首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
To investigate the dynamics of the potato-Potato virus Y (PVY) compatible interaction in relation to salicylic acid-controlled pathways we performed experiments using non-transgenic potato cv. Désirée, transgenic NahG-Désirée, cv. Igor and PVY(NTN), the most aggressive strain of PVY. The importance of salicylic acid in viral multiplication and symptom development was confirmed by pronounced symptom development in NahG-Désirée, depleted in salicylic acid, and reversion of the effect after spraying with 2,6-dichloroisonicotinic acid (a salicylic acid-analogue). We have employed quantitative PCR for monitoring virus multiplication, as well as plant responses through expression of selected marker genes of photosynthetic activity, carbohydrate metabolism and the defence response. Viral multiplication was the slowest in inoculated potato of cv. Désirée, the only asymptomatic genotype in the study. The intensity of defence-related gene expression was much stronger in both sensitive genotypes (NahG-Désirée and cv. Igor) at the site of inoculation than in asymptomatic plants (cv. Désirée). Photosynthesis and carbohydrate metabolism gene expression differed between the symptomatic and asymptomatic phenotypes. The differential gene expression pattern of the two sensitive genotypes indicates that the outcome of the interaction does not rely simply on one regulatory component, but similar phenotypical features can result from distinct responses at the molecular level.  相似文献   

4.
5.
The involvement of plant hormones in the very early response of plants to virus infection was studied in potato plants (Solanum tuberosum L.) infected with potato virus YNTN (PVYNTN). Endogenous plant hormones and compounds mediating a stress response (JA-jasmonic acid, OPDA-12-oxo phytodienoic acid, SA-salicylic acid, IAA-indole-3-acetic acid, ABA-abscisic acid) were simultaneously quantified in susceptible cv. Désirée and resistant cv. Santé, one and three hours after inoculation. Of the hormones analysed, only the contents of endogenous JA and its precursor OPDA changed in a way that could be clearly connected with the early resistant response. In comparison to susceptible cultivar, a much more pronounced increase of JA was detected in virus-inoculated leaves of resistant cultivar at both time points. The same trend of changes was also observed with OPDA. However, there were no significant changes of JA and its precursor in upper intact systemic leaves and roots, at either time point. These findings implicate the jasmonate signalling pathway in a very early local but not systemic resistant defence of potato to PVYNTN.  相似文献   

6.
Effect of short-term (2 h a day) and long-term (6 days) exposure to low temperature (5°C) on cold tolerance was investigated in two cultivars of potato (Solanum tuberosum L.): resistant (Sudarynya) and susceptible (Nevskii) to potato cyst nematode (Globodera rostochiensis Woll.). The extent of their infestation and changes in the expression of the genes of resistance to nematode (H1 and Gro1-4) were also analyzed. In both cultivars, exposure to low temperature enhanced cold resistance of potato plants. Enhancing cold resistance of cv. Sudarynya induced by a short-term exposure to chilling did not affect the extent of nematode infestation, whereas in susceptible cv. Nevskii, the extent of infestation decreased by almost three times. The level of expression of H1 gene in the leaves of the susceptible cultivar rose almost twofold both after short-term and long exposure to chilling, while in the resistant cultivar, gene expression increased only after a short-term effect of cold. The level of Gro1-4 gene expression increased after both temperature treatments only in the resistant cv. Sudarynya. Thus, the expression of genes for potato resistance to nematode infestation became more active in the susceptible cultivar as regards the gene H1 and in the resistant cultivar, regarding the gene Gro1-4. In the nematode-susceptible cv. Nevskii, the level of infestation decreased and cold resistance increased, apparently indicating cross adaptation to two factors of different nature.  相似文献   

7.
Manganese toxicity, which involves a broad array of physiological responses, has been identified as an important factor limiting plant growth on acid soils. In the experiments reported here, we examined the toxic effects of Mn on chlorophyll content, photosynthesis and respiration in two cultivars (Norquay and Columbus) of Triticum aestivum (wheat) which differ in tolerance of Mn. When grown over a range of concentrations of Mn (0–1 000 μ M ), the Mn-tolerant cultivar maintained higher rates of photosynthesis and respiration, and higher concentrations of chlorophyll a and chlorophyll b , than did the Mn-sensitive cultivar, despite greater accumulations of Mn in leaf tissues. After 5 days growth with 1 000 μ M Mn in solution, the photosynthetic rate fell to 25% of control in the sensitive cultivar and to only 75% of control in the tolerant cultivar. The concentration of chlorophyll a fell to 50% of control in the sensitive cultivar, but did not differ from control in the tolerant cultivar. Greater effects were seen on concentrations of chlorophyll b . which fell to 35% and 55% of control in the sensitive and tolerant cultivars, respectively. Rates of photosynthesis decreased in both cultivars as concentrations of chlorophyll decreased; however, the photosynthetic rate per unit chlorophyll remained constant or increased in the tolerant cultivar and decreased in the sensitive cultivar as concentrations of Mn in solution increased. Thus, in the sensitive cv. Columbus, Mn seemed to have a toxic effect on both chlorophyll content and photosynthesis per unit chlorophyll. In the tolerant cv. Norquay, the only clear effect of Mn was a reduction in chlorophyll content, although direct inhibition of photosynthesis could not be discounted.  相似文献   

8.
The class-specific expression of patatin genes was investigated by analysing four new patatin genes. A class I patatin gene from cv. Berolina as well as a class I and two class II patatin genes from the monohaploid cultivar AM 80/5793 were isolated and partially sequenced. Sequence comparison indicates rearrangements as the major source for the generation of diversity between the different members of the classes. The expression of single genes was studied in potato plants transformed with chimaeric genes where the putative patatin promoters were fused to the GUS reporter gene. A detailed histochemical analysis reveals that both class I genes are expressed as the previously described class I patatin gene B33 from cv. Berolina [1], i.e. in the starch-containing cells of potato tubers and in sucrose-induced leaves. The class II gene pgT12 shows the same pattern as the previously described class II gene pgT2 [2], i.e. expression in root tips and in the vascular tissue of tubers, whereas no activity was detectable for pgT4. Thus the expression pattern of both classes of genes seems to be stable at least within or even between different cultivars.  相似文献   

9.
10.
Firmness is an important selection criterium in the breeding of fruit, including strawberry ( Fragaria  ×  ananassa Duch.). Clear differences in fruit-firmness are observed between cultivars. In order to identify candidate genes which might be associated with such textural differences, gene expression levels were compared for a soft and a firm cultivar (cv. Gorella and cv. Holiday, respectively). DNA-microarrays representing 1701 strawberry cDNAs were used for simultaneous hybridization of two RNA populations derived from red ripe fruit of both cultivars. In total 61 clones (3.6% of the total cDNAs on the arrays) displayed differential expression, including 10 clones (8 different ones) which showed homology to cell wall related genes in the public databases. The results from the microarray experiments were further confirmed by RNA gel blots, which were also used to examine gene expression in a third cultivar, Elsanta, showing an intermediate texture phenotype (offspring of a cross between Gorella and Holiday). Interestingly, two genes encoding proteins catalysing successive reactions in lignin metabolism (cinnamoyl CoA reductase and cinnamyl alcohol dehydrogenase) showed the highest difference in expression level.  相似文献   

11.
12.
13.
14.
The metabolic and cellular changes in source leaves of Nicotiana tabacum L. cv SNN during an incompatible interaction with Phytophthora nicotianae van Breda de Haan were investigated and compared with defence reactions. Hypersensitive cell death was preceded by a rapid and highly localized shift to non-assimilatoric metabolism. During the first 6 h post infection (hpi), reactive oxygen species (ROS) accumulated. Callose was deposited at the interface of adjacent mesophyll cells (≥1 hpi), the export of sucrose collapsed and its content in the apoplast increased. Stomata closed and photosynthetic flux was reallocated from CO2 assimilation in favour of photorespiration. This was accompanied by an increase in respiration, glucose-6-phosphate dehydrogenase (G6PDH) activity, apoplastic invertase and hexose content. Later (>6 hpi) the photosynthetic electron transport chain was interrupted and photosynthesis completely collapsed. This was accompanied by a further increase in apoplastic invertase and carbohydrates, respiration and oxidative pentose phosphate pathway (OPPP) and followed by further burst in ROS release. Hypersensitive cell death did not appear until photosynthesis completely declined. Photosynthesis was visualized by chlorophyll-a fluorescence imaging on a macro- and microscopic scale. Decline in photosynthesis and defence reactions were highly localized processes, which occur in single mesophyll cells. We propose that in photoautotrophic leaves, photosynthesis and assimilatory metabolism must be switched off to initiate respiration and other processes required for defence. An early blockage of intercellular sugar transportation, due to callose deposition, in conjunction with enhanced apoplastic invertase activity could facilitate this metabolic shift.  相似文献   

15.
16.
17.
18.
The ability of the late blight pathogen Phytophthora infestans to form oospores in leaves of seven potato cultivars was examined at different incubation temperatures under controlled environmental conditions and under field conditions. At 10°C, the oospore formation in three intermediate-resistant cultivars all differed significantly from each other (P < 0.05), with the lowest amount formed in cv. Asterix. This latter cultivar did not form oospores at any other temperature. Under field conditions oospores were formed abundantly in a naturally infected field. A significant date by cultivar interaction showed that P. infestans increased the oospore formation in foliage by time in cvs Columbo, Hertha and Matilda, whereas no significant differences between dates were found for other cultivars. The genetic structure of P. infestans in the naturally infected field plot, where oospores formed abundantly, was studied by using amplified fragment length polymorphism and a high genetic diversity was revealed. Oospore germination from two Scandinavian (A1 and A2) P. infestans isolates was stimulated in visible light and in 1 : 2 and 1 : 10 soil extract. The effect of light and nutrients on oosporogenesis is discussed.  相似文献   

19.
Sclerotinia rot caused by Sclerotinia sclerotiorum is one of the most serious diseases of oilseed rape. To understand the resistance mechanisms in the Brassica napus to S. sclerotiorum, comparative disease progression, histological and proteomic studies were conducted of two B. napus genotypes (resistant cv. Charlton, susceptible cv. RQ001-02M2). At 72 and 96 h post inoculation (hpi), lesion size on cotyledons was significantly (P≤0.001) smaller in the resistant Charlton. Anatomical investigations revealed impeded fungal growth (at 24 hpi and onwards) and hyphal disintegration only on resistant Charlton. Temporal changes (12, 24, 48 and 72 hpi) in protein profile showed certain enzymes up-regulated only in resistant Charlton, such as those related to primary metabolic pathways, antioxidant defence, ethylene biosynthesis, pathogenesis related proteins, protein synthesis and protein folding, play a role in mediating defence responses against S. sclerotiorum. Similarly a eukaryotic translation initiation factor 5A enzyme with increased abundance in susceptible RQ001-02M2 and decreased levels in resistant Charlton has a role in increased susceptibility to this pathogen. This is the first time that the expression of these enzymes has been shown to be associated with mediating the defence response against S. sclerotinia in cotyledon tissue of a resistant cultivar of B. napus at a proteomics level. This study not only provides important new insights into the resistance mechanisms within B. napus against S. sclerotiorum, but opens the way for novel engineering of new B. napus varieties that over-express these key enzymes as a strategy to enhance resistance and better manage this devastating pathogen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号