首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycine decarboxylation and serine synthesis were investigatedto account for photorespiratory CO2 evolution in higher plants.Glycine decarboxylase in leaf mitochondria was found to splitglycine into CO2, NH3 and a C1 unit. Free glyoxylic acid wasnot involved in this process as an intermediate. Serine synthesiswas closely related to decarboxylation of glycine. We inferredthat serine is formed from two molecules of glycine by the combinedaction of glcine decarboxylase and serine hydroxymethyltransferase.Glycine decarboxylation and serine synthesis were stimulatedby NAD, PALP and THFA, and were inhibited by detergents, lipase,sonication, mechanical treatment, thyroxine and thiol compounds,suggesting the importance of structural intactness of the mitochondrialmembrane system. Glycine decarboxylase was present in intacttissues in quantities consistent with glycolate production duringphotosynthesis. We concluded that glycine decarboxylase in mitochondriais principally responsible for CO2 evolution in photorespiration.A control mechanism of photorespiration is discussed based onthe stimulation of glycine decarboxylase by NAD and on inhibitionby NADH. 1 A part of this work was presented at the Annual Meeting (April,1969) of the Japanese Society of Plant Physiologists, Kanazawa,and at the annual Meeting (April, 1970) of the Japanese AgricultualChemical Society, Fukuoka. (Received August 3, 1970; )  相似文献   

2.
3.
Mesophyll protoplasts and bundle sheath cells were prepared by enzymatic digestion of leaves of Alternanthera tenella, a C3-C4 intermediate species. The intercellular distribution of selected photosynthetic, photorespiratory and respiratory (mitochondrial) enzymes in these meso-phyll and bundle sheath cells was studied. The activity levels of photosynthetic enzymes such as PEP carboxylase (EC 4.1.1.31) or NAD-malic enzyme (EC 1.1.1.39) and photorespiratory enzymes such as glycolate oxidase (EC 1.1.3.1) or NADH-hydroxypyruvate reductase (EC 1.1.1.29) were similar in the two cell types. The activity levels of mitochondrial TCA cycle enzymes such as citrate synthase (EC 4.1.3.7) or fumarase (EC 4.2.1.2) were 2- to 3-fold higher in bundle sheath cells. On the other hand, the activity levels of mitochondrial photorespiratory enzymes, namely glycine decarboxylase (EC 2.1.2.10) and serine hydroxymethyltransferase (EC 2.1.2.1), were 6-9-fold higher in bundle sheath cells than in mesophyll protoplasts. Such preferential localization of mitochondria enriched with the glycine-decarboxylating system in the inner bundle sheath cells would result in efficient refixa-tion of CO2 from not only photorespiration but also dark respiration before its exit from the leaf. We propose that predominant localization of mitochondria specialized in glycine decarboxylation in bundle sheath cells may form the basis of reduced photorespiration in this C3-C4 intermediate species.  相似文献   

4.
The rates of mitochondrial glycine oxidation estimated by CO2-release and glycine-bicarbonate exchange activities in fully greened tissues are approximately 10 times greater than those of etiolated pea leaves and potato tuber mitochondria. The release of CO2 from glycine in intact mitochondria isolated from dark-grown and nonphotosynthetic tissues was sensitive to inhibitors of mitochondrial electron transport, glycine transport, and glycine decarboxylase activities. The CO2-release and glycine-bicarbonate exchange activities in crude mitochondrial protein extracts from light-grown versus dark-grown tissues exhibited light/dark ratios of 12 and 21, respectively. This suggests that the differences in capacity to oxidize glycine reside with the glycine decarboxylase enzyme complex itself. The complex is composed of four subunit enzymes, the P, H, T, and L proteins, which can be isolated individually and reconstituted into the active enzyme. The activities of P and T proteins were at least 10 times higher in fully greened pea leaves than in the etiolated tissue, while the H and L protein activities were four times higher in these same tissues. The levels of P and T proteins detected immunochemically were substantially lower in total mitochondrial extracts prepared from leaves of dark-grown pea seedlings. Labeling of whole pea seedlings and in vitro protein synthesis with isolated mitochondria indicated that the entire glycine decarboxylase enzyme complex is cytoplasmically synthesized and therefore encoded by the nucleus. Polypeptides synthesized from total leaf polyadenylated mRNA isolated from leaves of both the dark-grown and light-treated peas indicated the presence of P protein. This implies that translatable messages for this enzyme are present at some level throughout leaf development.  相似文献   

5.
Lenne C  Neuburger M  Douce R 《Plant physiology》1993,101(4):1157-1162
We observed a rapid decline in the rate of glycine oxidation by purified pea (Pisum sativum L.) leaf mitochondria preincubated at 40[deg]C for 2 min. In contrast, exogenous NADH and succinate oxidations were not affected by the heat treatment. We first demonstrated that the inhibition of glycine oxidation was not attributable to a direct effect of high temperatures on glycine decarboxylase/serine hydroxymethyltransferase. We observed that (a) addition of NAD+ to the incubation medium resulted in a resumption of glycine-dependent O2 uptake by intact mitochondria, (b) addition of NAD+ to the suspending medium prevented the decline in the rate of glycine-dependent O2 consumption by pea leaf mitochondria incubated at 40[deg]C, (c) NAD+ concentration in the matrix space collapses within only 5 min of warm temperature treatment, and (d) mitochondria treated with the NAD+ analog N-4-azido-2-nitrophenyl-4-aminobutyryl-3[prime]-NAD+ retained high rates of glycine-dependent O2 uptake after preincubation at 40[deg]C. Therefore, we conclude that the massive and rapid efflux of NAD+, leading to the apparent inhibition of glycine oxidation, occurs through the specific NAD+ carrier present in the inner membrane of plant mitochondria. Finally, our data provide further evidence that NAD+ is not firmly bound to the inner membrane.  相似文献   

6.
In order to purify the lipoamide dehydrogenase associated with the glycine decarboxylase complex of pea leaf mitochondria, the activity of free lipoamide dehydrogenase has been separated from those of the pyruvate and 2-oxoglutarate dehydrogenase complexes under conditions in which the glycine decarboxylase dissociates into its component subunits. This free lipoamide dehydrogenase which is normally associated with the glycine decarboxylase complex has been further purified and the N-terminal amino acid sequence determined. Positive cDNA clones isolated from both a pea leaf and embryo lambda gt11 expression library using an antibody raised against the purified lipoamide dehydrogenase proved to be the product of a single gene. The amino acid sequence deduced from the open reading frame included a sequence matching that determined directly from the N terminus of the mature protein. The deduced amino acid sequence shows good homology to the sequence of lipoamide dehydrogenase associated with the pyruvate dehydrogenase complex from Escherichia coli, yeast, and humans. The corresponding mRNA is strongly light-induced both in etiolated pea seedlings and in the leaves of mature plants following a period of darkness. The evidence suggests that the mitochondrial enzyme complexes: pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, and glycine decarboxylase all use the same lipoamide dehydrogenase subunit.  相似文献   

7.
8.
Carboxymethoxylamine (amino-oxyacetate), methoxylamine, and acethydrazide are shown to be effective, although not completely specific, inhibitors of glycine oxidation by the isolated glycine decarboxylase multienzyme complex, mitochondria, protoplasts, and leaf discs from peas. The inhibition probably results from a reaction between these compounds and the pyridoxal 5-phosphate cofactor of the enzyme.  相似文献   

9.
Localization in green leaves of glycine decarboxylase and serinehydroxymethyltransferase (EC 2.1.2.1 [EC] ) was investigated. Subcellularpreparations of green leaves were fractionated by non-linearsucrose isopicnic centrifugation of 2.5 to 1.3 M at 74,700 xor 1.8 to 0.6M at 11,800xg and by centrifugation in non-aqueousmedia. Glycine decarboxylase was located in mitochondria andserine hydroxymethyltransferase was principally located in mitochondriaand partly in chloroplasts. Chloroplastic serine hydroxymethyltransferaseis thought to be responsible for glycine formation from serinederived from photosynthesized 3-phosphoglycerate. A scheme forglycolate metabolism and photorespiration is presented. 1 A part of this work was presented at the Annual Meeding (April,1969) of the Japanese Society of Plant Physiologists, Kanazawa. 2 Department of Biochemistry, Michigan State University, EastLansing, Michigan 48823, U.S.A. (Received August 3, 1970; )  相似文献   

10.
A cytotoxic product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), rapidly inhibited glycine, malate/pyruvate, and 2-oxoglutarate-dependent O2 consumption by pea leaf mitochondria. Dose- and time-dependence of inhibition showed that glycine oxidation was the most severely affected with a K(0.5) of 30 microm. Several mitochondrial proteins containing lipoic acid moieties differentially lost their reactivity to a lipoic acid antibody following HNE treatment. The most dramatic loss of antigenicity was seen with the 17-kDa glycine decarboxylase complex (GDC) H-protein, which was correlated with the loss of glycine-dependent O2 consumption. Paraquat treatment of pea seedlings induced lipid peroxidation, which resulted in the rapid loss of glycine-dependent respiration and loss of H-protein reactivity with lipoic acid antibodies. Pea plants exposed to chilling and water deficit responded similarly. In contrast, the damage to other lipoic acid-containing mitochondrial enzymes was minor under these conditions. The implication of the acute sensitivity of glycine decarboxylase complex H-protein to lipid peroxidation products is discussed in the context of photorespiration and potential repair mechanisms in plant mitochondria.  相似文献   

11.
The simultaneous oxidation of malate and of glycine was investigated in pea (Pisum sativum) leaf mitochondria. Adding malate to state 4 glycine oxidation did not inhibit, and under some conditions stimulated, glycine oxidation. State 4 oxygen uptake with glycine is restricted because of the control exerted by the membrane potential but reoxidation of NADH by oxaloacetate reduction can still occur. Thus, malate addition stimulates glycine metabolism by producing oxaloacetate. The malate dehydrogenase (EC 1.1.1.37) enzyme fraction remote from glycine decarboxylase (EC 2.1.2.10) oxidizes malate whereas that closely associated with it produces malate, i.e. they function in opposite directions. It is shown that these opposing directions of malate dehydrogenase activity occur within the same mitochondrial matrix compartment and not in different mitochondrial populations. It is concluded that metabolic domains containing different complements of mitochondrial enzymes exist within the one mitochondrial matrix without physical barriers separating them. The differential spatial organization within the matrix may account for the previously reported limited access of some enzymes to the respiratory electron transport chain. The implications for leaf mitochondrial metabolism are discussed.  相似文献   

12.
Crystallographic data for H-protein from the glycine decarboxylase complex.   总被引:2,自引:0,他引:2  
The H-protein is the pivotal enzyme of the glycine decarboxylase complex responsible for the oxidation of glycine by mitochondria. It has been extracted and purified from pea leaf mitochondria (Pisum sativum). Its molecular weight, based on the amino acid sequence, is 13.3 kDa and it crystallizes in the space group P3(1)21 (or its enantiomorph P3(2)21) with a = b = 57.14 (3) A, c = 137.11 (11) A. The crystals diffract until at least 3.5 A resolution.  相似文献   

13.
The mitochondrial glycine decarboxylase multienzyme system, connected to serine hydroxymethyltransferase through a soluble pool of tetrahydrofolate, consists of four different component enzymes, the P-, H-, T- and L-proteins. In a multi-step reaction, it catalyses the rapid destruction of glycine molecules flooding out of the peroxisomes during the course of photorespiration. In green leaves, this multienzyme system is present at tremendously high concentrations within the mitochondrial matrix. The structure, mechanism and biogenesis of glycine decarboxylase are discussed. In the catalytic cycle of glycine decarboxylase, emphasis is given to the lipoate-dependent H-protein that plays a pivotal role, acting as a mobile substrate that commutes successively between the other three proteins. Plant mitochondria possess all the necessary enzymatic equipment for de novo synthesis of tetrahydrofolate and lipoic acid, serving as cofactors for glycine decarboxylase and serine hydroxymethyltransferase functioning.  相似文献   

14.
The effect of external pH on several reactions catalyzed by glycine decarboxylase in spinach leaf mitochondria was investigated. Glycine-dependent oxygen consumption showed a pH optimum at 7.6, whereas the release of CO2 and NH3 from glycine in the presence of oxaloacetate both showed pH maxima at 8.1. Glycine-dependent reduction of 2,6-dichlorophenolindophenol. on the other hand showed a pH optimum at 8.4. It is concluded that these three reactions have different rate-limiting steps. The rate of the glycine-bicarbonate exchange reaction catalyzed by glycine decarboxylase showed no optimum in the pH range investigated, pH 7–9, but increased with decreasing pH. This suggests that CO2 may be the true substrate in this reaction.
The oxidation of glycine inhibited the oxidation of both malate, succinate and external NADH since the addition of malate, succinate or NADH to mitochondria oxidizing glycine in state 3 resulted in a rate of oxygen consumption which was lower than the sum of the rates when the substrates were oxidized individually. The addition of malate, succinate or NADH did not, however, decrease the rate of CO2 or NH, release from glycine. It is suggested that the preferred oxidation of glycine by-spinach leaf mitochondria may constitute an important regulatory mechanism for the function of leaf mitochondria during photosynthesis.  相似文献   

15.
Feeding 5-aminoimidazole-4-carboxiamide ribonucleoside (AICAR) through the petiole of detached young barley leaves rapidly increased activities of NADH-nitrate reductase (NR) and glutamine synthetase (GS) in leaf extracts and at least partly prevented the usual slow decrease of these enzyme activities during prolonged illumination. Further, AICAR caused drastic changes in amino acid levels: glutamine and serine levels were increased whereas glutamate and glycine were decreased, probably indicating a higher GS activity and more rapid conversion of glycine into serine. The latter may be responsible for the higher ammonium contents found in AICAR treated leaves. We tentatively suggest that GS (located in the chloroplast) and glycine decarboxylase (located in the mitochondria) are regulated in a manner similar to NR. This is discussed in the light of recent reports that 14-3-3 isoforms exist in chloroplasts and that GS binds to 14-3-3s in vitro.  相似文献   

16.
N. J. Walton  H. W. Woolhouse 《Planta》1986,167(1):119-128
A comparative study is presented of the activities of enzymes of glycine and serine metabolism in leaves, germinated cotyledons and root apices of pea (Pisum sativum L.). Data are given for aminotransferase activities with glyoxylate, hydroxypyruvate and pyruvate, for enzymes associated with serine synthesis from 3-phosphoglycerate and for glycine decarboxylase and serine hydroxymethyltransferase. Aminotransferase activities differ between the tissues in that, firstly, appreciable transamination of serine, hydroxypyruvate and asparagine occurs only in leaf extracts and, secondly, glyoxylate is transaminated more actively than pyruvate in leaf extracts, whereas the converse is true of extracts of cotyledons and root apices. Alanine is the most active amino-group donor to both glyoxylate and hydroxypyruvate. 3-Phosphoglycerate dehydrogenase and glutamate: O-phosphohydroxypyruvate aminotransferase have comparable activities in all three tissues, except germinated cotyledons, in which the aminotransferase appears to be undetectable. Glycollate oxidase is virtually undetectable in the non-photosynthetic tissues and in these tissues the activity of glycerate dehydrogenase is much lower than that of 3-phosphoglycerate dehydrogenase. Glycine decarboxylase activity in leaves, measured in the presence of oxaloacetate, is equal to about 30–40% of the measured rate of CO2 fixation and is therefore adequate to account for the expected rate of photorespiration. The activity of glycine decarboxylase in the non-photosynthetic tissues is calculated to be about 2–5% of the activity in leaves and has the characteristics of a pyridoxal-and tetrahydrofolate-dependent mitochondrial reaction; it is stimulated by oxaloacetate, although not by ADP. In leaves, the measured activity of serine hydroxymethyltransferase is somewhat lower than that of glycine decarboxylase, whereas in root apices it is substantially higher. Differential centrifugation of extracts of root apices suggests that an appreciable proportion of serine hydroxymethyltransferase activity is associated with the plastids.Abbreviation GOGAT l-Glutamine:2-oxoglutarate aminotransferase  相似文献   

17.
In order to study the location of enzymes of photorespiration in leaves of the C3–C4 intermediate species Moricandia arvensis (L.). DC, protoplast fractions enriched in mesophyll or bundlesheath cells have been prepared by a combination of mechanical and enzymic techniques. The activities of the mitochondrial enzymes fumarase (EC 4.2.1.2) and glycine decarboxylase (EC 2.1.2.10) were enriched by 3.0- and 7.5-fold, respectively, in the bundle-sheath relative to the mesophyll fraction. Enrichment of fumarase is consistent with the larger number of mitochondria in bundle-sheath cells relative to mesophyll cells. The greater enrichment of glycine decarboxylase indicates that the activity is considerably higher on a mitochondrial basis in bundle-sheath than in mesophyll cells. Serine hydroxymethyltransferase (EC 2.1.2.1) activity was enriched by 5.3-fold and glutamate-dependent glyoxylate-aminotransferase (EC 2.6.1.4) activity by 2.6-fold in the bundle-sheath relative to the mesophyll fraction. Activities of serine- and alanine-dependent glyoxylate aminotransferase (EC 2.6.1.45 and EC 2.6.1.4), glycollate oxidase (EC 1.1.3.1), hydroxypyruvate reductase (EC 1.1.1.81), glutamine synthetase (EC 6.3.1.2) and phosphoribulokinase (EC 2.7.1.19) were not significantly different in the two fractions. These data provide further independent evidence to complement earlier immunocytochemical studies of the distribution of photorespiratory enzymes in the leaves of this species, and indicate that while mesophyll cells of M. arvensis have the capacity to synthesize glycine during photorespiration, they have only a low capacity to metabolize it. We suggest that glycine produced by photorespiratory metabolism in the mesophyll is decarboxylated predominantly by the mitochondria in the bundle sheath.Abbreviation RuBP ribulose 1,5-bisphosphate  相似文献   

18.
The relationship between glycine oxidation and nitrate reduction was studied using tobacco (Nicotiana tabacum L.) leaf disks and reconstituted system of isolated mitochondria and NR (Nitrate reductase). It was found that glycine, either vacuum-infiltrated in to leaf disks or added to the reconstituted system, could increase the rate of nitrate reduction. The stimulating effect of glycine on nitrate reduction was greatly influenced by preillumination treatment of tobacco leaves, and also by the activity of respiratory chain. The rate of glycinedependent O2 consumption by mitochondria was lowered when KNO3 and NR were added to the system. It was also found that the activity of glycine decarboxylase increased with increase in nitrate concentrations in the sandculture medium. It was concluded that oxidative decarboxylation of glycine in mitochondria of leaf cells of C3 plants could provide NADH for nitrate reduction in cytoplasm in the light, and nitrate reduction and glycine oxidation were influenced by each other.  相似文献   

19.
Intramitochondrial localisation of glycine decarboxylase in spinach leaves   总被引:1,自引:0,他引:1  
Intact spinach leaf mitochondria are capable of oxidising glycine with good respiratory control and the oxidation is coupled to 3 phosphorylation sites. The intramitochondrial localisation of glycine decarboxyllation has been studied and it is demonstrated that the enzyme system is associated with the inner membrane of spinach leaf mitochondria. Both glycine decarboxylation and glycine dependent O2 uptake are stimulated by ADP and FCCP and are sensitive to electron transport inhibitors. Both processes showed no requirements for co-factors. We suggest that glycine decarboxylase is coupled to the electron transport chain via an NAD+-linked system and that during rapid photorespiration glycine oxidation synthesises considerable amounts of ATP outside of the chloroplast.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号