 2012 and 2013, the N concentration decreased by 9% and 18% in straw, and by 16% and 12% in grain, respectively. With compost application, the straw P concentration only increased in 2012 but the grain P generally increased, while the straw K concentration tended to decrease and the grain K concentration increased in 2013. Compost application generally increased the Fe and Zn concentrations in straw and grain, whereas the Cu and Mn concentrations decreased significantly compared with the control. The heavy metal concentrations increased at some compost application rates, but they were still within the safe range. The balances of the macro-and micro-nutrients indicated that the removal of nutrients by wheat was compensated for by the addition of compost, whereas the level of N decreased without the application of compost. The daily intake levels of micronutrients via the consumption of wheat grain were still lower than the recommended levels when sheep manure compost was applied, except for that of Mn.  相似文献   

11.
Samples of a sandy loam soil taken from a long-term liming experiment in southeast England were amended with solutions of metal sulfate salts. Soils with a range of pHs were amended to contain Cu, Cd, or Zn at concentrations around the maximum permissible values for these metals in agricultural land receiving sewage sludge. After a 3-year equilibration period, the microbial biomass was determined by the fumigation-extraction technique. These results were compared with data from substrate utilization patterns of microbial populations extracted by using a weak salt solution. There was no reduction in microbial biomass due to pH or metal treatment in any of the soils except the Cu treatment. Principal-component analysis of the respiration patterns in Biolog plates demonstrated effects of both pH and metal treatment on the extracted microbial population which were independent of gross biomass size. pH and soil amendments with Cu and Zn were found to reduce the metabolic potential of the extracted soil microbial population.  相似文献   

12.
Summary The effects of soil acidification and micronutrient addition on levels of extractable Fe, Mn, Zn and Cu in a soil, and on the growth and micronutrient uptake of young highbush blueberry plants (Vaccinium corymbosum L. cv. Blueray) was investigated in a greenhouse study.Levels of 0.05M CaCl2-extractable Fe, Mn, Zn and Cu increased as the pH was lowered from 7.0 to 3.8. However, the solubility (CaCl2-extractability) of Fe and Cu was considerably less pH-dependent than that of Mn and Zn. With the exception of HCl-and DTPA-extractable Mn, micronutrients extractable with 0.1M HCl, 0.005M DTPA and 0.04M EDTA were unaffected or raised only slightly as the pH was lowered from 6.0 to 3.8. Quantities of Mn and Zn extractable with CaCl2 were similar in magnitude to those extractable with HCl, DTPA and EDTA whilst, in contrast, the latter reagents extracted considerably more Cu and Fe than did CaCl2. A fractionation of soil Zn and Cu revealed that soil acidification resulted in an increase in the CaCl2- and pyrophosphate-extractable fractions and a smaller decrease in the oxalate-extractable fraction.Plant dry matter production increased consistently when the soil pH was lowered from 7.0 to 4.6 but there was a slight decline in dry matter as the pH was lowered to 3.8. Micronutrient additions had no influence on plant biomass although plant uptake was increased. As the pH was lowered, concentrations of plant Fe first decreased and then increased whilst those of Mn, and to a lesser extent Zn and Cu, increased markedly.  相似文献   

13.
Accumulation of different metals and metalloids was assessed in two vegetables radish (Raphanus sativus L.) and spinach (Spinacea oleracea L.) irrigated with domestic wastewater in the peri-urban areas of Khushab City, Pakistan. In general, the metal and metalloid concentrations in radish and spinach were higher at site-II treated with sewage water than those found at site-I treated with canal water. In case of radish at both sites the levels of metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, and Pb) were below the permissible level except those of Mn, Ni, Mo, Cd, and Pb. At both sites, the transfer factor ranged from 0.047–228.3 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: As > Fe > Ni > Zn > Cd > Mo > Se > Co > Pb > Mn > Cr > Cu, respectively. While in case of spinach at both sites, the concentrations of metals and metalloids in vegetable samples irrigated with canal and sewage water were observed below the permissible level except Mn, Ni, Zn, Mo, and Pb. At both sites, the transfer factor ranged from 0.038–245.4 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: Cd > Ni > Co > Se > Mn > Zn > Mo > Pb > Fe > Cr > As > Cu, respectively.  相似文献   

14.
In a pot culture experiment, five different species of Brassica (Brassica juncea, Brassica campestris, Brassica carinata, Brassica napus, and Brassica nigra) were grown for screening possible accumulators of heavy metals, viz. Zn, Cu, Ni, and Pb. The plants were grown to maturity in a soil irrigated with sewage effluents for more than two decades in West Delhi, India. The soil analysis showed enhanced accumulation of Zn, Cu, Ni, and Pb in this sewage-irrigated soil. Among all species, B. carinata showed the highest concentration (mg kg(-1)) as well as uptake (microg pot(-1)) of Ni and Pb at maturity. Although B. campestris showed a higher concentration of Zn in its shoots (stem plus leaf), B. carinata extracted the largest amount of this metal due to greater biomass production. However, B. juncea phytoextracted the largest amount of Cu from the soil. In general, the highest concentration and uptake of metal was observed in shoots compared to roots or seeds of the different species. Among the Brassica spp., B. carinata cv. DLSC1 emerged as the most promising, showing greater uptake of Zn, Ni, and Pb, while B. juncea cv. Pusa Bold showed the highest uptake of Cu. The B. napus also showed promise, as it ranked second with respect to total uptake of Pb, Zn, and Ni, and third for Cu. Total uptake of metals by Brassica spp. correlated negatively with available as well as the total soil metal concentrations. Among the root parameters, root length emerged as the powerful parameter to dictate the uptake of metals by Brassica spp. Probably for the first time, B. carinata was reported as a promising phytoextractor for Zn, Ni, and Pb, which performed better than B. juncea.  相似文献   

15.
Summary Dried digested sewage sludge (cake) was mixed, in varied proportions, with three contrasting soils and cropped intermittently to ryegrass or young barley over a period of 710 days. Results are presented for periods 1–4, 13–16 and 22–23 months after the sludge and soil were mixed. At any given time the quantities of Cu or Zn that wereextractable (by EDTA or acetic acid) from a given soil showed a simple relationship to the ‘total’ quantities of Cu and Zn present. Theavailability of these elements to test crops also showed a simple relationship to their ‘total’ quantities. As a result the quantities available or extractable at any given time appeared to be related to each other also. However, though the extractabilities of Cu and Zn changed with time in some cases, and the availabilities of Cu and Zn changed with time in some cases, the changes were not matched. Increased extractability did not necessarily lead to increased uptake, and in some cases uptake increased even when extractability did not. It should not be assumed too readily therefore that because, at a given time after a soil is sludged, the quantities of added Cu and Zn that are extractable or available are sometimes correlated, the former actually measures the latter.There is no reason to assume that extractants remove all or only the forms of combination of Cu or Zn that may be taken up by crops.  相似文献   

16.
The effect of NTA (nitrilotriacetic acid) and elemental sulfur (S), two soil amendments suggested for the enhancement of metal phytoavailability in phytoextraction, on heavy metal uptake by Nicotiana tabacum (tobacco) and Zea mays (maize) were studied and compared in two Zn-, Cu-, Cd -, and Pb-contaminated soils from northern Switzerland. Experiments were performed in the greenhouse with topsoil (0 to 20 cm) material from two locations, Dornach and Rafz. The Dornach soil was calcareous and had been contaminated by dust emissions from a nearby brass metal smelter. The Rafz soil, free of carbonates, had been polluted by former sewage sludge application. Soil amendments with S increased the solubility (NaNO3 extraction) of Zn and Cd about 10-fold in Dornach soil and up to 30-fold in Rafz soil after 55 days. Zn and Cd removal by N. tabacum and Z. mays, however, increased only about 5.5- and 2.5-fold in these treatments in Rafz soil, respectively, while in the Dornach soil only a slight increase for Cd was found. Repeated NTA application increased soluble Zn, Cu, and Cd about 100-, 20-, and 19-fold in the Dornach soil and 13-, 4-, and 2-fold in the Rafz soil shortly after application. Soluble Pb was increased by NTA up to 50-fold in Rafz soil. After 90 days soluble heavy metal concentrations were only slightly elevated in both soils. Again, however, Zn, Cd, and Cu removal by N. tabacum and Z. mays increased only about 1.5- to 2.5-fold in the two soils, whereas Pb removal by N. tabacum increased about fivefold in the Rafz soil as a result of NTA application  相似文献   

17.
The objective of this research was to determine the effect of the chelate EDTA (ethylenediaminetetraacetic acid), which is used in phytoremediation, on plant availability of heavy metals in liquid sewage sludge applied to soil. Sunflower (Helianthus annuus L.) was grown under greenhouse conditions in a commercial potting soil; the tetrasodium salt of EDTA (EDTA Na4) was added at a rate of 1 g kg-1 to half the pots. Immediately after seeds were planted, half of the pots with each soil (with or without EDTA) were irrigated with 60 ml sludge, and half were irrigated with 60 ml tap water. For the subsequent five irrigations, plants in soil with EDTA received either sludge or tap water containing 0.5 g EDTA Na4 per 1000 ml, and plants in soil without EDTA received sludge or tap water without EDTA. Of the four heavy metals whose extractable concentrations in the soil were measured (Cu, Fe, Mn, and Zn), only Zn had a higher concentration in sludge-treated soil with EDTA compared to sludge-treated soil without EDTA. The concentrations of Fe, Cu, and Mn were similar in sludge-treated soil with and without EDTA. Of the three heavy metals whose total concentrations in the soil were measured (Cd, Pb, Cr), Pb (<10 mg kg-1) and Cd (< 1 mg kg-1) were below detection limits, and Cr was unaffected by treatment. The concentration of all measured elements in plants (Cd, Cu, Fe, Zn, Pb) was higher than the concentrations measured in the soil. With no EDTA, sludge-treated plants had a higher concentration of the five heavy elements than plants grown without sludge. Cadmium was lower in sludge-treated plants with EDTA than plants with EDTA and no sludge. After treatment with EDTA, the concentrations of Cu, Fe, and Zn were similar in plants with and without sludge. Lead was higher in plants with EDTA than plants without EDTA, showing that EDTA can facilitate phytoremediation of soil with Pb from sewage sludge.  相似文献   

18.
A 9-year manipulative experiment with nitrogen (N) and water addition, simulating increasing N deposition and changing precipitation regime, was conducted to investigate the bioavailability of trace elements, iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in soil, and their uptake by plants under the two environmental change factors in a semi-arid grassland of Inner Mongolia. We measured concentrations of trace elements in soil and in foliage of five common herbaceous species including 3 forbs and 2 grasses. In addition, bioaccumulation factors (BAF, the ratio of the chemical concentration in the organism and the chemical concentration in the growth substrate) and foliar Fe:Mn ratio in each plant was calculated. Our results showed that soil available Fe, Mn and Cu concentrations increased under N addition and were negatively correlated with both soil pH and cation exchange capacity. Water addition partly counteracted the positive effects of N addition on available trace element concentrations in the soil. Foliar Mn, Cu and Zn concentrations increased but Fe concentration decreased with N addition, resulting in foliar elemental imbalances among Fe and other selected trace elements. Water addition alleviated the effect of N addition. Forbs are more likely to suffer from Mn toxicity and Fe deficiency than grass species, indicating more sensitivity to changing elemental bioavailability in soil. Our results suggested that soil acidification due to N deposition may accelerate trace element cycling and lead to elemental imbalance in soil–plant systems of semi-arid grasslands and these impacts of N deposition on semi-arid grasslands were affected by water addition. These findings indicate an important role for soil trace elements in maintaining ecosystem functions associated with atmospheric N deposition and changing precipitation regimes in the future.  相似文献   

19.
两种污泥连续施用对潮土重金属含量及酶活性的影响   总被引:5,自引:0,他引:5  
采用盆栽土培试验,研究了工业污泥(化工厂底泥)及城市污水处理厂剩余污泥中重金属存在的形态与含量,以及两种污泥连续施用对潮土重金属含量及酶活性的影响。结果表明,两种污泥中的重金属主要是以非交换态存在,城市污水处理厂剩余污泥中总的重金属含量比工业污泥低,而重金属的有效性比工业污泥高;污泥的施用能增加潮土中脲酶的活性,多酚氧化酶及中性磷酸酶的活性与污泥的施用量有一定相关性,并与土壤中交换态Zn、Cu含量呈一定负相关,土壤多酚氧化酶及过氧化氢酶活性可作为土壤中重金属Zn污染的指示指标;污泥的施用有提高潮土中交换态Cu、Zn及Pb含量的趋势。  相似文献   

20.
The role of a hemiparasitic life-style in plant resistance to toxic trace elements in polluted soils is unclear. Restriction of metal uptake by the host, restriction of metal transfer from host to parasite, or transformation of metals into a less toxic form may play a role. This study analysed the transfer of selected mineral elements from soil to host ( Cistus spp . ) and from host to hemiparasite ( Odontites lutea) at locations with different metal burdens: a Cu-rich serpentine site, Pb–Ba mine spoil and an unpolluted soil. Highest soil-to-host transfer factors for K, Mg, Ca, Zn, Cu and Pb were observed on the unpolluted soil. Statistically significant differences among locations of host-to-parasite transfer factors were only found for Ca and Pb. Restriction of transfer of unfavourable Ca/Mg ratios, characteristic at the serpentine site, and of high Pb and Zn concentrations at the Pb–Ba mine occurred mainly at the soil–host, and not at the host–parasite, level. Odontites lutea was able to withstand enhanced Zn and Pb concentrations and low Fe/Cu ratios in shoot tissue without developing toxicity symptoms. This could be caused by specific metal resistance mechanisms in this hemiparasite and/or the transformation and transfer of these metals into a less toxic form by the metal-tolerant host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号