首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Cryptococcus neoformans is a major cause of fungal meningitis in individuals with impaired immunity. Our previous studies have shown that the VPS41 gene plays a critical role in the survival of Cryptococcus neoformans under nitrogen starvation; however, the molecular mechanisms underlying VPS41-mediated starvation response remain to be elucidated. In the present study, we show that, under nitrogen starvation, VPS41 strongly enhanced ICL1 expression in C. neoformans and that overexpression of ICL1 in the vps41 mutant dramatically suppressed its defects in starvation response due to the loss of VPS41 function. Moreover, targeted deletion of ICL1 resulted in a dramatic decline in viability of C. neoformans cells under nitrogen deprivation. Taken together, our data suggest a model in which VPS41 up-regulates ICL1 expression, directly or indirectly, to promote survival of C. neoformans under nitrogen starvation.  相似文献   

2.
The ZRC1 gene encodes a multicopy suppressor of zinc toxicity in Saccharomyces cerevisiae; however, previously we found that the expression of ZRC1 was induced when the intracellular zinc level was decreased. Zrc1 has six putative transmembrane domains and we determined that a Zrc1-GFP fusion protein was localized to the vacuolar membrane. The steady state level of intracellular zinc in a zrc1Delta mutant cultured in the zinc-abundant medium was lower than that in wild type. No distinct difference was observed in the basal activity of glyoxalase I, which is a cytosolic enzyme requiring zinc for catalytic function and is used here as a marker for cytosolic zinc-availability, between wild type and zrc1Delta mutant, although the activity was decreased much greater extent in the zrc1Delta mutant if the cells were exposed to the metal-limited medium. Similarly, the basal expression level of ZRC1-lacZ reporter gene in zrc1Delta mutant was the same as that in wild type; however, the fold of induction of ZRC1-lacZ expression in zrc1Delta mutant under the zinc-limited conditions was higher than that in the wild type. Based on these results, we present a tentative model for the function of Zrc1 as a mechanism to maintain the zinc homeostasis in yeast.  相似文献   

3.
4.
5.
The yeast vacuole plays an important role in zinc homeostasis by storing zinc for later use under deficient conditions, sequestering excess zinc for its detoxification, and buffering rapid changes in intracellular zinc levels. The mechanisms involved in vacuolar zinc sequestration are only poorly characterized. Here we describe the properties of zinc transport systems in yeast vacuolar membrane vesicles. The major zinc transport activities in these vesicles were ATP-dependent, requiring a H+ gradient generated by the V-ATPase for function. One system we identified was dependent on the ZRC1 gene, which encodes a member of the cation diffusion facilitator family of metal transporters. These data are consistent with the proposed role of Zrc1 as a vacuolar zinc transporter. Zrc1-independent activity was also observed that was not dependent on the closely related vacuolar Cot1 protein. Both Zrc1-dependent and independent activities showed a high specificity for Zn(2+) over other physiologically relevant substrates such as Ca2+, Fe2+, and Mn2+. Moreover, these systems had high affinities for zinc with apparent K(m) values in the 100-200 nm range. These results provide biochemical insight into the important role of Zrc1 and related proteins in eukaryotic zinc homeostasis.  相似文献   

6.
7.

Purpose of Review

The purpose of this review is to provide a current view of the importance of the determination and use of epidemiological cutoff values (ECVs) for Cryptococcus neoformans, since there are no clinical breakpoints (CBPs).

Recent Findings

ECVs have been proposed for some antifungal agents and C. neoformans, using standardized methodologies by the Clinical and Laboratory Standards Institute (CLSI) and by the European Committee for Antimicrobial Susceptibility Testing (EUCAST), based on the distribution of minimum inhibitory concentrations (MICs). There is no sufficient evidence for the determination of ECVs for C. neoformans using commercial methods; however, as these methods are routinely used in the microbiology laboratory, it is recommended for the establishment of local ECVs using these methods and following the criteria for their determination.

Summary

Due to the geographic and genetic variations inherent to C. neoformans, it is important to calculate ECVs, since they are useful in clinical practice to guide therapy in the absence of CBPs.
  相似文献   

8.
While the role of the vacuolar NHX Na+/H+ exchangers in plant salt tolerance has been demonstrated on numerous occasions, their control over cytosolic ionic relations has never been functionally analysed in the context of subcellular Na+ and K+ homeostasis. In this work, PutNHX1 and SeNHX1 were cloned from halophytes Puccinellia tenuiflora and Salicornia europaea and transiently expressed in Arabidopsis wild type Col-0 and the nhx1 mutant. Phylogentic analysis, topological prediction, analysis of evolutionary conservation, the topology structure and analysis of hydrophobic or polar regions of PutNHX1 and SeNHX1 indicated that they are unique tonoplast Na+/H+ antiporters with characteristics for salt tolerance. As a part of the functional assessment, cytosolic and vacuolar Na+ and K+ in different root tissues and ion fluxes from root mature zone of Col-0, nhx1 and their transgenic lines were measured. Transgenic lines sequestered large quantity of Na+ into root cell vacuoles and also promoted high cytosolic and vacuolar K+ accumulation. Expression of PutNHX1 and SeNHX1 led to significant transient root Na+ uptake in the four transgenic lines upon recovery from salt treatment. In contrast, the nhx1 mutant maintained a prolonged Na+ efflux and the nhx1:PutNHX1 and nhx1:SeNHX1 lines started to actively pump Na+ out of the cell. Overall, our findings suggest that PutNHX1 and SeNHX1 improve Na+ sequestration in the vacuole and K+ retention in the cytosol and vacuole of root cells of Arabidopsis, and that they interact with other regulatory mechanisms to provide a highly orchestrated regulation of ionic relations among intracellular cell compartments.  相似文献   

9.
10.
11.
12.
13.
Rab GTPases play an important role in regulating intracellular vesicular trafficking in eukaryotic cells. Previously, we found that Oryza sativa rice Rab11 (OsRab11) is required for the regulation of vesicular trafficking from the trans- Golgi network (TGN) to the plasma membrane (PM) and/or vacuoles. To further elucidate the relationship between vesicular trafficking and abiotic and biotic stresses, we determined OsRab11 expression levels under several environmental stress conditions. OsRab11 expression was induced by pathogens, jasmonic acid (JA), and high salt treatment. Under high salt conditions, dominant negative OsRab11(S28N) mutant plants exhibited a hypersensitive phenotype similar to that of sos1-1, whereas overexpressed-OsRab11 plants showed resistance to high salt stress. When the expression of vacuolar and PM Na+/H+ antiporter genes such as AtNHX1, AtNHX2, and AtSOS1 was examined, there was no significant difference between the wild-type and OsRab11(S28N) mutant plants. However, PM trafficking of AtSOS1-green fluorescent protein (GFP) in 35S::AtSOS1-GFP sos1-1 plants was severely impaired by T7-OsRab11(S28N) expression. Similarly, vacuolar trafficking of AtNHX2-GFP was inhibited by T7-OsRab11 (S28N) expression. These results indicate that trafficking of PM and vacuolar antiporter proteins by OsRab11 is important for high salt stress resistance.  相似文献   

14.
Here, we characterize the Aspergillus fumigatus homologue ncsA Neuronal Calcium Sensor. We showed that ncsA is not an essential gene and ?ncsA growth was decreased in the presence of EGTA and SDS. Furthermore, the ?ncsA mutant is more resistant to calcium chloride. NcsA:mRFP localizes to the cytoplasm and its cellular localization is not affected by the cellular response to either calcium chloride or EGTA. The ?ncsA mutant strain is more sensitive to voriconazole, itraconazole, and amphotericin. Polar growth in the ΔncsA mutant was also considerably more affected by lovastatin than in the wild type strain. The Spitzenkörper can be visualized in both strains and although the vacuolar system does not seem to be very different, there is an increase in the staining intensity on the germling surface of the ?ncsA strain. NcsA promotes pmcA and pmcB expression and therefore there is a reduced expression of these ion pumps in the ΔncsA mutant background, and also of other genes involved in the response to calcium in A. fumigatus. The ncsA inactivation mutation is not causing loss of virulence in a low dose murine infection when compared to the corresponding wild type strain.  相似文献   

15.
16.
17.
Aspergillus flavus often invade many important corps and produce harmful aflatoxins both in preharvest and during storage stages. The regulation mechanism of aflatoxin biosynthesis in this fungus has not been well explored mainly due to the lack of an efficient transformation method for constructing a genome-wide gene mutant library. This challenge was resolved in this study, where a reliable and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for A. flavus NRRL 3357 was established. The results showed that removal of multinucleate conidia, to collect a homogenous sample of uninucleate conidia for use as the transformation material, is the key step in this procedure. A. tumefaciens strain AGL-1 harboring the ble gene for zeocin resistance under the control of the gpdA promoter from A. nidulans is suitable for genetic transformation of this fungus. We successfully generated A. flavus transformants with an efficiency of ~ 60 positive transformants per 106 conidia using our protocol. A small-scale insertional mutant library (~ 1,000 mutants) was constructed using this method and the resulting several mutants lacked both production of conidia and aflatoxin biosynthesis capacity. Southern blotting analysis demonstrated that the majority of the transformants contained a single T-DNA insert on the genome. To the best of our knowledge, this is the first report of genetic transformation of A. flavus via ATMT and our protocol provides an effective tool for construction of genome-wide gene mutant libraries for functional analysis of important genes in A. flavus.  相似文献   

18.
Salt stress imposes a major environmental threat to agriculture, therefore, understanding the basic physiology and genetics of cell under salt stress is crucial for developing any breeding strategy. In the present study, the expression profile of genes involved in ion homeostasis including salt overly sensitive (HvSOS1, HvSOS2, HvSOS3), vacuolar Na+/H+ antiporter (HvNHX1), and H+-ATPase (HVA) along with ion content measurement were investigated in two genotypes of Hordeum vulgare under 300 mM NaCl. The gene expressions were measured in the roots and shoots of a salt-tolerant mutant genotype M4-73-30 and in its wild-type cv. Zarjou by real-time qPCR technique. The critical differences between the salt-tolerant mutant and its wild-type were observed in the expressions of HvSOS1 (105-fold), HvSOS2 (24-fold), HvSOS3 (31-fold), and HVA (202-fold) genes in roots after 6-h exposure to NaCl. The parallel early up-regulation of these genes in root samples of the salt-tolerant mutant genotype indicated induction of Na+/H+ antiporters activity and Na+ exclusion into apoplast and vacuole. The earlier up-regulation of HvSOS1, HVA, and HvNHX1 genes in shoot of the wild-type genotype corresponded to the relative accumulation of Na+ which was not observed in salt-tolerant mutant genotype because of efficient inhibitory role of the root in Na+ transport to the shoot. In conclusion, the lack of similarity in gene expression patterns between the two genotypes with similar genetic background may confirm the hypothesis that mutation breeding could change the ability of salt-tolerant mutant genotype for efficient ion homeostasis via salinity oversensitivity response.  相似文献   

19.
20.
Turgor is very important for the invasive growth of fungal pathogens. Glycerol, a highly osmotic solvent, is considered to play an important role in turgor generation. The nematophagous fungus Arthrobotrys oligospora mainly lives as a saprophyte. In the presence of nematodes, A. oligospora enters the parasitic stage by forming three-dimensional networks (traps) to capture nematodes. In A. oligospora, we found that glycerol accumulated during nematode-induced trap formation. We demonstrated that deleting gph1, which encodes glycogen phosphorylase, decreased the glycerol content, compared with that of a wild-type strain. Although the number of traps induced by nematodes was not affected in the Δgph1 mutant, the capture rate was lower. Meanwhile, deleting gph1 also affected the growth rate and conidiation capacity of the fungus. These results indicate that glycerol derived from GPH1 is essential for the full virulence of A. oligospora against nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号