首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The genes for a protocatechuate 3,4-dioxygenase (P34O-II) with the ability to oxidize 4-sulphocatechol were cloned from the 4-aminobenzenesulphonate(sulphanilate)-degrading bacterium Hydrogenophaga intermedia strain S1 (DSMZ 5680). Sequence comparisons of the deduced amino acid sequences of both subunits of the P34O-II from H. intermedia S1 (PcaH-II and PcaG-II) with those of another P34O-II, previously obtained from Agrobacterium radiobacter S2, and the corresponding sequences from the protocatechuate 3,4-dioxygenases from other bacterial genera demonstrated that seven amino acid residues, which were conserved in all previously known P34Os (P34O-Is), were different in both P34O-IIs. According to previously published structural data for the P34O of Pseudomonas putida only two of these amino acid residues were located near the catalytical centre. The respective amino acid residues were mutated in the P34O-I from A. radiobacter S2 by site-specific mutagenesis, and it was found that a single amino acid exchange enabled the protocatechuate converting P34O also to oxidize 4-sulphocatechol.  相似文献   

2.
Pseudomonas sp. strain HR199 is able to utilize eugenol (4-allyl-2-methoxyphenol), vanillin (4-hydroxy-3-methoxybenzaldehyde), or protocatechuate as the sole carbon source for growth. Mutants of this strain which were impaired in the catabolism of vanillin but retained the ability to utilize eugenol or protocatechuate were obtained after nitrosoguanidine mutagenesis. One mutant (SK6169) was used as recipient of a Pseudomonas sp. strain HR199 genomic library in cosmid pVK100, and phenotypic complementation was achieved with a 5.8-kbp EcoRI fragment (E58). The amino acid sequences deduced from two corresponding open reading frames (ORF) identified on E58 revealed high degrees of homology to pcaG and pcaH, encoding the two subunits of protocatechuate 3,4-dioxygenase. Three additional ORF most probably encoded a 4-hydroxybenzoate 3-hydroxylase (PobA) and two putative regulatory proteins, which exhibited homology to PcaQ of Agrobacterium tumefaciens and PobR of Pseudomonas aeruginosa, respectively. Since mutant SK6169 was also complemented by a subfragment of E58 that harbored only pcaH, this mutant was most probably lacking a functional beta subunit of the protocatechuate 3, 4-dioxygenase. Since this mutant was still able to grow on protocatechuate and lacked protocatechuate 4,5-dioxygenase and protocatechuate 2,3-dioxygenase, the degradation had to be catalyzed by different enzymes. Two other mutants (SK6184 and SK6190), which were also impaired in the catabolism of vanillin, were not complemented by fragment E58. Since these mutants accumulated 3-carboxy muconolactone during cultivation on eugenol, they most probably exhibited a defect in a step of the catabolic pathway following the ortho cleavage. Moreover, in these mutants cyclization of 3-carboxymuconic acid seems to occur by a syn absolute stereochemical course, which is normally only observed for cis, cis-muconate lactonization in pseudomonads. In conclusion, vanillin is degraded through the ortho-cleavage pathway in Pseudomonas sp. strain HR199 whereas protocatechuate could also be metabolized via a different pathway in the mutants.  相似文献   

3.
The 4-carboxymethylen-4-sulfo-but-2-en-olide (4-sulfomuconolactone) hydrolases from Hydrogenophaga intermedia strain S1 and Agrobacterium radiobacter strain S2 are part of a modified protocatechuate pathway responsible for the degradation of 4-sulfocatechol. In both strains, the hydrolase-encoding genes occur downstream of those encoding the enzymes that catalyze the lactonization of 3-sulfomuconate. The deduced amino acid sequences of the 4-sulfomuconolactone hydrolases demonstrated the highest degree of sequence identity to 2-pyrone-4,6-dicarboxylate hydrolases, which take part in the meta cleavage pathway of protocatechuate. The 4-sulfomuconolactone hydrolases did not convert 2-pyrone-4,6-dicarboxylate, and the 2-pyrone-4,6-dicarboxylate hydrolase from Sphingomonas paucimobilis SYK-6 did not convert 4-sulfomuconolactone. Nevertheless, the presence of highly conserved histidine residues in the 4-sulfomuconolactone and the 2-pyrone-4,6-dicarboxylate hydrolases and some further sequence similarities suggested that both enzymes belong to the metallo-dependent hydrolases (the "amidohydrolase superfamily"). The 4-sulfomuconolactone hydrolases were heterologously expressed as His-tagged enzyme variants. Gel filtration experiments suggested that the enzymes are present as monomers in solution, with molecular weights of approximately 33,000 to 35,000. 4-Sulfomuconolactone was converted by sulfomuconolactone hydrolases to stoichiometric amounts of maleylacetate and sulfite. The 4-sulfomuconolactone hydrolases from both strains showed pH optima at pH 7 to 7.5 and rather similar catalytic constant (k(cat)/K(M))values. The suggested 4-sulfocatechol pathway from 4-sulfocatechol to maleylacetate was confirmed by in situ nuclear magnetic resonance analysis using the recombinantly expressed enzymes.  相似文献   

4.
NCIMB 10467是一株木质素降解菌,根据其16S rDNA序列将其重新分类为Burkholderia菌属.研究显示,在NCIMB 10467菌株中,不同的底物可以诱导该菌株对于原儿茶酸的多种代谢形式.根据克隆到的一段原儿茶酸邻位开环酶,即原儿茶酸3,4-双加氧酶(P34D;EC 1.13.11.3)α-亚基的保守序列,通过染色体步移的方法,得到一段9505bp的DNA片段.序列分析显示,在这段9.5 kb的DNA片段中,两个可能的开放阅读框pcaG和pcaH分别编码P34D的α-亚基和β-亚基.将pcaGH克隆并在大肠杆菌中进行表达后,可以检测到P34D的活性.而pcaH在NCIMB 10467菌株中的敲除则使该菌完全丧失了代谢原儿茶酸的能力.由此证实,克隆到的pcaGH基因确实编码原儿茶酸3,4-双加氧酶,并且对于NCIMB 10467菌株对原儿茶酸的代谢是必需的.  相似文献   

5.
4-Aminobenzenesulfonate is degraded via 4-sulfocatechol by a mixed bacterial culture that consists of Hydrogenophaga palleronii strain S1 and Agrobacterium radiobacter strain S2. From the 4-sulfocatechol-degrading organism A. radiobacter strain S2, a dioxygenase that converted 4-sulfocatechol to 3-sulfomuconate was purified to homogeneity. The purified enzyme also converted protocatechuate with a similar catalytic activity to 3-carboxy-cis,cis-muconate. Furthermore, the purified enzyme oxidized 3,4-dihydroxyphenylacetate, 3,4-dihydroxycinnamate, catechol, and 3- and 4-methylcatechol. The enzyme had a mol. wt. of about 97,400 as determined by gel filtration and consisted of two different types of subunits with mol. wt. of about 23,000 and 28,500. The NH2-terminal amino acid sequences of the two subunits were determined. An isofunctional dioxygenase was partially purified from H. palleronii strain S1. A. radiobacter strain S2 also induced, after growth with 4-sulfocatechol, an „ordinary“ protocatechuate 3,4-dioxygenase that did not oxidize 4-sulfocatechol. This enzyme was also purified to homogeneity, and its catalytic and structural characteristics were compared to the „4-sulfocatechol-dioxygenase“ from the same strain. Received: 5 February 1996 / Accepted: 18 April 1996  相似文献   

6.
罗莎  张俊杰  周宁一 《微生物学报》2008,35(5):0712-0719
NCIMB 10467是一株木质素降解菌, 根据其16S rDNA序列将其重新分类为Burkholderia菌属。研究显示, 在NCIMB 10467菌株中, 不同的底物可以诱导该菌株对于原儿茶酸的多种代谢形式。根据克隆到的一段原儿茶酸邻位开环酶, 即原儿茶酸3, 4-双加氧酶(P34D; EC 1.13.11.3) a-亚基的保守序列, 通过染色体步移的方法, 得到一段9505 bp的DNA片段。序列分析显示, 在这段9.5 kb的DNA片段中, 两个可能的开放阅读框pcaG 和 pcaH分别编码P34D的a-亚基和b-亚基。将pcaGH克隆并在大肠杆菌中进行表达后, 可以检测到P34D的活性。而pcaH在NCIMB 10467菌株中的敲除则使该菌完全丧失了代谢原儿茶酸的能力。由此证实, 克隆到的pcaGH基因确实编码原儿茶酸3, 4-双加氧酶, 并且对于NCIMB 10467菌株对原儿茶酸的代谢是必需的。  相似文献   

7.
NCIMB 10467是一株木质素降解菌, 根据其16S rDNA序列将其重新分类为Burkholderia菌属。研究显示, 在NCIMB 10467菌株中, 不同的底物可以诱导该菌株对于原儿茶酸的多种代谢形式。根据克隆到的一段原儿茶酸邻位开环酶, 即原儿茶酸3, 4-双加氧酶(P34D; EC 1.13.11.3) a-亚基的保守序列, 通过染色体步移的方法, 得到一段9505 bp的DNA片段。序列分析显示, 在这段9.5 kb的DNA片段中, 两个可能的开放阅读框pcaG 和 pcaH分别编码P34D的a-亚基和b-亚基。将pcaGH克隆并在大肠杆菌中进行表达后, 可以检测到P34D的活性。而pcaH在NCIMB 10467菌株中的敲除则使该菌完全丧失了代谢原儿茶酸的能力。由此证实, 克隆到的pcaGH基因确实编码原儿茶酸3, 4-双加氧酶, 并且对于NCIMB 10467菌株对原儿茶酸的代谢是必需的。  相似文献   

8.
9.
Comamonas testosteroni T-2 degrades p-toluenesulfonate (TSA) via p-sulfobenzoate (PSB) and protocatechuate and degrades toluenecarboxylate via terephthalate (TER) and protocatechuate. The appropriate genes are expressed in at least five regulatory units, some of which are also found in C. testosteroni PSB-4 (F. Junker, R. Kiewitz, and A. M. Cook, J. Bacteriol. 179:919-927, 1997). C. testosteroni T-2 was found to contain two plasmids, pTSA (85 kbp) and pT2T (50 kbp); a TSA- mutant (strain TER-1) contained only plasmid pT2T. C. testosteroni PSB-4, which does not degrade TSA, contained one plasmid, pPSB (85 kbp). The type strain contained no plasmids. Conjugation experiments showed that plasmid pTSA (possibly in conjunction with pT2T) was conjugative, and the single copy of the TSA operon (tsaMBCD) with its putative regulator gene (tsaR) in strain T-2 was found on plasmid pTSA, which also carried the PSB genes (psbAC) and presumably transport for both substrates. Plasmid pTSA was assigned to the IncP1 beta group and was found to carry two copies of insertion element IS1071. Plasmid pPSB (of strain PSB-4), which could be maintained in strains with plasmid pTSA or pT2T, was also conjugative and was found to carry the PSB genes as well as to contain two copies of IS1071. In attempted conjugations with the type strain, no plasmid was recovered, but the PSB+ transconjugant carried two copies of IS1071 in the chromosome. We presume the PSB genes to be located in a composite transposon. The genes encoding the putative TER operon and degradation of protocatechuate, with the meta cleavage pathway, were attributed a chromosomal location in strains T-2 and PSB-4.  相似文献   

10.
Aromatic compound degradation in six bacteria representing an ecologically important marine taxon of the alpha-proteobacteria was investigated. Initial screens suggested that isolates in the Roseobacter lineage can degrade aromatic compounds via the beta-ketoadipate pathway, a catabolic route that has been well characterized in soil microbes. Six Roseobacter isolates were screened for the presence of protocatechuate 3,4-dioxygenase, a key enzyme in the beta-ketoadipate pathway. All six isolates were capable of growth on at least three of the eight aromatic monomers presented (anthranilate, benzoate, p-hydroxybenzoate, salicylate, vanillate, ferulate, protocatechuate, and coumarate). Four of the Roseobacter group isolates had inducible protocatechuate 3, 4-dioxygenase activity in cell extracts when grown on p-hydroxybenzoate. The pcaGH genes encoding this ring cleavage enzyme were cloned and sequenced from two isolates, Sagittula stellata E-37 and isolate Y3F, and in both cases the genes could be expressed in Escherichia coli to yield dioxygenase activity. Additional genes involved in the protocatechuate branch of the beta-ketoadipate pathway (pcaC, pcaQ, and pobA) were found to cluster with pcaGH in these two isolates. Pairwise sequence analysis of the pca genes revealed greater similarity between the two Roseobacter group isolates than between genes from either Roseobacter strain and soil bacteria. A degenerate PCR primer set targeting a conserved region within PcaH successfully amplified a fragment of pcaH from two additional Roseobacter group isolates, and Southern hybridization indicated the presence of pcaH in the remaining two isolates. This evidence of protocatechuate 3, 4-dioxygenase and the beta-ketoadipate pathway was found in all six Roseobacter isolates, suggesting widespread abilities to degrade aromatic compounds in this marine lineage.  相似文献   

11.
Although the protocatechuate branch of the β-ketoadipate pathway in Gram- bacteria has been well studied, this branch is less understood in Gram+ bacteria. In this study, Corynebacterium glutamicum was cultivated with protocatechuate, p-cresol, vanillate and 4-hydroxybenzoate as sole carbon and energy sources for growth. Enzymatic assays indicated that growing cells on these aromatic compounds exhibited protocatechuate 3,4-dioxygenase activities. Data-mining of the genome of this bacterium revealed that the genetic locus ncg12314-ncg12315 encoded a putative protocatechuate 3,4-dioxygenase. The genes, ncg12314 and ncg12315, were amplified by PCR technique and were cloned into plasmid (pET21aP34D). Recombinant Escherichia coli strain harboring this plasmid actively expressed protocatechuate 3,4-dioxygenase activity. Further, when this locus was disrupted in C. glutamicum, the ability to degrade and assimilate protocatechuate, p-cresol, vanillate or 4-hydroxybenzoate was lost and protocatechuate 3,4-dioxygenase activity was disappeared. The ability to grow with these aromatic compounds and protocatechuate 3,4-dioxygenase activity of C. glutamicum mutant could be restored by gene complementation. Thus, it is clear that the key enzyme for ring-cleavage, protocatechuate 3,4-dioxygenase, was encoded by ncg12314 and ncg12315. The additional genes involved in the protocatechuate branch of the β-ketoadipate pathway were identified by mining the genome data publically available in the GenBank. The functional identification of genes and their unique organization in C. glutamicum provided new insight into the genetic diversity of aromatic compound degradation.  相似文献   

12.
13.
Parke D 《Journal of bacteriology》2000,182(21):6145-6153
A positive selection method for mutations affecting bioconversion of aromatic compounds was applied to a mutant strain of Agrobacterium tumefaciens A348. The nucleotide sequence of the A348 pcaHGB genes, which encode protocatechuate 3,4-dioxygenase (PcaHG) and beta-carboxy-cis,cis-muconate cycloisomerase (PcaB) for the first two steps in catabolism of the diphenolic protocatechuate, was determined. An omega element was introduced into the pcaB gene of A348, creating strain ADO2077. In the presence of phenolic compounds that can serve as carbon sources, growth of ADO2077 is inhibited due to accumulation of the tricarboxylate intermediate. The toxic effect, previously described for Acinetobacter sp., affords a powerful selection for suppressor mutations in genes required for upstream catabolic steps. By monitoring loss of the marker in pcaB, it was possible to determine that the formation of deletions was minimal compared to results obtained with Acinetobacter sp. Thus, the tricarboxylic acid trick in and of itself does not appear to select for large deletion mutations. The power of the selection was demonstrated by targeting the pcaHG genes of A. tumefaciens for spontaneous mutation. Sixteen strains carrying putative second-site mutations in pcaH or -G were subjected to sequence analysis. All single-site events, their mutations revealed no particular bias toward multibase deletions or unusual patterns: five (-1) frameshifts, one (+1) frameshift, one tandem duplication of 88 bp, one deletion of 92 bp, one nonsense mutation, and seven missense mutations. PcaHG is considered to be the prototypical ferric intradiol dioxygenase. The missense mutations served to corroborate the significance of active site amino acid residues deduced from crystal structures of PcaHG from Pseudomonas putida and Acinetobacter sp. as well as of residues in other parts of the enzyme.  相似文献   

14.
The genes coding for the binding-protein-dependent lactose transport system and beta-galactosidase in Agrobacterium radiobacter strain AR50 were cloned and partially sequenced. A novel lac operon was identified which contains genes coding for a lactose-binding protein (lacE), two integral membrane proteins (lacF and lacG), an ATP-binding protein (lacK) and beta-galactosidase (lacZ). The operon is transcribed in the order lacEFGZK. The operon is controlled by an upstream regulatory region containing putative -35 and -10 promoter sites, an operator site, a CRP-binding site probably mediating catabolite repression by glucose and galactose, and a regulatory gene (lacl) encoding a repressor protein which mediates induction by lactose and other galactosides in wild-type A. radiobacter (but not in strain AR50, thus allowing constitutive expression of the lac operon). The derived amino acid sequences of the gene products indicate marked similarities with other binding-protein-dependent transport systems in bacteria.  相似文献   

15.
Protocatechuate 3,4-dioxygenase is a member of a family of bacterial enzymes that cleave the aromatic rings of their substrates between two adjacent hydroxyl groups, a key reaction in microbial metabolism of varied environmental chemicals. In an appropriate genetic background, it is possible to select for Acinetobacter strains containing spontaneous mutations blocking expression of pcaH or -G, genes encoding the alpha and beta subunits of protocatechuate 3, 4-dioxygenase. The crystal structure of the Acinetobacter oxygenase has been determined, and this knowledge affords us the opportunity to understand how mutations alter function in the enzyme. An earlier investigation had shown that a large fraction of spontaneous mutations inactivating Acinetobacter protocatechuate oxygenase are either insertions or large deletions. Therefore, the prior procedure of mutant selection was modified to isolate Acinetobacter strains in which mutations within pcaH or -G cause a heat-sensitive phenotype. These mutations affected residues distributed throughout the linear amino acid sequences of PcaH and PcaG and impaired the dioxygenase to various degrees. Four of 16 mutants had insertions or deletions in the enzyme ranging in size from 1 to 10 amino acid residues, highlighting areas of the protein where large structural changes can be tolerated. To further understand how protein structure influences function, we isolated strains in which the phenotypes of three different deletion mutations in pcaH or -G were suppressed either by a spontaneous mutation or by a PCR-generated random mutation introduced into the Acinetobacter chromosome by natural transformation. The latter procedure was also used to identify a single amino acid substitution in PcaG that conferred activity towards catechol sufficient for growth with benzoate in a strain in which catechol 1,2-dioxygenase was inactivated.  相似文献   

16.
D Parke 《Journal of bacteriology》1995,177(13):3808-3817
The protocatechuate branch of the beta-ketoadipate pathway comprises the last six enzymatic steps in the catabolism of diverse phenolic compounds to citric acid cycle intermediates. In this paper, the regulation and tight supraoperonic clustering of the protocatechuate (pca) genes from Agrobacterium tumefaciens A348 are elucidated. A previous study found that the pcaD gene is controlled by an adjacent regulatory gene, pcaQ, which encodes an activator. The activator responded to beta-carboxy-cis,cis-muconate and was shown to control the synthesis of at least three genes (pcaD and pcaHG). In this work, eight genes required for the catabolism of protocatechuate were localized within a 13.5-kb SalI region of DNA. Isolation and characterization of transposon Tn5 mutant strains facilitated the localization of pca genes. Five structural genes were found to respond to the tricarboxylic acid and to be contiguous in an operon transcribed in the order pcaDCHGB. These genes encode enzymes beta-ketoadipate enol-lactone hydrolase, gamma-carboxymuconolactone decarboxylase, protocatechuate 3,4-dioxygenase (pcaHG), and beta-carboxy-cis,cis-muconate lactonizing enzyme, respectively. Approximately 4 kb from the pcaD gene are the pcaIJ genes, which encode beta-ketoadipate succinyl-coenzyme A transferase for the next-to-last step of the pathway. The pcaIJ genes are transcribed divergently from the pcaDCHGB operon and are expressed in response to beta-ketoadipate. The pattern of induction of pca genes by beta-carboxy-cis,cis-muconate and beta-ketoadipate in A. tumefaciens is similar to that observed in Rhizobium leguminosarum bv. trifolii and is distinct from induction patterns for the genes from other microbial groups.  相似文献   

17.
18.
19.
Although the protocatechuate branch of the β-ketoadipate pathway in Gram bacteria has been well studied, this branch is less understood in Gram+ bacteria. In this study,Corynebacterium glutamicum was cultivated with protocatechuate,p-cresol, vanillate and 4-hydroxybenzoate as sole carbon and energy sources for growth. Enzymatic assays indicated that growing cells on these aromatic compounds exhibited protocatechuate 3,4-dioxygenase activities. Data-mining of the genome of this bacterium revealed that the genetic locusncg12314-ncg12315 encoded a putative protocatechuate 3,4-dioxygenase. The genes,ncg12314 andncg12315, were amplified by PCR technique and were cloned into plasmid (pET21aP34D). RecombinantEscherichia coli strain harboring this plasmid actively expressed protocatechuate 3,4-dioxygenase activity. Further, when this locus was disrupted inC. glutamicum, the ability to degrade and assimilate protocatechuate,p-cresol, vanillate or 4-hydroxybenzoate was lost and protocatechuate 3,4-dioxygenase activity was disappeared. The ability to grow with these aromatic compounds and protocatechuate 3,4-dioxygenase activity ofC. glutamicum mutant could be restored by gene complementation. Thus, it is clear that the key enzyme for ring-cleavage, protocatechuate 3,4-dioxygenase, was encoded byncg12314 andncg12315. The additional genes involved in the protocatechuate branch of the β-ketoadipate pathway were identified by mining the genome data publically available in the Gen Bank. The functional identification of genes and their unique organization inC. glutamicum provided new insight into the genetic diversity of aromatic compound degradation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号