首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
种子形态生理休眠研究进展   总被引:1,自引:0,他引:1  
  相似文献   

2.
大果木莲种子具吸水性,胚未完全发育。新鲜种子25℃下的萌发率仅2%,在30/20℃和20/10℃的条件下30d内分别有27%和36%种子萌发。在20/10℃下,1000mg·L^-1浓度的GA3可以有效打破种子休眠。冷层积120d的种胚生长不显著,大果木莲种子具有条件休眠特性,属于浅度简单型形态生理休眠。种子经冷层积60d的萌发率最高,而后下降,提示其可能有休眠循环现象。  相似文献   

3.
箭叶淫羊藿具有重要的药用价值和较大的市场需求,但其种子休眠和萌发特性目前仍不够清楚,严重影响了其产业化育苗与栽培。为探明其种子的休眠类型及释放休眠和促进休眠的最适方法,该文以箭叶淫羊藿的成熟种子为材料,研究种子对水分的吸收、种子的脱水耐性,以及温度、层积和植物激素对种子休眠与萌发的影响。结果表明:(1)箭叶淫羊藿种子不具有物理休眠,而具耐脱水性。(2)在4~25 ℃和黑暗条件下,种子萌发率为零,具有休眠特性。(3)胚与种子的比值非常小,4 ℃和10 ℃及变温层积能显著地促进胚的生长发育以及增加种子的萌发速率和萌发率。(4)赤霉素和氟啶酮显著增加种子的萌发速率和萌发率。综上认为,箭叶淫羊藿种子的休眠类型为形态生理休眠(MPD),释放休眠和促进萌发的最适方法是先将种子在10 ℃中层积30 d,再置于4 ℃环境中让其萌发。该研究结果为箭叶淫羊藿的产业化育苗提供了参考。  相似文献   

4.
莎草科4种植物种子休眠与萌发特性的研究   总被引:2,自引:0,他引:2  
以嵩草、黑穗苔草、藨草和苔草4种莎草科植物种子为材料,研究了硫酸、植物生长调节剂及低温层积处理对其休眠与萌发特性的影响,以揭示其休眠机制及其破除方法,为指导生产提供理论依据。结果表明:(1)4种参试植物种子均存在不同程度的生理休眠,其中嵩草为浅度生理休眠,黑穗苔草为中度生理休眠,藨草和苔草为深度生理休眠。(2)浓硫酸浸种可显著提高嵩草、黑穗苔草种子的萌发,随浸种时间增加,种子萌发率先增加后降低,最大值分别达86%、77%,但浓硫酸处理对藨草和苔草的种子萌发无显著促进作用。(3)赤霉素(GA3)、氟啶酮(FL,脱落酸抑制剂)和KNO3单独处理可显著提高嵩草种子萌发,但对其他3种植物种子无显著作用;而硫酸处理后再用赤霉素或氟啶酮处理,则显著促进黑穗苔草种子的萌发率。(4)低温层积对种子萌发的影响因种与层积时间而异,层积2个月可显著提高嵩草种子萌发,层积4个月可显著提高嵩草和藨草种子萌发;层积6个月可显著提高嵩草、黑穗苔草、藨草和苔草4种植物种子萌发,其最终萌发率分别为90%、73%、17%、7%。  相似文献   

5.
目的:探究毛叶山桐子种子(Idesia polycarpa Maxim. var. vestita Diels)的休眠类型和解除休眠的最适方法,为生产实践中的种苗繁育提供一种能有效解除毛叶山桐子种子休眠和提高萌发率的方法。方法:以成熟的毛叶山桐子种子为材料,研究种子的水分透性及温度、光照、去垢剂、后熟、层积和植物激素对种子休眠与萌发的影响。结果:(1)种子具有发育成熟的胚,种皮被有蜡质层但具有透水性;(2)在10~35℃和交替光照(12 h光照/12 h黑暗,光强度为144μmol·m-2·s-1)下萌发30 d,种子的萌发率低于30%,具有休眠特性;(3)种子在完全黑暗条件下几乎不萌发,是一种需光性种子;(4)4℃和10℃层积30 d显著地增加种子的萌发速率和萌发率,后熟90 d则对种子萌发没有影响;(5)GA3能部分解除种子的休眠和促进萌发,将萌发率提高至56.7%,氟啶酮则没有作用。结论:毛叶山桐子种子的休眠类型为非深度生理休眠,解除休眠和促进萌发的最适方法是将种子在4℃或者10℃中层积30 d,然后在25℃和交替光照中萌发。  相似文献   

6.
研究了西康玉兰(Magnolia wilsonii)种胚的形态大小,温度、层积、硝酸钾、浸种处理和GA_3对种子休眠及萌发的影响.通过将种子脱水至不同含水量和在两种温度(4℃和一20℃)下贮藏100 d后测其生活力,分析各处理对西康玉兰种子活力的影响.结果表明:西康玉兰种子胚尚未分化完全,需经过低温层积完成生理后熟;低温层积和GA3可打破种子休眠.种子最适萌发温度为25/20℃.由此推测,西康玉兰种子具有形态生理休眠特性.西康玉兰种子当含水量降至5.39%,存活率为53.50%.不同含水量的种子贮藏在-20℃条件下,100 d后种子全部死亡;但在4℃下含水量为10.31%的种子存活力高达76%.因此,西康玉兰种子极可能属于中间性种子,其适宜贮藏环境为4℃下的干藏或湿藏.  相似文献   

7.
探讨不同发育时期水曲柳种子的外部形态和生理变化及其层积处理后的萌发效应结果表明:水曲柳开花120d后为成熟脱水阶段,开花110d后种子的胚长和胚乳干重趋于稳定,花后110~120d期间种子胚干重趋于稳定;花后70~100d采集的种子不耐层积,层积处理后逐渐死亡,花后110d采集的种子经层积处理后可以萌发;110d后采集的水曲柳种子经暖温(20℃)16周+低温(5℃)12周的层积处理后,其休眠破除的效果较好,适当延长暖温层积时间有利于提高种子萌发率。  相似文献   

8.
珍稀植物地涌金莲在野外能产生大量的种子,但成熟的种子散布后不能顺利地转化为幼苗。在暖层积(25℃)过程中,蘑菇形的小胚逐渐分化与生长,6个月后,胚已形态成熟且能很好地萌发;同时,胚内激素ABA含量不断下降,GA4含量显著增加,且与胚的形态成熟和萌发力的增强密切相关。这些结果充分证实地涌金莲种子具有形态生理休眠——在很大程度上限制了野外种子萌发。此外,种子不萌发可能与生境长时间干旱胁迫有关。  相似文献   

9.
为探究低温层积过程中桃儿七种子胚形态及生理生化变化与休眠解除的内在联系,该研究通过低温层积处理(90 d)解除桃儿七种子休眠,观测不同层积时间种子胚形态、胚率、发芽率、营养物质(淀粉、可溶性蛋白质、可溶性糖)含量、内源激素[赤霉素(GA)、吲哚乙酸(IAA)、脱落酸(ABA)]水平及呼吸途径关键限速酶[丙酮酸激酶(PK)、琥珀酸脱氢酶(SDH)、6 磷酸 葡萄糖脱氢酶(G 6 PDH)]的活性变化。结果显示:(1)在低温层积过程中,桃儿七种子胚形态为鱼雷或子叶型胚;种子发芽率在层积后期(60~75 d)显著提高(P<0.05)。(2)层积后,种子内淀粉含量及PK活性、SDH活性显著降低(P<0.05),其可溶性蛋白含量和IAA含量显著升高(P<0.05),萌发促进物和抑制物比例(GA/ABA、IAA/ABA、GA+IAA/ABA)也呈升高趋势。(3)种子胚率与其可溶性糖含量呈显著负相关关系,种子发芽率与其可溶性蛋白呈显著正相关关系(P<0.05)。研究发现,桃儿七种子无形态休眠;种子内营养物质的分解转化为种子休眠解除过程中各种代谢活动提供能量,且淀粉可能是此过程中最主要的供能物质;磷酸戊糖途径(PPP)的活化、萌发促进物和抑制物比例的升高及IAA含量的显著上升是桃儿七解除休眠的关键。  相似文献   

10.
鸭儿芹种子具有休眠特性,且休眠期长,不经任何处理的种子很难萌发,影响其人工种植。研究了鸭儿芹种子的休眠特性和解除休眠的最佳方法,为我国人工种植野生鸭儿芹提供理论依据。结果表明:TTC法对种子活力的测定表明有活力的种子为(55.33±3.71)%;切破种皮种子与完整种子吸水率在前12 h相差较大,但最终吸水率相差不大,分别达到(70.00±1)%和(68.32±0.32)%,表明种皮并不阻碍种子吸水;种子中存在内源抑制物,其粗提液在较低浓度下即可抑制芹菜种子的萌发;鸭儿芹种子成熟时胚未分化完全,胚率为(28.65±2.488)%,经过低温处理后完成后熟,胚率达到(65.93±3.86)%,萌发率达到100%,因此鸭儿芹种子具有形态生理休眠特性。清水浸种和低温冷藏共同处理可有效解除其休眠,浸种和低温冷藏具有交互效应,浸种36 h、5℃冷藏30d即可解除其休眠,萌发率达到100%,发芽势达到(91.11±0.91)%。已破除休眠的种子适宜其萌发的温度范围扩大(15.0—27.5℃),而且在土壤中也可较好地萌发,萌发率达到(96.67±3.33)%,发芽势达到(71.11±1.93)%。  相似文献   

11.
Seeds of Delphinium fissum subsp. sordidum are physiologically dormant at maturity, with underdeveloped embryos; thus they have morphophysiological dormancy (MPD). The aims of this study were to determine the requirements for embryo growth, dormancy break and germination, to characterise the type of seed dormancy and to evaluate the effects of light, seed age, pollination mechanism, and inter-annual and inter-population variability on germinative ability. After 3 months of incubation at 5°C (cold stratification) in darkness conditions, the mean embryo length increased from 5.6 to 2.07 mm, with 76% of seeds germinating. Conversely, embryos of seeds incubated during 3 months at 20/7 or 28/14°C hardly grew and no germination was recorded. Since cold stratification was the only requirement for the loss of MPD, and both dry storage in laboratory conditions and warm stratification prior to cold stratification shortened the cold stratification period required for germination, it could be concluded that D. fissum subsp. sordidum seeds have intermediate complex MPD. Cold stratification and incubation in darkness conditions promoted higher germination percentages than those in light. In addition, germinative ability increased with seed age up to 8 months (reaching 96% at 5°C in darkness), showed a pronounced inter-annual and inter-population variability, as well as a significant decrease in seeds coming from pollination by geitonogamy. High temperatures (25/10 or 28/14°C) induced seeds to secondary dormancy, so seedling emergence in the greenhouse was restricted to February–March. The requirements for dormancy break and germination reflect an adaptation to trigger germination in late winter. This study is the first one to document a gradual increase in germination percentage with seed age for plant species with intermediate complex MPD.  相似文献   

12.
Morphophysiological dormancy was investigated in seeds of Ribes multiflorum Kit ex Roem et Schult. ssp. sandalioticum Arrigoni, a rare mountain species endemic to Sardinia (Italy). There were no differences in imbibition rates between intact and scarified seeds, suggesting a lack of physical dormancy, while methylene blue solution (0.5%) highlighted a preferential pathway for solution entrance through the raphe. Embryos were small at seed dispersal, with an initial embryo:seed ratio (E:S) of ca. 0.2 (embryo length, ca. 0.5 mm), whereas the critical E:S ratio for germination was three times longer (ca. 0.6). Gibberellic acid (GA(3), 250 mg · l(-1)) and warm stratification (25 °C for 3 months) followed by low temperature (<15 °C) enhanced embryo growth rate (maximum of ca. 0.04 mm · day(-1) at 10 °C) and subsequent seed germination (radicle emergence; ca. 80% at 10 °C). Low germination occurred at warmer temperatures, and cold stratification (5 °C for 3 months) induced secondary dormancy. After radicle emergence, epicotyl emergence was delayed for ca. 2 months for seeds from three different populations. Mean time of epicotyl emergence was affected by GA(3) . Seeds of this species showed non-deep simple (root) - non-deep simple (epicotyl) morphophysiological dormancy, highlighting a high synchronisation with Mediterranean seasonality in all the investigated populations.  相似文献   

13.
We tested the hypothesis that seeds of the monocarpic perennial Ferula gummosa from the Mediterranean area and central Asia have deep complex morphophysiological dormancy. We determined the water permeability of seeds, embryo morphology, temperature requirements for embryo growth and seed germination and responses of seeds to warm and cold stratification and to different concentrations of GA3. The embryo has differentiated organs, but it is small (underdeveloped) and must grow inside the seed, reaching a critical embryo length, seed length ratio of 0.65–0.7, before the seed can germinate. Seeds required 9 weeks of cold stratification at <10°C for embryo growth, dormancy break and germination to occur. Thus, seeds have morphophysiological dormancy (MPD). Furthermore, GA3 improved the germination percentage and rate at 5°C and promoted 20 and 5% germination of seeds incubated at 15 and 20°C, respectively. Thus, about 20% of the seeds had intermediate complex MPD. For the other seeds in the seed lot, cold stratification (5°C) was the only requirement for dormancy break and germination and GA3 could not substitute for cold stratification. Thus, about 80% of the seeds had deep complex MPD.  相似文献   

14.
Aims There are a number of mechanisms that regulate germination; among these, seed dormancy, one of the most important, is an adaptative mechanism in plants to promote survival by dispersing germination in space and time until environmental conditions are favourable for germination. The main goals of this study were to determine the temperature requirements for seed dormancy release and germination of Gentiana lutea subsp. lutea, to identify the class and level of seed dormancy and to suggest an optimal germination protocol.Methods Seeds belonging to two different localities were subjected to various pre-treatments, including cold stratification (0 and 5°C), warm stratification (25/10°C) and different combinations of these, and then incubated at a range of constant temperatures (5–25°C) and 25/10°C. Embryo growth during pre-treatments and incubation conditions were assessed at different times by measuring the embryo to seed length ratio (E:S ratio). The final germination percentage (FGP) and the germination rate (t 50) were calculated.Important findings Fleshy mature seeds of G. lutea subsp. lutea have linear underdeveloped embryos. Cold stratification at 0°C was effective in overcoming the physiological dormancy (PD) and promoted embryo growth and subsequent germination. After cold stratification at 0°C, both the root and the shoot emerged readily under a wide range of temperatures. G. lutea subsp. lutea seeds showed an intermediate complex morphophysiological dormancy (MPD). As regards the optimal germination protocol for this taxon, we suggest a period of cold stratification at ca. 0°C followed by seed incubation at 10–20°C. The optimal germination temperatures found for seeds of this taxon, as well as its pre-chilling requirement at 0°C, suggest that it is well adapted to a temperate climate; this behavior highlights an increasing threat from global warming for G. lutea, which could reduce the level of natural emergence in the field, prejudicing also the long-term persistence of the natural populations in Sardinia.  相似文献   

15.
The main goal of the study was to assess germination requirements in a threatened daffodil to elaborate a detailed protocol for plant production from seeds, a key tool for conservation. Experiments were carried out both in the laboratory and outdoor conditions. In Pseudonarcissi section, endemic Iberian species of Narcissus studied heretofore have different levels of morphophysiological dormancy (MPD). Embryo length, radicle emergence, and shoot emergence were analyzed to determine the level of MPD. Both interpopulational variability and seed storage duration were also studied. Mean embryo length in fresh seeds was 1.32 mm and the embryo had to grow until it reached at least 2.00 mm to germinate. Embryo growth occurs during warm stratification, after which the radicle emerges when temperatures go down. Seed dormancy was broken in the laboratory at 28/14°C in darkness followed by 15/4°C, but the germination percentage varies depending on the population. In outdoor conditions, seed dispersal occurs in June, the embryo grows during the summer and then the radicle emerges in autumn. The radicle system continues to grow during the winter months, but the shoot does not emerge until the beginning of the spring because it is physiologically dormant and requires a cold period to break dormancy. Early cold temperatures interrupt embryo growth and induce dormancy in seeds with an advanced embryo development. Seeds of N. eugeniae have deep simple epicotyl MPD. In addition, we found that embryo growth and germination were improved by seed storage duration.  相似文献   

16.
In contrast to previous reports, the endocarps ("seed coats") of Sambucus species are not impermeable to water; thus, the seeds do not have physical dormancy. Seeds of the North American species Sambucus canadensis and S. pubens and of the European species S. racemosa have spatulate shaped embryos that are ~60% fully developed (elongated) at seed maturity. The embryo has to extend to the full length of the seed to germinate. Embryos in freshly matured seeds of S. canadensis and in those of S. pubens grew better at 25°/15°C than at 5°C, whereas the rate of embryo growth in S. racemosa was higher at 5°C than at 25°/15°C. Seeds of all three species germinated to significantly higher percentages in light (14-h photoperiod) than in darkness. Fresh seeds of neither species germinated during 2 wk of incubation over a range of thermoperiods. Warm followed by cold stratification broke dormancy in seeds of S. canadensis and in those of S. pubens. Thus, seeds of these two North American species have deep simple morphophysiological dormancy (MPD). In comparison, seeds of the European species S. racemosa required a cold stratification period only for dormancy break, and thus they have intermediate complex MPD. GA(3) was much more effective in breaking dormancy in seeds of S. racemosa than it was in those of S. canadensis or S. pubens.  相似文献   

17.
BACKGROUND AND AIMS: The European Chaerophyllum temulum and two North American Chaerophyllum species have a trans-Atlantic disjunct distribution. This work aimed to resolve requirements for dormancy break and germination of C. temulum seeds and to compare dormancy traits with those of the two North American congeners. METHODS: Phenology of germination and embryo growth was studied by regularly exhuming seeds sown in natural conditions. Temperature requirements for embryo growth, breaking of dormancy and germination were determined by incubating seeds under controlled laboratory conditions. Additionally the effect of GA(3) on germination was tested to determine the specific dormancy type. KEY RESULTS: In natural conditions, embryo growth starts in early winter. Seedlings emerge in late winter shortly after the embryos reached the critical ratio for embryo length to seed length (E : S) of approx. 0.95. Growth of the embryo only occurs during a prolonged incubation period at 5 degrees C. After stratification at 5 degrees C, which breaks physiological and morphological dormancy, seeds can germinate at a wide range of temperatures. GA(3) did not substitute for cold stratification in seeds placed at 23 degrees C. CONCLUSIONS: Chaerophyllum temulum has deep complex morphophysiological dormancy. This dormancy type differs considerably from that of the two North American congeners.  相似文献   

18.

Background and Aims

Little is known about morphological (MD) or morphophysiological (MPD) dormancy in cold desert species and in particular those in Liliaceae sensu lato, an important floristic element in the cold deserts of Central Asia with underdeveloped embyos. The primary aim of this study was to determine if seeds of the cold desert liliaceous perennial ephemeral Eremurus anisopterus has MD or MPD, and, if it is MPD, then at what level.

Methods

Embryo growth and germination was monitored in seeds subjected to natural and simulated natural temperature regimes and the effects of after-ripening and GA3 on dormancy break were tested. In addition, the temperature requirements for embryo growth and dormancy break were investigated.

Key Results

At the time of seed dispersal in summer, the embryo length:seed length (E:S) ratio was 0·73, but it increased to 0·87 before germination. Fresh seeds did not germinate during 1 month of incubation in either light or darkness over a range of temperatures. Thus, seeds have MPD, and, after >12 weeks incubation at 5/2 °C, both embryo growth and germination occurred, showing that they have a complex level of MPD. Since both after-ripening and GA3 increase the germination percentage, seeds have intermediate complex MPD.

Conclusions

Embryos in after-ripened seeds of E. anisopterus can grow at low temperatures in late autumn, but if the soil is dry in autumn then growth is delayed until snowmelt wets the soil in early spring. The ecological advantage of embryo growth phenology is that seeds can germinate at a time (spring) when sand moisture conditions in the desert are suitable for seedling establishment.  相似文献   

19.

Background and Aims

Only very few studies have been carried out on seed dormancy/germination in the large monocot genus Narcissus. A primary aim of this study was to determine the kind of seed dormancy in Narcissus hispanicus and relate the dormancy breaking and germination requirements to the field situation.

Methods

Embryo growth, radicle emergence and shoot growth were studied by subjecting seeds with and without an emerged radicle to different periods of warm, cold or warm plus cold in natural temperatures outdoors and under controlled laboratory conditions.

Key Results

Mean embryo length in fresh seeds was approx. 1·31 mm, and embryos had to grow to 2·21 mm before radicle emergence. Embryos grew to full size and seeds germinated (radicles emerged) when they were warm stratified for 90 d and then incubated at cool temperatures for 30 d. However, the embryos grew only a little and no seeds germinated when they were incubated at 9/5, 10 or 15/4 °C for 30 d following a moist cold pre-treatment at 5, 9/5 or 10 °C. In the natural habitat of N. hispanicus, seeds are dispersed in late May, the embryo elongates in autumn and radicles emerge (seeds germinate) in early November; however, if the seeds are exposed to low temperatures before embryo growth is completed, they re-enter dormancy (secondary dormancy). The shoot does not emerge until March, after germinated seeds are cold stratified in winter.

Conclusion

Seeds of N. hispanicus have deep simple epicotyl morphophysiological dormancy (MPD), with the dormancy formula C1bB(root) – C3(epicotyl). This is the first study on seeds with simple MPD to show that embryos in advanced stages of growth can re-enter dormancy (secondary dormancy).  相似文献   

20.
  • Threshold‐based thermal time models provide insight into the physiological switch from the dormant to the non‐dormant germinating seed.
  • This approach was used to quantify the different growth responses of the embryo of seeds purported to have morphophysiological dormancy (MPD) through the complex phases of dormancy release and germination. Aquilegia barbaricina seeds were incubated at constant temperatures (10–25 °C) and 25/10 °C, without pre‐treatment, after warm+cold stratification (W+C) and GA3 treatment. Embryo growth was assessed and the time of testa and endosperm rupture scored. Base temperatures (Tb) and thermal times for 50% (θ50) of embryo growth and seed germination were calculated.
  • W+C enabled slow embryo growth. W+C and GA3 promoted rapid embryo growth and subsequent radicle emergence. The embryo internal growth base temperature (Tbe) was ca. 5 °C for W+C and GA3‐treated seeds. GA3 treatment also resulted in similar Tb estimates for radicle emergence. The thermal times for embryo growth (θe50) and germination (θg50) were four‐ to six‐fold longer in the presence of GA3 compared to W+C.
  • A. barbaricina is characterised by a multi‐step seed germination. The slow embryo growth during W+C reflects continuation of the maternal programme of development, whilst the thermal kinetics of both embryo and radicle growth after the removal of physiological dormancy are distinctly different. The effects of W+C on the multiphasic germination response in MPD seeds are only partially mimicked by 250 mg·l?1 GA3. The thermal time approach could be a valid tool to model thermal kinetics of embryo growth and radicle protrusion.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号