首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pleiotropic effects (mitogenesis, motogenesis, and morphogenesis) elicited by hepatocyte growth factor/scatter factor (HGF/SF) are mediated by the activation of the tyrosine kinase receptor encoded by the MET proto-oncogene. Following autophosphorylation, the receptor associates with the p85/110 phosphatidylinositol (PI) 3-kinase complex in vivo and in vitro. By a combination of two complementary approaches, competition with synthetic phosphopeptides and association with Tyr-Phe receptor mutants, we have identified Y-1349 and Y-1356 in the HGF/SF receptor as the binding sites for PI 3-kinase. Y-1349VHV and Y-1356VNV do not conform to the canonical consensus sequence YXXM for PI 3-kinase binding and thus define YVXV as a novel recognition motif. Y-1349 and Y-1356 are located within the C-terminal portion of the HGF/SF receptor and are phosphorylation sites. The affinity of the N- and C-terminal src homology region 2 (SH2) domains of p85 for the phosphopeptides including Y-1349 and Y-1356 is 2 orders of magnitude lower than that measured for Y-751 in the platelet-derived growth factor receptor binding site. However, the closely spaced duplication of the novel recognition motif in the native HGF/SF receptor may allow binding with both SH2 domains of p85, thus generating an efficient docking site for PI 3-kinase. In agreement with this model, we have observed that a phosphopeptide including both Y-1349 and Y-1356 activates PI 3-kinase in vitro.  相似文献   

2.
After adding insulin to cells overexpressing the insulin receptor, the activity of phosphatidylinositol (PI) 3-kinase in the anti-phosphotyrosine immunoprecipitates was rapidly and greatly increased. This enzyme may therefore be a substrate for the insulin receptor tyrosine kinase and may be one of the mediators of insulin signal transduction. However, it is unclear whether or not activated tyrosine kinase of the insulin receptor directly phosphorylates PI 3-kinase at tyrosine residue(s) and whether insulin stimulates the specific activity of PI 3-kinase. We reported previously that the 85-kDa subunit of purified PI 3-kinase was phosphorylated at tyrosine residue(s) by the insulin receptor in vitro. To examine the tyrosine phosphorylation of PI 3-kinase and change of its activity by insulin treatment in vivo, we used a specific antibody to the 85-kDa subunit of PI 3-kinase. The activity of PI 3-kinase in immunoprecipitates with the antibody against the p85 subunit of PI 3-kinase was increased about 3-fold by insulin treatment of cells overexpressing insulin receptors. Insulin treatment also stimulated the tyrosine, serine, and threonine phosphorylation of the alpha-type 85-kDa subunit of PI 3-kinase in vivo. Phosphatase treatment of the immunoprecipitates abolished the increase in PI 3-kinase activity. The phosphorylation(s) of the kinase itself, tyrosine phosphorylation(s) of associated protein(s), or the complex formation of the phosphorylated PI 3-kinase with associated proteins may increase the activity of PI 3-kinase.  相似文献   

3.
4.
The GRB2-associated binder 1 (GAB1) docking/scaffold protein is a key mediator of the MET-tyrosine kinase receptor activated by hepatocyte growth factor/scatter factor (HGF/SF). Activated MET promotes recruitment and tyrosine phosphorylation of GAB1, which in turn recruits multiple proteins and mediates MET signaling leading to cell survival, motility, and morphogenesis. We previously reported that, without its ligand, MET is a functional caspase target during apoptosis, allowing the generation of a p40-MET fragment that amplifies apoptosis. In this study we established that GAB1 is also a functional caspase target by evidencing a caspase-cleaved p35-GAB1 fragment that contains the MET binding domain. GAB1 is cleaved by caspases before MET, and the resulting p35-GAB1 fragment is phosphorylated by MET upon HGF/SF binding and can interact with a subset of GAB1 partners, PI3K, and GRB2 but not with SHP2. This p35-GAB1 fragment favors cell survival by maintaining HGF/SF-induced MET activation of AKT and by hindering p40-MET pro-apoptotic function. These data demonstrate an anti-apoptotic role of caspase-cleaved GAB1 in HGF/SF-MET signaling.  相似文献   

5.
Adipose tissue is a source of hepatocyte growth factor (HGF), and circulating HGF levels have been associated with elevated body mass index in human. However, the effects of HGF on adipocyte functions have not yet been investigated. We show here that in 3T3-L1 adipocytes HGF stimulates the phosphatidylinositol (PI) 3-kinase-dependent protein kinase B (PKB) activity, AS160 phosphorylation, Glut4 translocation, and consequently, glucose uptake. The initial steps involved in HGF- and insulin-induced glucose uptake are different. HGF enhanced the tyrosine phosphorylation of Gab1, leading to the recruitment of the p85-regulated subunit of PI 3-kinase, whereas p85 was exclusively recruited by IRS1 in response to insulin. In adipocytes rendered insulin-resistant by a long-lasting tumor necrosis factor alpha treatment, the protein level of Gab1 was strongly decreased, and HGF-stimulated PKB activation and glucose uptake were also altered. Moreover, treatment of 3T3-L1 adipocytes with thiazolidinedione, an anti-diabetic drug, enhanced the expression of both HGF and its receptor. These data provide the first evidence that in vitro HGF promotes glucose uptake through a Gab1/PI 3-kinase/PKB/AS160 pathway which was altered in tumor necrosis factor alpha-treated adipocytes.  相似文献   

6.
7.
Phosphoinositide 3-kinase (PI 3-kinase) is a key signaling enzyme implicated in a variety of receptor-stimulated cell responses. Stimulation of receptors possessing (or coupling to) protein-tyrosine kinase activates heterodimeric PI 3-kinases, which consist of an 85-kDa regulatory subunit (p85) containing Src-homology 2 (SH2) domains and a 110-kDa catalytic subunit (p110 alpha or p110 beta). Thus, this form of PI 3-kinases could be activated in vitro by a phosphotyrosyl peptide containing a YMXM motif that binds to the SH2 domains of p85. Receptors coupling to alpha beta gamma-trimeric G proteins also stimulate the lipid kinase activity of a novel p110 gamma isoform, which is not associated with p85, and thereby is not activated by tyrosine kinase receptors. The activation of p110 gamma PI 3-kinase appears to be mediated through the beta gamma subunits of the G protein (G beta gamma). In addition, rat liver heterodimeric PI 3-kinases containing the p110 beta catalytic subunit are synergistically activated by the phosphotyrosyl peptide plus G beta gamma. Such enzymatic properties were also observed with a recombinant p110 beta/p85 alpha expressed in COS-7 cells. In contrast, another heterodimeric PI 3-kinase consisting of p110 alpha and p85 in the same rat liver, together with a recombinant p110 alpha/p85 alpha, was not activated by G beta gamma, though their activities were stimulated by the phosphotyrosyl peptide. Synergistic activation of PI 3-kinase by the stimulation of the two major receptor types was indeed observed in intact cells, such as chemotactic peptide (N-formyl-Met-Leu-Phe) plus insulin (or Fc gamma II) receptors in differentiated THP-1 and CHO cells and adenosine (A1) plus insulin receptors in rat adipocytes. Thus, PI 3-kinase isoforms consisting of p110 beta catalytic and SH2-containing (p85 or its related) regulatory subunits appeared to function as a 'cross-talk' enzyme between the two signal transduction pathways mediated through tyrosine kinase and G protein-coupled receptors.  相似文献   

8.
Hepatocyte growth factor (scatter factor) (HGF/SF) is a pleiotrophic mediator of epithelial cell motility, morphogenesis, angiogenesis, and tumorigenesis. HGF/SF protects cells against DNA damage by a pathway from its receptor c-Met to phosphatidylinositol 3-kinase (PI3K) to c-Akt, resulting in enhanced DNA repair and decreased apoptosis. We now show that protection against the DNA-damaging agent adriamycin (ADR; topoisomerase IIalpha inhibitor) requires the Grb2-binding site of c-Met, and overexpression of the Grb2-associated binder Gab1 (a multisubstrate adapter required for epithelial morphogenesis) inhibits the ability of HGF/SF to protect MDCK epithelial cells against ADR. In contrast to Gab1 and its homolog Gab2, overexpression of c-Cb1, another multisubstrate adapter that associates with c-Met, did not affect protection. Gab1 blocked the ability of HGF/SF to cause the sustained activation of c-Akt and c-Akt signaling (FKHR phosphorylation). The Gab1 inhibition of sustained c-Akt activation and of cell protection did not require the Gab1 pleckstrin homology or SHP2 phosphatase-binding domain but did require the PI3K-binding domain. HGF/SF protection of parental MDCK cells was blocked by wortmannin, expression of PTEN, and dominant negative mutants of p85 (regulatory subunit of PI3K), Akt, and Pak1; the protection of cells overexpressing Gab1 was restored by wild-type or activated mutants of p85, Akt, and Pak1. These findings suggest that the adapter Gab1 may redirect c-Met signaling through PI3K away from a c-Akt/Pak1 cell survival pathway.  相似文献   

9.
Hepatocyte growth factor/scatter factor (HGF/SF) is considered to be a mesenchymal-derived factor that acts via a dual system receptor, consisting of the MET receptor and proteoglycans present on adjacent epithelial cells. Surprisingly, HGS/SF stimulated the migration of rat mammary (Rama) 27 fibroblasts, although it failed to stimulate their proliferation. HGF/SF stimulated a transient activation of mitogen-activated protein kinases p44 and p42 (p42/44(MAPK)), with a maximum level of dual phosphorylation of p42/44(MAPK) occurring 10-15 min after the addition of the growth factor, which was followed by a rapid decrease to near basal levels after 20 min. Interestingly, a second phase of p42/44(MAPK) dual phosphorylation was observed at later times (3 h to 10 h). PD098059, a specific inhibitor of MEK-1, prevented the dual phosphorylation of p42/44(MAPK) and also the phosphorylation of p90(RSK) (ribosomal subunit S6 kinase), which mirrored the kinetics of p42/44(MAPK) phosphorylation. Moreover, PD098059 prevented the HGF/SF-induced migration of Rama 27 cells. HGF/SF also induced an early increase in the phosphorylation of protein kinase B/Akt. Akt phosphorylation was elevated 15 min after the addition of HGF/SF and then declined to basal levels by 30 min. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PtdIns3K), prevented the increase in Akt phosphorylation and abolished HGF/SF-induced migration of fibroblasts. PD098059 also inhibited the stimulation of Akt phosphorylation by HGF/SF and wortmannin similarly inhibited the stimulation of p42/44(MAPK) dual phosphorylation. These results suggest that HGF/SF-induced motility depends on both the transient dual phosphorylation of p42/44(MAPK) and the activation of PtdIns3K in Rama 27 fibroblasts and that these pathways are mutually dependent.  相似文献   

10.
Met receptor tyrosine kinase mediates pleiotropic cellular responses following its activation by hepatocyte growth factor or scatter factor (HGF/SF). STAT3 was reported to be one of direct downstream molecules in HGF/SF-Met signaling. In the present study, however, we observed that Tyr705 of STAT3 was phosphorylated from 2 h or 6 h in NIH3T3 and Chang liver cells, respectively, after HGF/SF treatment. Blocking of the phosphorylation by cycloheximide or actinomycin D and the rapid STAT3 phosphorylation with the conditioned medium from HGF/SF-treated NIH3T3 cells suggested that a newly synthesized secretory protein was responsible for the delayed STAT3 phosphorylation. Among the known mediators to induce STAT3 phosphorylation, interleukin-6 (IL-6) mRNA and protein were induced by HGF/SF, and the released IL-6 was accumulated in the conditioned medium after HGF/SF treatment. Furthermore, the neutralizing IL-6 antibody abolished the STAT3 phosphorylation. Treatment with LY294002, a PI3 kinase inhibitor, but not with other signal inhibitors, resulted in the loss of delayed STAT3 phosphorylation by HGF/SF, showing the involvement of PI3 kinase pathway. Collectively, these results demonstrate that HGF/SF-Met signal cascade stimulates IL-6 production via PI3 kinase pathway, leading to STAT3 phosphorylation as a secondary effect.  相似文献   

11.
The MET proto-oncogene encodes a transmembrane tyrosine kinase receptor for HGF (p190MET). In this work, p190MET was immunoprecipitated, allowed to phosphorylate in the presence of [gamma-32P]ATP, and digested with trypsin. A major phosphopeptide was purified by reverse phase chromatography. The phosphorylated tyrosine was identified as residue 1235 (Tyr1235) by Edman covalent radiosequencing. A synthetic peptide derived from the corresponding MET sequence was phosphorylated by p190MET in an in vitro assay and coeluted in reverse phase chromatography. Tyr1235 lies within the tyrosine kinase domain of p190MET, within a canonical tyrosine autophosphorylation site that shares homology with the corresponding region of the insulin, CSF-1 and platelet-derived growth factor receptors, and of p60src and p130gag-fps. The p190MET kinase is constitutively phosphorylated on tryosine in a gastric carcinoma cell line (GTL16), due to the amplification and overexpression of the MET gene. Metabolic labeling of GTL-16 cells with [32P]orthophosphate followed by immunoprecipitation and tryptic phosphopeptide mapping of p190MET showed that Tyr1235 is a major site of tyrosine phosphorylation in vivo as well. Since phosphorylation activates p190MET kinase, we propose a regulatory role for Tyr1235.  相似文献   

12.
The MET proto-oncogene encodes a transmembrane tyrosine kinase of 190 kDa (p190MET), which has recently been identified as the receptor for hepatocyte growth factor/scatter factor. p190MET is a heterodimer composed of two disulfide-linked chains of 50 kDa (p50 alpha) and 145 kDa (p145 beta). We have produced four different monoclonal antibodies that are specific for the extracellular domain of the Met receptor. These antibodies immunoprecipitate with p190MET two additional Met proteins of 140 and 130 kDa. The first protein (p140MET) is membrane bound and is composed of an alpha chain (p50 alpha) and an 85-kDa C-terminal truncated beta chain (p85 beta). The second protein (p130MET) is released in the culture supernatant and consists of an alpha chain (p50 alpha) and a 75-kDa C-terminal truncated beta chain (p75 beta). Both truncated forms lack the tyrosine kinase domain. p140MET and p130MET are consistently detected in vivo, together with p190MET, in different cell lines or their culture supernatants. p140MET is preferentially localized at the cell surface, where it is present in roughly half the amount of p190MET. The two C-terminal truncated forms of the Met receptor are also found in stable transfectants expressing the full-length MET cDNA, thus showing that they originate from posttranslational proteolysis. This process is regulated by protein kinase C activation. Together, these data suggest that the production of the C-terminal truncated Met forms may have a physiological role in modulating the Met receptor function.  相似文献   

13.
Moderate increases of intracellular Ca2+ concentration ([Ca2+]i), induced by either the activation of tropomyosin receptor kinase (Trk) receptors for neurotrophins or by neuronal activity, regulate different intracellular pathways and neuronal survival. In the present report we demonstrate that glial cell line-derived neurotrophic factor (GDNF) treatment also induces [Ca2+]i elevation by mobilizing this cation from internal stores. The effects of [Ca2+]i increase after membrane depolarization are mainly mediated by calmodulin (CaM). However, the way in which CaM exerts its effects after tyrosine kinase receptor activation remains poorly characterized. It has been reported that phosphatidylinositol 3-kinase (PI 3-kinase) and its downstream target protein kinase B (PKB) play a central role in cell survival induced by neurotrophic factors; in fact, GDNF promotes neuronal survival through the activation of the PI 3-kinase/PKB pathway. We show that CaM antagonists inhibit PI 3-kinase and PKB activation as well as motoneuron survival induced by GDNF. We also demonstrate that endogenous Ca2+/CaM associates with the 85-kDa regulatory subunit of PI 3-kinase (p85). We conclude that changes of [Ca2+]i, induced by GDNF, promote neuronal survival through a mechanism that involves a direct regulation of PI 3-kinase activation by CaM thus suggesting a central role for Ca2+ and CaM in the signaling cascade for neuronal survival mediated by neurotrophic factors.  相似文献   

14.
Scatter Factor (SF) is a fibroblast-secreted protein which promotes motility and matrix invasion of epithelial cells. Hepatocyte Growth Factor (HGF) is a powerful mitogen for hepatocytes and other epithelial tissues. SF and HGF, purified according to their respective biological activities, were interchangeable and equally effective in assays for cell growth, motility and invasion. Both bound with identical affinities to the same sites in target cells. The receptor for SF and HGF was identified as the product of the MET oncogene by: (i) ligand binding and coprecipitation in immunocomplexes; (ii) chemical crosslinking to the Met beta subunit; (iii) transfer of binding activity in insect cells by a baculovirus carrying the MET cDNA; (iv) ligand-induced tyrosine phosphorylation of the Met beta subunit. SF and HGF cDNA clones from human fibroblasts, placenta and liver had virtually identical sequences. We conclude that the same molecule (SF/HGF) acts as a growth or motility factor through a single receptor in different target cells.  相似文献   

15.
The MET tyrosine kinase, the receptor of hepatocyte growth factor-scatter factor (HGF/SF), is known to be essential for normal development and cell survival. We report that stress stimuli induce the caspase-mediated cleavage of MET in physiological cellular targets, such as epithelial cells, embryonic hepatocytes, and cortical neurons. Cleavage occurs at aspartic residue 1000 within the SVD site of the juxtamembrane region, independently of the crucial docking tyrosine residues Y1001 or Y1347 and Y1354. This cleavage generates an intracellular 40-kDa MET fragment containing the kinase domain. The p40 MET fragment itself causes apoptosis of MDCK epithelial cells and embryonic cortical neurons, whereas its kinase-dead version is impaired in proapoptotic activity. Finally, HGF/SF treatment does not favor MET cleavage and apoptosis, confirming the known survival role of ligand-activated MET. Our results show that stress stimuli convert the MET survival receptor into a proapoptotic factor.  相似文献   

16.
Overexpression of the mutationally activated receptor tyrosine kinase Xiphophorus melanoma receptor kinase (Xmrk) initiates formation of hereditary malignant melanoma in the fish Xiphophorus. In melanoma as well as in a melanoma-derived cell line (PSM) this receptor is highly activated resulting in constitutive Xmrk-mediated mitogenic signaling. In order to analyze mitogenic signaling triggered by Xmrk a possible involvement of phosphatidylinositol 3 (PI3)-kinase in Xmrk signal transduction was examined. Constitutive binding of the p85 adapter subunit of PI3-kinase to the Xmrk receptor was detected in PSM melanoma cells. Further analyses in BHK cells expressing a Xmrk chimera (HER-mrk) showed that p85 association with the intracellular part of Xmrk was dependent on autophosphorylation of the receptor. In vitro binding studies revealed that the interaction is mediated mainly through the N-terminal SH2 domain of p85 which directly binds to a sequence motif around phosphorylated Tyr-983 in the Xmrk carboxy-terminus. In accordance with recruitment of p85 by Xmrk in PSM cells, the PI3-kinase downstream target Akt was found to be highly phosphorylated on Ser-473, indicating efficient PI3-kinase signaling in melanoma cells. PI3-kinase activation was also detected in Xiphophorus melanoma. Moreover, malignant melanomas exhibited an increased level of PI3-kinase activity which was about three times higher than that in benign pigmented lesions. Inhibition of PI3-kinase activity in PSM melanoma cells by both Wortmannin and LY294002 blocked entry into S-phase. Together these data demonstrate that PI3-kinase is a substrate of the oncogenic Xmrk receptor and plays a significant role in mitogenic signaling of melanoma cells and the formation of malignant melanoma in Xiphophorus.  相似文献   

17.
Monoclonal antibodies raised against the 85-kDa subunit (p85) of bovine phosphatidylinositol (PI) 3-kinase were found to recognize uncomplexed p85 or p85 in the active PI 3-kinase. Immunoprecipitation studies of Chinese hamster ovary cells, which overexpress the human insulin receptor when treated with insulin, showed increased amounts of p85 and PI 3-kinase activity immunoprecipitable with monoclonal anti-p85 antibody and no increase in the tyrosine phosphorylation of p85. Insulin also induced an association of p85 with the tyrosine-phosphorylated insulin receptor substrate 1 (IRS-1) and other phosphorylated proteins ranging in size from 100 to 170 kDa but not with the activated insulin receptor. In vitro reconstitution studies were used to show p85 in the active PI 3-kinase associated with the tyrosine-phosphorylated IRS-1 but not with the activated insulin receptor. Competition studies using synthetic phosphopeptides corresponding to potential tyrosine phosphorylation sites of IRS-1 revealed that phosphopeptides containing YMXM motifs inhibited this association with different potencies, whereas nonphosphorylated analogues and a phosphopeptide containing the EYYE motif had no effect. Src homology region 2 domains of p85 expressed as glutathione S-transferase fusion proteins also bound to tyrosine-phosphorylated IRS-1. These results suggest that insulin causes the association of PI 3-kinase with IRS-1 via phosphorylated YMXM motifs of IRS-1 and Src homology region 2 domains of p85.  相似文献   

18.
Acute irreparable UV-induced DNA damage leads to apoptosis of epidermal keratinocytes (KC) and the formation of sunburn cells, whereas less severely damaged cells survive but harbor the potential of tumor formation. Here we report that hepatocyte growth factor/scatter factor (HGF/SF) prevents UVB-induced apoptosis in primary KC cultured in vitro. When we analyzed the signaling pathways initiated by the HGF/SF receptor c-met, we found that the phosphatidylinositol (PI) 3-kinase and its downstream-element AKT and the mitogen-activated protein (MAP) kinase were activated. Inhibition of PI 3-kinase led to a complete abrogation of the anti-apoptotic effect of HGF/SF, whereas blockade of the MAP kinase pathway had no effect. In contrast to the observation with primary KC, HGF/SF could not enhance survival after UVB irradiation of HaCaT and A431 cell lines, despite the fact that in these cells the PI 3-kinase and MAP kinase pathways were also activated by HGF/SF. Cell cycle analysis of KC revealed a G(2)/M arrest after UVB irradiation and a complete loss of proliferating cells. Because HGF/SF in the skin is produced by dermal fibroblasts, our findings suggest that the HGF/SF-mediated rescue of KC from apoptosis represents an important paracrine loop by which UVB-damaged KC can be kept alive to maintain the epidermal barrier function but cannot further proliferate, thereby preventing the induction of epithelial skin tumors.  相似文献   

19.
The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors.  相似文献   

20.
Class IA phosphoinositide (PI) 3-kinase is composed of a p110 catalytic subunit and a p85 regulatory subunit and plays a pivotal role in insulin signaling. To explore the physiological roles of two major regulatory isoforms, p85 alpha and p85 beta, we have established brown adipose cell lines with disruption of the Pik3r1 or Pik3r2 gene. Pik3r1-/- (p85 alpha-/-) cells show a 70% reduction of p85 protein and a parallel reduction of p110. These cells have a 50% decrease in PI 3-kinase activity and a 30% decrease in Akt activity, leading to decreased insulin-induced glucose uptake and anti-apoptosis. Pik3r2-/- (p85 beta-/-) cells show a 25% reduction of p85 protein but normal levels of p85-p110 and PI 3-kinase activity, supporting the fact that p85 is more abundant than p110 in wild type. p85 beta-/- cells, however, exhibit significantly increased insulin-induced Akt activation, leading to increased anti-apoptosis. Reconstitution experiments suggest that the discrepancy between PI 3-kinase activity and Akt activity is at least in part due to the p85-dependent negative regulation of downstream signaling of PI 3-kinase. Indeed, both p85 alpha-/- cells and p85 beta-/- cells exhibit significantly increased insulin-induced glycogen synthase activation. p85 alpha-/- cells show decreased insulin-stimulated Jun N-terminal kinase activity, which is restored by expression of p85 alpha, p85 beta, or a p85 mutant that does not bind to p110, indicating the existence of p85-dependent, but PI 3-kinase-independent, signaling pathway. Furthermore, a reduction of p85 beta specifically increases insulin receptor substrate-2 phosphorylation. Thus, p85 alpha and p85 beta modulate PI 3-kinase-dependent signaling by multiple mechanisms and transmit signals independent of PI 3-kinase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号